Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = Erwin Schrödinger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4407 KiB  
Article
Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
by Nilofar Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu and Stefano Dall’Acqua
Molecules 2025, 30(13), 2855; https://doi.org/10.3390/molecules30132855 - 4 Jul 2025
Viewed by 511
Abstract
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different [...] Read more.
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different in vitro assays were employed to support the results for antioxidant potential, such as DPPH, ABTS, FRAP, CUPRAC, metal chelation, and PBD, along with the measurement of total phenolic and flavonoid contents. Enzyme inhibition was investigated for cholinesterase (AChE and BChE), α-amylase, α-glucosidase, and tyrosinase enzymes. Additionally, the relative expression of NRF2, HMOX1, and YGS was evaluated by qPCR. LC-MS/MS analysis indicated the presence of some significant compounds, including apigenin, muscaroside, hyacinthacine A, B, and C, and luteolin. According to the results, the highest TPC and TFC were obtained with both extracts of the leaves, followed by the water extract (flower) and methanolic extract of the bulb. In contrast, the methanolic extract from the bulb exhibited the highest antioxidant potential using DPPH, ABTS, CUPRAC, and FRAP, followed by the extracts of leaves. In contrast, the leaf extracts had the highest values for the PBD assay and maximum chelation ability compared to other tested extracts. According to the enzyme inhibition studies, the methanolic extract from the bulb appeared to be the most potent inhibitor for all the tested enzymes, with the highest values obtained for AChE (1.96 ± 0.05), BChE (2.19 ± 0.33), α-amylase (0.56 ± 0.02), α-glucosidase (2.32 ± 0.01), and tyrosinase (57.19 ± 0.87). Interestingly, the water extract from the bulb did not inhibit most of the tested enzymes. The relative expression of NRF2 based on qPCR analysis was considerably greater in the flower methanol extract compared to the other extracts (p < 0.05). The relative expression of HMOX1 was stable in all the extracts, whereas YGS expression remained stable in all the treatments and had no statistical differences. The current results indicate that the components of M. armeniacum (leaves, flowers, and bulb) may be a useful source of natural bioactive compounds that are effective against oxidative stress-related conditions, including hyperglycemia, skin disorders, and neurodegenerative diseases. Complementary in silico approaches, including molecular docking, dynamics simulations, and transcription factor (TF) network analysis for NFE2L2, supported the experimental findings and suggested possible multi-target interactions for the selected compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

16 pages, 2875 KiB  
Article
Extraction and Characterization of TiO2 Pigments from Commercial Paints for Environmental Studies
by Allan Philippe, Sylvester Ndoli-Kessie, Christian Fricke, Jean-Michel Guigner, Benjamin Heider and Eliana Di Lodovico
Separations 2025, 12(4), 91; https://doi.org/10.3390/separations12040091 - 8 Apr 2025
Viewed by 848
Abstract
TiO2 nanoparticles are found as pigments in coatings and paints and are, therefore, released into the environment through runoff. To assess their environmental impact, comprehensive fate and ecotoxicity studies necessitate particles closely resembling those released into the environment. In response, we developed [...] Read more.
TiO2 nanoparticles are found as pigments in coatings and paints and are, therefore, released into the environment through runoff. To assess their environmental impact, comprehensive fate and ecotoxicity studies necessitate particles closely resembling those released into the environment. In response, we developed a method designed to isolate TiO2 particles from commercial paints. Using six contrasting paints alongside a pure TiO2 pigment, we evaluated two extraction methods in terms of recovery, purification rate, and preservation of both inorganic and organic particle coatings. The paints and extracts were characterized using cryogenic-TEM, ICP-OES, thermogravimetry, and infrared spectroscopy. In contrast to the alkaline-based extraction method, the extraction with acetic acid facilitated the retention of both inorganic and organic coatings and ensured good removal of organic polymers. Recovery rates exceeded 70% for all paints and extraction methods, yet the complete removal of SiO2, when present, was not achieved. CaCO3 removal was effective with both extraction methods. Our developed extraction method enables the isolation of TiO2-particles similar to those aged within paints. However, we recommend using silicate-free paints when SiO2 interference is of concern for the study design. Furthermore, this method could be interesting for pigment recycling, offering a gentler alternative to existing techniques which compromise particle coatings. Full article
Show Figures

