Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = Eucalyptus spp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1135 KiB  
Article
Evaluation of Fire Incidence in Spanish Forest Species
by Álvaro Enríquez-de-Salamanca
Fire 2025, 8(8), 312; https://doi.org/10.3390/fire8080312 - 6 Aug 2025
Abstract
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, [...] Read more.
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, and recurrence were calculated for each species, and with them, fire incidence indices were obtained. Significant fire incidence was detected in Pinus canariensis, P. pinaster, Eucalyptus globulus, Quercus robur, Betula spp., Castanea sativa, Pinus radiata, and Quercus pyrenaica. Most of the species with the highest fire incidence are not located in the areas with the highest climatic hazard. There is limited correlation between flammability and fire extension, and this is not significant when considering fire incidence. The relationship between fire incidence and conifers is valid in absolute terms, but only partially in relative terms. Similarly, there is no general relationship between relative fire incidence and species with a natural or reforested origin. Some native hardwood species have unexpectedly high incidence, probably due to collateral damage caused by fires in nearby pine and eucalyptus stands. The fire incidence index of forest species is useful for forest management and for protecting species that are suffering severely from fire effects. Full article
19 pages, 3654 KiB  
Article
Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards
by Matheus Zanghelini Teixeira, Rodrigo Figueiredo Terezo, Camila Alves Corrêa, Samuel da Silva Santos, Helena Cristina Vieira and Alexsandro Bayestorff da Cunha
Buildings 2025, 15(15), 2606; https://doi.org/10.3390/buildings15152606 - 23 Jul 2025
Viewed by 258
Abstract
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH [...] Read more.
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH®), using the finite element method applied to a two-story building model. Class 2 of the Brazilian standard ABNT NBR 7190-2 was adopted as the reference for the physical and mechanical properties of Pinus spp., while the European commercial specifications from KLH® were used to represent European reference panels. The results indicate that E. benthamii wood exhibits superior mechanical properties, enabling reductions of 12.5% to 27.3% in panel thickness and a 20.7% decrease in wood volume when compared to Pinus spp., without compromising structural safety. Relative to the KLH® and ETA 06/0138 standards, E. benthamii wood demonstrates higher stiffness (modulus of elasticity of 15,325 MPa vs. 12,000 MPa) and greater flexural strength (109.11 MPa vs. 24 MPa), allowing for the use of thinner panels. Stress and displacement analyses confirm that E. benthamii CLT slabs can withstand critical loads (wind and vertical) within normative limits, with maximum displacements of 18.5 mm. The reduction in material volume (22.8 m3 versus 28.7 m3 for Pinus spp.) suggests potential benefits in terms of environmental impact and logistical efficiency. It can be concluded that E. benthamii represents a sustainable and efficient alternative for CLT panels, combining high structural performance with resource optimization and contributing to the decarbonization of the construction industry. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 529
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
by Simone Bergonzoli, Luca Cozzolino, Elio Romano and Luigi Pari
Ecologies 2025, 6(3), 45; https://doi.org/10.3390/ecologies6030045 - 23 Jun 2025
Viewed by 382
Abstract
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management [...] Read more.
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management remains less understood. To address this gap, a sampling of diversity was carried out through Malaise traps on five agricultural surfaces with different management schemes: two characterized by the presence of trees (Populus L. spp. and Eucalyptus spp.), two herbaceous fields in different development stages (flowering Carthamus tinctorius L. and stubble of Triticum aestivum), and one mixed system (an agroforestry plantation composed of Populus L. spp. and Carthamus tinctorius L.). Data collection focused on evaluating the total animal biomass (weight and number) and the richness and evenness components of diversity using Shannon and Simpson indices at the Order level. The sampled arthropods belonged to six Orders of Insecta and one Order of Arachnida. The agroforestry system had a higher total animal biomass, in terms of weight, than the other treatments (61.24% higher than in the eucalyptus system, 58.91% higher than in the wheat stubble, 42.63% higher than in the flowering safflower system, and 11.63% higher than in the poplar plantation), with the number of total arthropods following a similar trend. The results demonstrated that the biomass, richness, and evenness of the collected arthropods varied according to the management practices applied, and higher values were recorded in the agroforestry system. Although preliminary, the findings suggest the suitability of mixed systems for sustaining higher diversity than traditional monoculture management schemes. Full article
Show Figures

