Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (875)

Search Parameters:
Keywords = EV biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

15 pages, 1303 KiB  
Article
Extracellular Vesicle Release from Immune Cells in Cutaneous Leishmaniasis: Modulation by Leishmania (V.) braziliensis and Reversal by Antimonial Therapy
by Vanessa Fernandes de Abreu Costa, Thaize Quiroga Chometon, Katherine Kelda Gomes de Castro, Melissa Silva Gonçalves Ponte, Maria Inês Fernandes Pimentel, Marcelo Rosandiski Lyra, Rienk Nieuwland and Alvaro Luiz Bertho
Pathogens 2025, 14(8), 771; https://doi.org/10.3390/pathogens14080771 - 4 Aug 2025
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In [...] Read more.
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In this study, we combined a modified lymphocyte proliferation assay with nano-flow cytometry to quantify and phenotype EV released by CD4+, CD8+, and CD14+ cells in PBMC cultures from CL patients at different clinical stages: before treatment (PBT), during treatment (PDT), and post-treatment (PET) with antimonial. Healthy individuals (HI) were included as physiological controls. Upon stimulation with L. (V.) braziliensis antigens, we observed a distinct modulation of EV subsets. In the PBT group, CD4+ and CD14+ EV were significantly reduced, while CD8+ EV remained elevated. During PDT and PET, EV concentrations were restored across all subsets. These findings suggest that L. (V.) braziliensis selectively modulates the release of immune cell–derived EV, possibly as an immune evasion mechanism. The restoration of EV release following antimonial therapy highlights their potential as sensitive biomarkers for disease activity and treatment monitoring. This study offers novel insights into the immunoregulatory roles of EV in CL and underscores their relevance in host–parasite interactions. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

18 pages, 5815 KiB  
Article
Novel Lipid Biomarkers of Chronic Kidney Disease of Unknown Etiology Based on Urinary Small Extracellular Vesicles: A Pilot Study of Sugar Cane Workers
by Jie Zhou, Kevin J. Kroll, Jaime Butler-Dawson, Lyndsay Krisher, Abdel A. Alli, Chris Vulpe and Nancy D. Denslow
Metabolites 2025, 15(8), 523; https://doi.org/10.3390/metabo15080523 - 2 Aug 2025
Viewed by 192
Abstract
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine [...] Read more.
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine may provide novel biomarkers. Methods: We obtained two urine samples at the start and the end of a workday in the fields from a limited set of workers with and without kidney impairment. Isolated sEVs were characterized for size, surface marker expression, and purity and, subsequently, their lipid composition was determined by mass spectrometry. Results: The number of particles per ml of urine normalized to osmolality and the size variance were larger in workers with possible CKDu than in control workers. Surface markers CD9, CD63, and CD81 are characteristic of sEVs and a second set of surface markers suggested the kidney as the origin. Differential expression of CD25 and CD45 suggested early inflammation in CKDu workers. Of the twenty-one lipids differentially expressed, several were bioactive, suggesting that they may have essential functions. Remarkably, fourteen of the lipids showed intermediate expression values in sEVs from healthy individuals with acute creatinine increases after a day of work. Conclusions: We identified twenty-one possible lipid biomarkers in sEVs isolated from urine that may be able to distinguish agricultural workers with early onset of CKDu. Differentially expressed surface proteins in these sEVs suggested early-stage inflammation. This pilot study was limited in the number of workers evaluated, but the approach should be further evaluated in a larger population. Full article
Show Figures

Graphical abstract

24 pages, 2735 KiB  
Article
Dietary Intake of a Milk Sphingolipid-Rich MFGM/EV Concentrate Ameliorates Age-Related Metabolic Dysfunction
by Richard R. Sprenger, Kat F. Kiilerich, Mikael Palner, Arsênio Rodrigues Oliveira, Mikaël Croyal, Marie S. Ostenfeld, Ann Bjørnshave, Gitte M. Knudsen and Christer S. Ejsing
Nutrients 2025, 17(15), 2529; https://doi.org/10.3390/nu17152529 - 31 Jul 2025
Viewed by 260
Abstract
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly [...] Read more.
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly persons who are unable to adhere to common therapeutic interventions. To address this, we examined the effects of supplementing aged sedentary rats with an MFGM/EV-rich concentrate. Methods/Results: In a 25-week study, 89-week-old male rats received either a milk sphingolipid-rich MFGM/EV concentrate or a control supplement. Analysis of metabolic health using a battery of tests, including MSALL lipidomics of plasma, liver, and other peripheral tissues, revealed that MFGM/EV supplementation promotes accretion of unique sphingolipid signatures, ameliorates ceramide biomarkers predictive of cardiovascular death, and has a general lipid-lowering effect. At the functional level, we find that these health-promoting effects are linked to increased lipoprotein particle turnover, showcased by reduced levels of triglyceride-rich particles, as well as a metabolically healthier liver, assessed using whole-body lipidomic flux analysis. Conclusions: Altogether, our work unveils that MFGM/EV-containing food holds a potential for ameliorating age-related metabolic dysfunction in elderly individuals. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Graphical abstract