Figure 1

18 pages, 5152 KiB  
Article
Liquid Phase Preparation of Organic Thin Films Consisting of Complex Molecules—The Example of the Metallacrown CuCu4
by Frederik Pütz, Richard Blättner, Yves Kurek, Lukas Bolz, Swen Ehnert, Robert Wendels, Dominic Stephan, Philip Schreyer, Robert Ranecki, Ellen Brennfleck, Anne Lüpke, Dominik Laible, Benedikt Baumann, Stefan Lach, Eva Rentschler and Christiane Ziegler
Solids 2025, 6(1), 13; https://doi.org/10.3390/solids6010013 - 10 Mar 2025
Viewed by 1445
Abstract
Large organic molecules and metal complexes are promising candidates for organic electronics, optoelectronics, and spintronics, with interfaces to metals being critical. Clean preparation in ultra-high vacuum (UHV) is ideal, but many systems are fragile and cannot be thermally sublimed. This study details the [...] Read more.
Large organic molecules and metal complexes are promising candidates for organic electronics, optoelectronics, and spintronics, with interfaces to metals being critical. Clean preparation in ultra-high vacuum (UHV) is ideal, but many systems are fragile and cannot be thermally sublimed. This study details the preparation of thin films of the metallacrown Cu(II)[12-MCCu(II)N(Shi)-4] (short: CuCu4) from the liquid phase using electrospray injection (ESI) and, in particular, liquid injection (LI). Both methods produce films with intact CuCu4 complexes, but they differ in the amount of co-adsorbed solvent molecules. Enhancements using an argon stream perpendicular to the molecular beam significantly reduce these contaminants. An additional effect occurs due to the counterions (HNEt3)2 of CuCu4. They are co-deposited by LI, but not by ESI. The advantages and limitations of the LI method are discussed in detail. The CuCu4 films prepared by different methods were analyzed with infrared (IR) spectroscopy, ultraviolet and X-ray photoelectron spectroscopy (UPS, XPS), and scanning tunneling microscopy (STM). For thicker films, ex situ and in situ prepared CuCu4 films to exhibit similar properties, but for studying interface effects or ultrathin films, in situ preparation is necessary. Full article
Show Figures

Graphical abstract

20 pages, 10387 KiB  
Article
Micro-Level Hybridization of Steel, Glass, and Polypropylene Filaments via Air Texturing: Mechanical and Morphological Analysis
by Jan Rehra, Matthias Overberg, Sebastian Schmeer, Anwar Abdkader and Chokri Cherif
J. Compos. Sci. 2025, 9(1), 12; https://doi.org/10.3390/jcs9010012 - 2 Jan 2025
Viewed by 609
Abstract
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs [...] Read more.
The increasing application of fiber-reinforced polymer (FRP) composites necessitates the development of composite structures that exhibit high stiffness, high strength, and favorable failure behavior to endure complex loading scenarios and improve damage tolerance. Achieving these properties can be facilitated by integrating conventional FRPCs with metallic materials, which offer high ductility and superior energy absorption capabilities. However, there is a lack of effective solutions for the micro-level hybridization of high-performance filament yarns, metal filament yarns, and thermoplastic filament yarns. This study aims to investigate the hybridization of multi-material components at the micro-level using the air-texturing process. The focus is on investigating the morphological and the mechanical properties as well as the damage behavior in relation to the process parameters of the air-texturing process. The process-induced property changes were evaluated throughout the entire process, starting from the individual components, through the hybridization process, and up to the tape production. Tensile tests on multifilament yarns and tape revealed that the strength of the hybrid materials is significantly reduced due to the hybridization process inducing fiber damage. Morphological analyses using 3D scans and micrographs demonstrated that the degree of hybridization is enhanced due to the application of air pressure during the hybridization process. However, this phenomenon is also influenced by the flow movement of the PP matrix during the consolidation stage. The hybrid laminates exhibited a damage behavior that differs from the established behavior of layer-separated metal fiber hybrids, thereby supporting other failure and energy absorption mechanisms, such as fiber pull-out. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