Figure 1

17 pages, 1432 KiB  
Article
Genomic Prediction in a Self-Fertilized Progenies of Eucalyptus spp.
by Guilherme Ferreira Melchert, Filipe Manoel Ferreira, Fabiana Rezende Muniz, Jose Wilacildo de Matos, Thiago Romanos Benatti, Itaraju Junior Baracuhy Brum, Leandro de Siqueira and Evandro Vagner Tambarussi
Plants 2025, 14(10), 1422; https://doi.org/10.3390/plants14101422 - 9 May 2025
Viewed by 800
Abstract
Genomic selection in Eucalyptus enables the identification of superior genotypes, thereby reducing breeding cycles and increasing selection intensity. However, its efficiency may be compromised due to the complex structures of breeding populations, which arise from the use of multiple parents from different species. [...] Read more.
Genomic selection in Eucalyptus enables the identification of superior genotypes, thereby reducing breeding cycles and increasing selection intensity. However, its efficiency may be compromised due to the complex structures of breeding populations, which arise from the use of multiple parents from different species. In this context, partial inbred lines have emerged as a viable alternative to enhance efficiency and generate productive clones. This study aimed to apply genomic selection to a self-fertilized population of different Eucalyptus spp. Our objective was to predict the genomic breeding values (GEBVs) of individuals lacking phenotypic information, with a particular focus on inbred line development. The studied population comprised 662 individuals, of which 600 were phenotyped for diameter at breast height (DBH) at 36 months in a field experiment. The remaining 62 individuals were located in a hybridization orchard and lacked phenotypic data. All individuals, including progeny and parents, were genotyped using 10,132 SNP markers. Genomic prediction was conducted using four frequentist models—GBLUP, GBLUP dominant additive, HBLUP, and ABLUP—and five Bayesian models—BRR, BayesA, BayesB, BayesC, and Bayes LASSO—using k-fold cross-validation. Among the GS models, GBLUP exhibited the best overall performance, with a predictive ability of 0.48 and an R2 of 0.21. For mean squared error, the Bayes LASSO presented the lowest error (3.72), and for the other models, the MSE ranged from 3.72 to 15.50. However, GBLUP stood out as it presented better precision in predicting individual performance and balanced performance in the studied parameter. These results highlight the potential of genomic selection for use in the genetic improvement of Eucalyptus through inbred lines. In addition, our model facilitates the identification of promising individuals and the acceleration of breeding cycles, one of the major challenges in Eucalyptus breeding programs. Consequently, it can reduce breeding program production costs, as it eliminates the need to implement experiments in large planted areas while also enhancing the reliability in selection of genotypes. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

20 pages, 1898 KiB  
Review
Physicochemical Properties of Forest Wood Biomass for Bioenergy Application: A Review
by Leonardo Bianchini, Andrea Colantoni, Rachele Venanzi, Luca Cozzolino and Rodolfo Picchio
Forests 2025, 16(4), 702; https://doi.org/10.3390/f16040702 - 18 Apr 2025
Cited by 2 | Viewed by 795
Abstract
Forest wood biomass is a key renewable resource for advancing energy transition and mitigating climate change. This review analyzes the physicochemical properties of forest biomass from major European tree species to assess their suitability for bioenergy applications. This study encompasses key parameters, such [...] Read more.
Forest wood biomass is a key renewable resource for advancing energy transition and mitigating climate change. This review analyzes the physicochemical properties of forest biomass from major European tree species to assess their suitability for bioenergy applications. This study encompasses key parameters, such as moisture content, ash content, volatile matter, fixed carbon, elemental composition, bulk density, and energy content (HHV and LHV). This review analyzed data from 43 publications and extracted 140 records concerning the physicochemical properties of the most common European forest species used for bioenergy. The most commonly represented species were Quercus robur, Eucalyptus spp., and Fagus sylvatica. Moisture content, referring to fresh matter, ranged from 5% to 65%; ash content, referring to a dry basis, ranged from 0.2% to 3.5%; and higher heating value (HHV), referring to dry matter, ranged from 17 to 21 MJ kg−1. This study highlights variability among species and underscores the importance of standardizing biomass characterization methods and the scarcity of data on bulk density and other key logistical parameters. These findings emphasize the need for consistent methodologies and species-specific selection strategies to optimize sustainability and efficiency in forest biomass utilization for bioenergy. Full article
Show Figures