9 pages, 3376 KiB  
Article
Mononuclear Fe(III) Schiff Base Complex with Trans-FeO4N2 Chromophore of o-Aminophenol Origin: Synthesis, Characterisation, Crystal Structure, and Spin State Investigation
by Dawit Tesfaye, Jonas Braun, Mamo Gebrezgiabher, Juraj Kuchár, Juraj Černák, Taju Sani, Abbasher Gismelseed, Tim Hochdörffer, Volker Schünemann, Christopher E. Anson, Annie K. Powell and Madhu Thomas
Inorganics 2024, 12(6), 159; https://doi.org/10.3390/inorganics12060159 - 3 Jun 2024
Cited by 1 | Viewed by 2000
Abstract
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in [...] Read more.
A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated phenolic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-temperature magnetic measurements were performed between 300 and 5 K under an applied field of 0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range. This is confirmed by Mössbauer spectroscopy at 77 and 300 K. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

10 pages, 2282 KiB  
Article
Influence of Bilberry Extract on Neuronal Cell Toxicity
by Svenja König, Tamara Bakuradze, Sandy Jesser, Harshitha Ashoka Sreeja, Max J. Carlsson, Jörg Fahrer, Stefan Kins and Elke Richling
Biology 2024, 13(6), 376; https://doi.org/10.3390/biology13060376 - 25 May 2024
Cited by 2 | Viewed by 2092
Abstract
Increased intake of dietary antioxidants such as anthocyanins, which are enriched in colourful fruits, is a promising alternative to reduce the risk of degenerative diseases such as Alzheimer’s Disease (AD). Since Amyloid β (Aβ) is one of the key components contributing to AD [...] Read more.
Increased intake of dietary antioxidants such as anthocyanins, which are enriched in colourful fruits, is a promising alternative to reduce the risk of degenerative diseases such as Alzheimer’s Disease (AD). Since Amyloid β (Aβ) is one of the key components contributing to AD pathology, probably by reactive oxygen species (ROS) induction, this study investigated the preventive effect of anthocyanin-rich bilberry extract (BE) and its anthocyanin fraction (ACN) on ROS generation and cell toxicity. The results showed a significant and concentration-dependent decrease in neuroblastoma cell (SH-SY5Y) viability by BE or ACN, whereas no cell toxicity was observed in HeLa cells. Incubation with BE and ACN for 24 h diminished the generation of induced ROS levels in SH-SY5Y and HeLa cells. In addition, low concentrations of BE (1–5 µg/mL) showed protective effects against Aβ-induced cytotoxicity in SH-SY5Y cells. In conclusion, our results suggest antioxidant and protective effects of BE and ACN, which could potentially be used to delay the course of neurodegenerative diseases such as AD. Further studies are needed to clarify the high potential of anthocyanins and their in vivo metabolites on neuronal function. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

18 pages, 1836 KiB  
Review
The Winding Road from Origin to Emergence (of Life)
by Wolfgang Nitschke, Orion Farr, Nil Gaudu, Chloé Truong, François Guyot, Michael J. Russell and Simon Duval
Life 2024, 14(5), 607; https://doi.org/10.3390/life14050607 - 9 May 2024
Cited by 5 | Viewed by 3495
Abstract
Humanity’s strive to understand why and how life appeared on planet Earth dates back to prehistoric times. At the beginning of the 19th century, empirical biology started to tackle this question yielding both Charles Darwin’s Theory of Evolution and the paradigm that the [...] Read more.
Humanity’s strive to understand why and how life appeared on planet Earth dates back to prehistoric times. At the beginning of the 19th century, empirical biology started to tackle this question yielding both Charles Darwin’s Theory of Evolution and the paradigm that the crucial trigger putting life on its tracks was the appearance of organic molecules. In parallel to these developments in the biological sciences, physics and physical chemistry saw the fundamental laws of thermodynamics being unraveled. Towards the end of the 19th century and during the first half of the 20th century, the tensions between thermodynamics and the “organic-molecules-paradigm” became increasingly difficult to ignore, culminating in Erwin Schrödinger’s 1944 formulation of a thermodynamics-compliant vision of life and, consequently, the prerequisites for its appearance. We will first review the major milestones over the last 200 years in the biological and the physical sciences, relevant to making sense of life and its origins and then discuss the more recent reappraisal of the relative importance of metal ions vs. organic molecules in performing the essential processes of a living cell. Based on this reassessment and the modern understanding of biological free energy conversion (aka bioenergetics), we consider that scenarios wherein life emerges from an abiotic chemiosmotic process are both thermodynamics-compliant and the most parsimonious proposed so far. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life 2024)
Show Figures

Figure 1

19 pages, 4926 KiB  
Article
Ferroelectric Properties of Polymer–Semiconductor Hybrid Material or Composite under Optical Excitation
by Michael Kober, David Smykalla, Bernd Ploss, Maria Wächtler, Krishan Kumar, Michael Stelter and Sebastian Engel
Polymers 2024, 16(7), 929; https://doi.org/10.3390/polym16070929 - 28 Mar 2024
Viewed by 1441
Abstract
Polymer–semiconductor hybrid materials or composites have been investigated with respect to their microstructure, optical, photoconductive, and ferroelectric properties. For this purpose, either CdSe quantum dots or (Cd:Zn)S microparticles were dispersed in poly(vinylidenefluoride-trifluoroethylene) solution and hot pressed to films. In both material systems, the [...] Read more.
Polymer–semiconductor hybrid materials or composites have been investigated with respect to their microstructure, optical, photoconductive, and ferroelectric properties. For this purpose, either CdSe quantum dots or (Cd:Zn)S microparticles were dispersed in poly(vinylidenefluoride-trifluoroethylene) solution and hot pressed to films. In both material systems, the electrical conductivity and the polarization behavior could be controlled by the intensity of the optical excitation. The simultaneous high optical transparency of the CdSe quantum-dot-based hybrid materials makes them particularly interesting for applications in the field of flexible, high-resolution sensors. Full article
(This article belongs to the Special Issue Polymers for Flexible Electronics)
Show Figures

Figure 1

19 pages, 3025 KiB  
Article
Quantitative NMR Spectrometry of Phenylpropanoids, including Isoeugenol in Herbs, Spices, and Essential Oils
by Pascal Fabry, Sandra Weber, Jan Teipel, Elke Richling, Stephan G. Walch and Dirk W. Lachenmeier
Foods 2024, 13(5), 720; https://doi.org/10.3390/foods13050720 - 27 Feb 2024
Cited by 7 | Viewed by 3054
Abstract
Isoeugenol (2-methoxy-4-(1-propenyl)phenol) has been recently classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). This study conducted an analysis of isoeugenol in common herbs and spices, including basil, cinnamon, ginger, and nutmeg, using 1H [...] Read more.
Isoeugenol (2-methoxy-4-(1-propenyl)phenol) has been recently classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). This study conducted an analysis of isoeugenol in common herbs and spices, including basil, cinnamon, ginger, and nutmeg, using 1H nuclear magnetic resonance (NMR) spectrometry. Additionally, over 1300 coffee samples were analysed by 1H-NMR for isoeugenol, but it was not detected in any of the analysed samples. Various essential oils, including nutmeg, basil, clove, sweet flag, and ylang-ylang oils, were examined for isoeugenol content. Out of the twelve nutmeg oils tested, four contained isoeugenol, with concentrations ranging from 3.68 ± 0.09 g/kg to 11.2 ± 0.10 g/kg. However, isoeugenol was not detected in the essential oils of calamus, basil, ylang-ylang, and clove using NMR spectrometry. These findings warrant critical evaluation of the previous literature, given reports of high isoeugenol levels in some of these matrices. A toxicological assessment has determined that there is no risk to human health by exposure to isoeugenol via nutmeg essential oils. Full article
(This article belongs to the Special Issue Food Risk Assessment and Control of Food Hazards)
Show Figures