Figure 1

23 pages, 1448 KiB  
Article
Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization
by Mariana Silva, Miguel Maia, Márcia Carvalho and Ana Novo Barros
Molecules 2025, 30(8), 1808; https://doi.org/10.3390/molecules30081808 - 17 Apr 2025
Cited by 1 | Viewed by 1169
Abstract
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are [...] Read more.
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are derived from the nectar of a predominant plant species, exhibiting rich sensory and nutritional profiles, making them food matrices with unique characteristics and excellent qualities. To explore the monofloral honey potential harvested in different regions of Portugal, a comprehensive study was conducted including the determination of phenolic composition and the assessment of biological activities. In addition to this evaluation, the inter simple sequence repeat (ISSR) was used to help differentiate honeys by botanical origin. The phenolic content and the antioxidant capacity were evaluated by spectrophotometric methods, observing, in general, differences between monofloral honeys. The honey from Citrus sinensis (Silves) exhibited the lowest phenolic content, including total phenols, ortho-diphenols, and flavonoids, whereas honeydew (Vinhais) showed the highest values. Regarding the antioxidant capacity, honey from Lavandula stoechas (Almodôvar) presented the lowest values, while honeydew (Vinhais) displayed the highest values for both DPPH and FRAP assays. In relation to the ABTS assay, the honey from Metrosideros excelsa (Aveiro) exhibited the lowest values, whereas the honey from Eucalyptus spp. (Arouca) showed the highest. The ISSR marker analysis allows the distribution of the samples based on the honey’s botanical origin, suggesting its potential role in honey authentication. Full article
Show Figures

Figure 1

16 pages, 856 KiB  
Article
Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest
by Hoda Helene Shahin, Moomen Baroudi, Fouad Dabboussi, Bassel Ismail, Rayane Salma, Marwan Osman and Khaled El Omari
Pathogens 2025, 14(4), 348; https://doi.org/10.3390/pathogens14040348 - 4 Apr 2025
Viewed by 2017
Abstract
Infectious diseases, the second leading cause of death worldwide, have traditionally been treated with antimicrobials. However, the emergence of drug-resistant microorganisms has driven the need for alternative therapies. This study aimed to assess the antibacterial efficacy of Capparis spinosa crude extracts and five [...] Read more.
Infectious diseases, the second leading cause of death worldwide, have traditionally been treated with antimicrobials. However, the emergence of drug-resistant microorganisms has driven the need for alternative therapies. This study aimed to assess the antibacterial efficacy of Capparis spinosa crude extracts and five essential oils (EOs) derived from Salvia officinalis, Eucalyptus globulus, Micromeria barbata, Origanum vulgare, and Juniperus excelsa. The EOs were extracted using hydro-distillation, and C. spinosa extracts were obtained using ethanol and acetone solvents. Microdilution assays revealed that O. vulgare EO exhibited the strongest activity against Listeria monocytogenes, Escherichia coli, Salmonella spp., and Brucella melitensis, while C. spinosa demonstrated significant antibacterial effects against L. monocytogenes and notable inhibition of Pseudomonas aeruginosa. The combination of EOs with antibiotics, including M. barbata, J. excelsa, S. officinalis, and E. globulus, enhanced the efficacy of the antibiotics against recalcitrant bacterial strains. The synergistic effects were evaluated through Fractional Inhibitory Concentration Index (FICI) analysis. These findings confirm that the antibacterial efficacy observed in the tested EOs, especially when used in synergy with antibiotics, offers a promising therapeutic strategy to combat antimicrobial resistance. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