Figure 1

12 pages, 2356 KiB  
Article
Thyroid Hormone Metabolites Quantified in Pup and Adult Rat Cerebellum, Cortex and Whole-Brain Samples Using an Automated Online SPE-LC-MS/MS Method
by Christiane Hindrichs, Tilmann Walk, Robert Landsiedel, Hennicke Kamp, Steffen Schneider, Stephanie Melching-Kollmuss and Dorothee Funk-Weyer
Metabolites 2024, 14(1), 61; https://doi.org/10.3390/metabo14010061 - 17 Jan 2024
Cited by 1 | Viewed by 2055
Abstract
Changes in thyroid hormone (TH) levels in rat brain at early developmental stages are correlated with adverse effects on offspring development. To characterize the ability of substances to interfere with the TH concentrations in, e.g., rat brain, it is essential to know the [...] Read more.
Changes in thyroid hormone (TH) levels in rat brain at early developmental stages are correlated with adverse effects on offspring development. To characterize the ability of substances to interfere with the TH concentrations in, e.g., rat brain, it is essential to know the mean TH concentrations in this tissue under control conditions. In this publication, an online solid-phase extraction (SPE) liquid chromatography (LC) tandem mass spectrometry (MS/MS) method was validated and used to measure TH metabolites (T4, T3, rT3, T2 and T1) in the brains of untreated rats. Data on TH concentrations in the whole brain and separate data from the cerebellum and the cortex are shown. The corresponding samples were gathered from young rats at postnatal days (PND) 4 and 21/22 and from adult rats. The results show inter alia the high accuracy and precision of the method, and LOQs of 0.02 ng/mL were determined for T1, T2 and rT3 and of 0.15 ng/mL for T3 and T4. Technical variability is low, as shown by the relative standard deviations of 7.5–20%. For our rat model, we found that T4, T3 and T2 concentrations rise from PND4 to PND21, whereas the rT3 concentration decreases; as well as there is no statistical difference between TH concentrations in the male and female rat brain. This method is suitable to analyze TH metabolites in the brain and build up a database of historical TH concentrations in control rats. Together, this yields a robust diagnostic tool to detect potentially adverse disturbances of TH homeostasis in the most vulnerable anatomic structure. Full article
(This article belongs to the Special Issue Metabolomics in Preclinical Drug Safety Assessment)
Show Figures

Figure 1

32 pages, 4185 KiB  
Review
Heme Oxygenase-1 and Its Role in Colorectal Cancer
by Jörg Fahrer, Simon Wittmann, Ann-Cathrin Wolf and Tina Kostka
Antioxidants 2023, 12(11), 1989; https://doi.org/10.3390/antiox12111989 - 10 Nov 2023
Cited by 17 | Viewed by 3566
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and [...] Read more.
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition. Full article
(This article belongs to the Special Issue Experimental and Therapeutic Targeting of Heme Oxygenase)
Show Figures