10 pages, 258 KiB  
Brief Report
Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods
by Aline Sitowski, Gladis Aver Ribeiro, Emma J. Murphy and Gustavo Waltzer Fehrenbach
Bacteria 2025, 4(2), 20; https://doi.org/10.3390/bacteria4020020 - 3 Apr 2025
Viewed by 766
Abstract
Minimally processed foods (MPFs), often considered ready-to-eat, do not undergo cooking and therefore require proper handling and preparation to ensure safety. If not handled correctly, these foods can serve as a pathway for diseases caused by pathogenic bacteria, including Escherichia coli and Salmonella [...] Read more.
Minimally processed foods (MPFs), often considered ready-to-eat, do not undergo cooking and therefore require proper handling and preparation to ensure safety. If not handled correctly, these foods can serve as a pathway for diseases caused by pathogenic bacteria, including Escherichia coli and Salmonella spp. The antibacterial activity of essential oils (EOs) has been increasingly studied as a tool for controlling microorganisms in the food sector. Therefore, we aimed to verify the contamination of MPF by E. coli and Salmonella and to test the sensitivity of these strains to Copaifera langsdorffii, Schinus terebinthifolius, Citrus reticulata, Eucalyptus citriodora, Elettaria cardamomum, Ocimum basilicum, and Eugenia caryophyllus EOs using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. From 25 MPF samples, one E. coli strain and one Salmonella spp. were isolated. C. langsdorffii and C. reticulata EOs did not show antibacterial activity, while S. terebinthifolius and E. citriodora inhibited the growth of both strains. The E. cardamomum, O. basilicum, and E. caryophyllus EOs presented inhibitory and bactericidal responses at concentrations 0.78, 0.39, and 0.19% (v/v), respectively, compared to the two isolated strains. The present study reinforces the antibacterial potential of EOs and suggests their application in the MPF production chain. Full article
18 pages, 10759 KiB  
Article
Magnitude, Seasonality, and Drivers of Nocturnal Water Use in Three Subtropical and Tropical Plantations in Southern China
by Zhanpeng Sun, Hongfeng Xu, Side Wang, Haohui Lin, Qinghai Song, Yun Li, Dengsheng Lu and Yaoliang Chen
Forests 2025, 16(3), 529; https://doi.org/10.3390/f16030529 - 17 Mar 2025
Viewed by 330
Abstract
Nocturnal water consumption (NWC), known as including stem refilling (SR) and nocturnal transpiration (NT), has been documented in many plant species, but we do not yet have a clear understanding of species differences and the biotic and abiotic regulation of this phenomenon, especially [...] Read more.
Nocturnal water consumption (NWC), known as including stem refilling (SR) and nocturnal transpiration (NT), has been documented in many plant species, but we do not yet have a clear understanding of species differences and the biotic and abiotic regulation of this phenomenon, especially for subtropical and tropical plantations. In this study, we examine the magnitude, seasonality, and biotic and abiotic regulation of NWC, SR, and NT in three widely planted subtropical and tropical species, Eucalyptus spp., Hevea brasiliensis, and Castanopsis hystrix, through the measured sap and meteorological variables. Stand-level NWC and SR differ significantly among the three plantations, where the mean daily NWC and SR of Eucalyptus spp. (2022–2023), Hevea brasiliensis (2014), and Castanopsis hystrix (2022–2023) are 0.08 mm and 0.05 mm, 0.36 mm and 0.28 mm, and 0.14 mm and 0.12 mm, respectively. Their stand-level NT values are 0.03 mm, 0.08 mm, and 0.02 mm, respectively. Additionally, distinct differences in the seasonality of NWC, SR, and NT are observed among the three plantations, with higher values during spring and autumn and lower values in summer and winter. SR is identified as the predominant role in NWC for all the plantations. VPD is identified as the primary meteorological factor driving NWC, SR, and NR in Eucalyptus spp. and Hevea brasiliensis plantations, while no prominent abiotic variables show the main driver in Castanopsis hystrix. Our findings reveal important implications for the NWC of tropical plantations related to soil–plant–atmosphere equilibrium and hydrology modeling. Full article
Show Figures

Figure 1

31 pages, 1788 KiB  
Review
The Myth That Eucalyptus Trees Deplete Soil Water—A Review
by Priscila Lira de Medeiros, Alexandre Santos Pimenta, Neyton de Oliveira Miranda, Rafael Rodolfo de Melo, Jhones da Silva Amorim and Tatiane Kelly Barbosa de Azevedo
Forests 2025, 16(3), 423; https://doi.org/10.3390/f16030423 - 26 Feb 2025
Cited by 2 | Viewed by 5620
Abstract
The increase in demand for timber and global eucalyptus cultivation has generated controversy regarding its potential impact on water resources, especially in regions with limited water availability, with the myth that “eucalyptus dries out the soil” being spread. In this regard, this review [...] Read more.
The increase in demand for timber and global eucalyptus cultivation has generated controversy regarding its potential impact on water resources, especially in regions with limited water availability, with the myth that “eucalyptus dries out the soil” being spread. In this regard, this review study addresses the factors that influence water consumption by eucalyptus, providing solutions to reduce, mitigate, or even avoid any impact on water resources at a given site. In this manuscript, the authors reviewed 200 works published from 1977 to 2024 to survey all information to confirm if the factual background allows someone to state if eucalyptus can deplete soil water. With a solid scientific basis, many research studies show that eucalyptus’ water demand is comparable to that of native forest species and crops worldwide and that species, age, edaphoclimatic conditions, and forest management practices mainly influence water consumption. On the other hand, it is a hasty conclusion that some eucalyptus species can contribute to reduced soil water. Effectively, without proper management, the environmental impacts of a eucalyptus plantation are the same as those of poorly managed crops. Indeed, if cultivated with proper agroclimatic zoning and correct management practices, the growth of eucalyptus culture is an environmentally correct activity. By adopting measures such as maintaining sufficient native forest cover to ensure ecosystem services, cultivation based on zoning maps, and considering local specificities (e.g., deeper, sandier soils are preferable), selection of species appropriate to the carrying capacity of each region, adoption of lower planting densities, and reduced rotation, eucalyptus cultivation will not negatively affect water resources. Sustainable eucalyptus cultivation has several economic and environmental benefits, in addition to positive social impacts on surrounding communities in terms of employment and family income, and its sustainable management can guarantee its viability, demystifying the idea that eucalyptus trees cause water scarcity. The works reviewed herein demonstrated no solid ground to sustain the eucalyptus’ water depletion myth. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 2644 KiB  
Article
Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs
by Qiuping Liu, Wei Jin, Liying Huang, Danfeng Wang, Kedong Xu and Yunmin Wei
Plants 2025, 14(1), 144; https://doi.org/10.3390/plants14010144 - 6 Jan 2025
Cited by 2 | Viewed by 1375
Abstract
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings [...] Read more.
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, Eucalyptus. Ficus macrocarpa L., Hibiscus syriacus L. and Ficus carica L. We aimed to find out the relations among gas exchange parameter adaptions among different species during photosynthetic induction. The net photosynthetic rates (A) versus time course curves were sigmoidal or hyperbolic after the dark-adapted leaves were irradiated by continuous saturated light. Compared with other species, Ficus carica L. have the largest net photosynthesis rate, stomatal conductance to CO2 (gsc), and the maximum carboxylation rate (Vcmax) at both the initial and steady photosynthetic state. The initial gsc (gsci) was as much as sixfold higher compared to the other shrub, Hibiscus syriacus L. The time required to reach 90% of A (tA90) was 7–30 min; tA90 of Ficus carica L. and Ficus macrocarpa L. were lower than that of the other two species. The time required to reach 90% of gsc (tgsc90) significantly lagged behind tA90 among species. Biochemical induction was fast in leaves of Ficus carica L., as about 4 min were needed to reach 90% of Vcmax, while the other species needed 7–18 min. Correlation analysis showed that the tgsc90 was the main factor in limiting tA90, especially for Eucalyptus spp. and Hibiscus syriacus L.; gsci was negatively correlated with tgsc90 among species. Moreover, time-integrated limitation analysis revealed that gsc still accounted for the largest limitation in constraining A of Eucalyptus spp. and Hibiscus syriacus L. and Ficus macrocarpa L. Overall, the findings suggest that to enhance the carbon gain by woody species under naturally dynamic light environments, attention should be focused on improving the rate of stomatal opening or initial stomatal conductance. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

24 pages, 3870 KiB  
Article
Sustainable Films Derived from Eucalyptus spp. Bark: Improving Properties Through Chemical and Physical Pretreatments
by Débora da S. Rodrigues, Patricia O. Schmitt, Lincoln Audrew Cordeiro, Marlon B. B. Rodrigues, Ana Carolina R. Ribeiro, Mariane W. Bosenbecker, Sarah Kalli S. Silva, Neftali L. Carreno, Darci A. Gatto, Silvia H. F. da Silva, Camila M. Cholant and André Luiz Missio
Polymers 2025, 17(1), 105; https://doi.org/10.3390/polym17010105 - 2 Jan 2025
Viewed by 1400
Abstract
This study investigates the sustainable use of Eucalyptus spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible [...] Read more.
This study investigates the sustainable use of Eucalyptus spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions. Eucalyptus spp. bark, rich in cellulose, hemicellulose, and lignin, is a promising source for creating sustainable materials like films. In this study, the use of chemical and physical treatments aims to optimize biomass extraction and improve the chemical, thermal, mechanical, and optical properties of the films. The films showed an excellent light barrier capacity, with a transmittance below 1%. Crystallinity indices varied with the pretreatment: 8.15% for hydrothermal, 7.01% for alkaline, 7.63% for acid, and 10.80% for bleaching. The highest crystallinity value was obtained through bleaching, by removing amorphous components like lignin and hemicellulose. The alkaline pretreatment yielded stronger films (maximum stress of 8.8 MPa, Young’s modulus of 331.3 MPa) owing to the retained lignin and the hemicellulose reinforcing the material. This study contributes to the field of sustainable development by converting residues into valuable materials and by advancing the circular economy. The films’ specific properties make them suitable for applications like sustainable packaging, addressing environmental and industrial challenges. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Graphical abstract