Figure 1

31 pages, 9602 KiB  
Article
Model Approach to Thermal Conductivity in Hybrid Graphene–Polymer Nanocomposites
by Andriy B. Nadtochiy, Alla M. Gorb, Borys M. Gorelov, Oleksiy I. Polovina, Oleg Korotchenkov and Viktor Schlosser
Molecules 2023, 28(21), 7343; https://doi.org/10.3390/molecules28217343 - 30 Oct 2023
Cited by 3 | Viewed by 2050
Abstract
The thermal conductivity of epoxy nanocomposites filled with self-assembled hybrid nanoparticles composed of multilayered graphene nanoplatelets and anatase nanoparticles was described using an analytical model based on the effective medium approximation with a reasonable amount of input data. The proposed effective thickness approach [...] Read more.
The thermal conductivity of epoxy nanocomposites filled with self-assembled hybrid nanoparticles composed of multilayered graphene nanoplatelets and anatase nanoparticles was described using an analytical model based on the effective medium approximation with a reasonable amount of input data. The proposed effective thickness approach allowed for the simplification of the thermal conductivity simulations in hybrid graphene@anatase TiO2 nanosheets by including the phenomenological thermal boundary resistance. The sensitivity of the modeled thermal conductivity to the geometrical and material parameters of filling particles and the host polymer matrix, filler’s mass concentration, self-assembling degree, and Kapitza thermal boundary resistances at emerging interfaces was numerically evaluated. A fair agreement of the calculated and measured room-temperature thermal conductivity was obtained. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 323 KiB  
Review
Occurrence and Regulatory Evaluation of Contaminants in Tattoo Inks
by Patricia Fels, Dirk W. Lachenmeier, Pascal Hindelang, Stephan G. Walch and Birgit Gutsche
Cosmetics 2023, 10(5), 141; https://doi.org/10.3390/cosmetics10050141 - 10 Oct 2023
Cited by 6 | Viewed by 6789
Abstract
Tattooing has been an enduring form of body art since ancient times, but it carries inherent health risks, primarily due to the complex composition of tattoo inks. These inks consist of complex mixtures of various ingredients, including pigments, solvents, impurities and contaminants. This [...] Read more.
Tattooing has been an enduring form of body art since ancient times, but it carries inherent health risks, primarily due to the complex composition of tattoo inks. These inks consist of complex mixtures of various ingredients, including pigments, solvents, impurities and contaminants. This literature review aims to shed light on the organic and inorganic contaminants present in tattoo inks prior to the implementation of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation in 2022. This review shows that the most common contaminants are polycyclic aromatic hydrocarbons (PAHs), with a concentration range of 0.005–201 mg/kg, mainly detected in black tattoo inks, and primary aromatic amines (PAAs), with a concentration range of 0.5–1100 mg/kg, and heavy metals such as lead (0.01–14.0 mg/kg) and chromium(VI) (0.16–4.09 mg/kg) which are detected in almost all tattoo inks. When compared to the new concentration limits outlined in REACH, it is clear that a significant part of these contaminants would be considered non-compliant. However, the results of the review are limited due to the lack of quantitative data on contaminants in tattoo inks. In addition, the future implementation of REACH is expected to lead to changes in the composition of tattoo inks, which will affect the presence of contaminants. Full article
16 pages, 2096 KiB  
Article
Stable Isotope Dilution Analysis (SIDA) to Determine Metabolites of Furan and 2-Methylfuran in Human Urine Samples: A Pilot Study
by Jonathan Isaak Kremer, Dorothea Karlstetter, Verena Kirsch, Daniel Bohlen, Carina Klier, Jan Rotermund, Hannah Thomas, Lukas Lang, Hanna Becker, Tamara Bakuradze, Simone Stegmüller and Elke Richling
Metabolites 2023, 13(9), 1011; https://doi.org/10.3390/metabo13091011 - 14 Sep 2023
Cited by 7 | Viewed by 1693
Abstract
Furan and 2-methylfuran (2-MF) are food contaminants that are classified as potentially carcinogenic to humans. The main source of exposure for adults via food is coffee consumption. Furan and 2-MF are volatile, which complicates exposure assessment because their content measured in food prior [...] Read more.
Furan and 2-methylfuran (2-MF) are food contaminants that are classified as potentially carcinogenic to humans. The main source of exposure for adults via food is coffee consumption. Furan and 2-MF are volatile, which complicates exposure assessment because their content measured in food prior to consumption does not afford a reliable dosimetry. Therefore, other ways of exposure assessment need to be developed, preferably by monitoring exposure biomarkers, e.g., selected metabolites excreted in urine. In this study, cis-2-buten-1,4-dial (BDA)-derived urinary furan metabolites Lys-BDA (l-2-amino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid), AcLys-BDA (l-2-(acetylamino)-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)hexanoic acid) and GSH-BDA (N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinyl-glycine cyclic sulfide), as well as acetyl acrolein (AcA, 2-oxo-pent-2-enal)-derived metabolites Lys-AcA (l-2-(acetylamino)-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)-hexanoic acid) and AcLys-AcA (l-2-amino-6-(2,5-dihydro-5-methyl-2-oxo-1H-pyrrol-1-yl)-hexanoic acid) and their stable isotopically labeled analogs, were synthesized and characterized through NMR and MS, and a stable isotope dilution analysis (SIDA) with UPLC-ESI-MS/MS was established. As a proof of concept, urinary samples of a four-day human intervention study were used. In the frame of this study, ten subjects ingested 500 mL of coffee containing 0.648 µmol furan and 1.059 µmol 2-MF. Among the furan metabolites, AcLys-BDA was the most abundant, followed by Lys-BDA and GSH-BDA. Exposure to 2-MF via the coffee brew led to the formation of Lys-AcA and AcLys-AcA. Within 24 h, 89.1% of the ingested amount of furan and 15.4% of the ingested amount of 2-MF were detected in the urine in the form of the investigated metabolites. Therefore, GSH-BDA, Lys-BDA, AcLys-BDA, Lys-AcA and AcLys-AcA may be suitable as short-term-exposure biomarkers of furan and 2-MF exposure. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

12 pages, 2669 KiB  
Article
Influence of Enzymatically Hydrophobized Hemp Protein on Morphology and Mechanical Properties of Bio-Based Polyurethane and Epoxy Foams
by Guillem Ferreres, Sílvia Pérez-Rafael, Angela Gala Morena, Tzanko Tzanov and Liudmyla Gryshchuk
Polymers 2023, 15(17), 3608; https://doi.org/10.3390/polym15173608 - 31 Aug 2023
Cited by 1 | Viewed by 1784
Abstract
Biomass fillers offer the possibility to modify the mechanical properties of foams, increasing their cost-effectiveness and reducing their carbon footprint. In this study, bio-based PU (soft, open cells for the automotive sector) and epoxy (EP, hard, closed cells for construction applications) composite foams [...] Read more.
Biomass fillers offer the possibility to modify the mechanical properties of foams, increasing their cost-effectiveness and reducing their carbon footprint. In this study, bio-based PU (soft, open cells for the automotive sector) and epoxy (EP, hard, closed cells for construction applications) composite foams were prepared by adding pristine and laccase-mediated lauryl gallate-hydrophobized hemp protein particles as filler (HP and HHP, respectively). The fillers were able to modify the density, the mechanical properties and the morphology of the PU and EP foams. The addition of HP filler increases the density of PU foams up to 100% and significantly increases the σ values by 40% and Emod values. On the other hand, the inclusion of the HHP as filler in PU foams mostly results in reduced density, by almost 30%, and reduced σ values in comparison with reference and HP-filled foams. Independently from filler concentration and type, the biomass increased the Emod values for all foams relative to the reference. In the case of the EP foams, the tests were only conducted for the foams filled with HHP due to the poor compatibility of HP with the EP matrix. HHP decreased the density, compressive strength and Emod values of the composites. For both foams, the fillers increased the size of the cells, while reducing the amount of open cells of PU foams and the amount of closed cells for EP foams. Finally, both types of foams filled with HHP reduced the moisture uptake by 80 and 45%, respectively, indicating the successful hydrophobization of the composites. Full article
Show Figures

Figure 1

Back to TopTop