17 pages, 6738 KiB  
Article
Structural Yield of Fast-Growing Hardwood vs. Softwood Glulam Beams
by Vanesa Baño, Carolina Pérez-Gomar, Daniel Godoy and Laura Moya
Forests 2025, 16(1), 8; https://doi.org/10.3390/f16010008 - 24 Dec 2024
Cited by 1 | Viewed by 1284
Abstract
This paper focuses on analysing the structural performance of fast-grown hardwood versus softwood glued laminated timber (GLT or glulam) beams with the aim to evaluate the potential structural use of the two main species planted in the country. In Uruguay, the first forest [...] Read more.
This paper focuses on analysing the structural performance of fast-grown hardwood versus softwood glued laminated timber (GLT or glulam) beams with the aim to evaluate the potential structural use of the two main species planted in the country. In Uruguay, the first forest plantations date from the 1990s and are comprised mainly of Eucalyptus ssp. and Pinus spp. No one species were planted for a specific industrial purpose. However, while eucalyptus was primarily destined for the pulp industry, pine, which is now reaching its forest rotation, had no specific industrial destination. Timber construction worldwide is mainly focused on softwood species with medium and long forest rotation. The objective of the present work is, therefore, to analyse and compare the potential of eucalyptus (Eucalyptus grandis) and loblolly/slash pine (Pinus elliottii/taeda) to produce glulam beams for structural purposes. Experimental tests were made on sawn timber and GLT beams manufactured under laboratory conditions for both species. The relationship between the physical and mechanical properties of sawn timber showed that, for similar characteristic values of density (365 kg/m3 for pine and 385 kg/m3 for eucalyptus), and similar years of forest rotation (20–25 years for pine and around 20 years for eucalyptus) and growth rates, the structural yield of eucalyptus was higher compared to that of pine. The superior values of modulus of elasticity found in the hardwood species explained this result. Since there is no strength classes system for South American wood species, the European system was the basis for estimating and assigning theoretical strength classes from the visual grades of Uruguayan timbers. For sawn timber, a C14 strength class for pine and C20 for eucalyptus were assigned. Results showed that pine GLT could be assigned to a strength class GL20h, and eucalyptus glulam to GL24h and GL28h, demonstrating the potential of both species for producing glulam beams. Even though eucalyptus showed a better yield than pine, the technological process of manufacturing eucalyptus glulam was more challenging in terms of drying time and gluing than in the case of pine, which derivates in higher economic costs. Full article
(This article belongs to the Special Issue Emerging Potential of Hardwood Resources for Innovative Uses)
Show Figures

Figure 1

21 pages, 3541 KiB  
Article
Mapping of Forest Species Using Sentinel-2A Images in the Alentejo and Algarve Regions, Portugal
by Crismeire Isbaex, Ana Margarida Coelho, Ana Cristina Gonçalves and Adélia M. O. Sousa
Land 2024, 13(12), 2184; https://doi.org/10.3390/land13122184 - 14 Dec 2024
Cited by 1 | Viewed by 1166
Abstract
Land use and land cover (LULC) studies, particularly those focused on mapping forest species using Sentinel-2 (S2A) data, face challenges in delineating and identifying areas of heterogeneous forest components with spectral similarity at the canopy level. In this context, the main objective of [...] Read more.
Land use and land cover (LULC) studies, particularly those focused on mapping forest species using Sentinel-2 (S2A) data, face challenges in delineating and identifying areas of heterogeneous forest components with spectral similarity at the canopy level. In this context, the main objective of this study was to compare and analyze the feasibility of two classification algorithms, K-Nearest Neighbor (KNN) and Random Forest (RF), with S2A data for mapping forest cover in the southern regions of Portugal, using tools with a free, open-source, accessible, and easy-to-use interface. Sentinel-2A data from summer 2019 provided 26 independent variables at 10 m spatial resolution for the analysis. Nine object-based LULC categories were distinguished, including five forest species (Quercus suber, Quercus rotundifolia, Eucalyptus spp., Pinus pinaster, and Pinus pinea), and four non-forest classes. Orfeo ToolBox (OTB) proved to be a reliable and powerful tool for the classification process. The best results were achieved using the RF algorithm in all regions, where it reached the highest accuracy values in Alentejo Central region (OA = 92.16% and K = 0.91). The use of open-source tools has enabled high-resolution mapping of forest species in the Mediterranean, democratizing access to research and monitoring. Full article
Show Figures

Figure 1

Back to TopTop