22 pages, 1588 KiB  
Article
Scaffold-Free Functional Deconvolution Identifies Clinically Relevant Metastatic Melanoma EV Biomarkers
by Shin-La Shu, Shawna Benjamin-Davalos, Xue Wang, Eriko Katsuta, Megan Fitzgerald, Marina Koroleva, Cheryl L. Allen, Flora Qu, Gyorgy Paragh, Hans Minderman, Pawel Kalinski, Kazuaki Takabe and Marc S. Ernstoff
Cancers 2025, 17(15), 2509; https://doi.org/10.3390/cancers17152509 - 30 Jul 2025
Viewed by 317
Abstract
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed [...] Read more.
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed Scaffold-free Functional Deconvolution (SFD), a novel computational approach that leverages a comprehensive healthy cell EV protein database to deconvolute non-oncogenic background signals. Methods: Beginning with 1915 proteins (identified by MS/MS analysis on an Orbitrap Fusion Lumos Mass Spectrometer using the IonStar workflow) from melanoma EVs isolated using REIUS, SFD applies four sequential filters: exclusion of normal melanocyte EV proteins, prioritization of metastasis-linked entries (HCMDB), refinement via melanocyte-specific databases, and validation against TCGA survival data. Results: This workflow identified 21 high-confidence targets implicated in metabolic-associated acidification, immune modulation, and oncogenesis, and were analyzed for reduced disease-free and overall survival. SFD’s versatility was further demonstrated by surfaceome profiling, confirming enrichment of H7-B3 (CD276), ICAM1, and MIC-1 (GDF-15) in metastatic melanoma EV via Western blot and flow cytometry. Meta-analysis using Vesiclepedia and STRING categorized these targets into metabolic, immune, and oncogenic drivers, revealing a dense interaction network. Conclusions: Our results highlight SFD as a powerful tool for identifying clinically relevant biomarkers and therapeutic targets within melanoma EVs, with potential applications in drug development and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

22 pages, 931 KiB  
Review
Neutrophils and Platelets as Key Players in the Pathogenesis of ANCA-Associated Vasculitis and Potential Sources of Disease Activity Biomarkers
by Anna Drynda, Marcin Surmiak, Stanisława Bazan-Socha, Katarzyna Wawrzycka-Adamczyk, Mariusz Korkosz, Jacek Musiał and Krzysztof Wójcik
Diagnostics 2025, 15(15), 1905; https://doi.org/10.3390/diagnostics15151905 - 29 Jul 2025
Viewed by 260
Abstract
Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) is a heterogeneous group of small-vessel vasculitides, characterized by the presence of antibodies binding to myeloperoxidase (MPO) and proteinase-3 (PR3) found in neutrophil granules. Apart from being the target of ANCA, neutrophils actively contribute to the vicious [...] Read more.
Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) is a heterogeneous group of small-vessel vasculitides, characterized by the presence of antibodies binding to myeloperoxidase (MPO) and proteinase-3 (PR3) found in neutrophil granules. Apart from being the target of ANCA, neutrophils actively contribute to the vicious cycle of inflammation and vascular damage in AAV. On the other hand, platelets have recently been recognized as essential for thrombosis and as inflammatory effectors that collaborate with neutrophils, reinforcing the generation of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps (NETs) in those diseases. Neutrophils exhibit morphological and functional heterogeneity in AAV, reflecting the complexity of their contribution to disease pathogenesis. Since long-term immunosuppression may be related to serious infections and malignancies, there is an urgent need for reliable biomarkers of disease activity to optimize the management of AAV. This review summarizes the current understanding of the role of neutrophils and platelets in the pathogenesis of granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA), focusing on their crosstalk, and highlights the potential for identifying novel biomarkers relevant for predicting the disease course and its relapses. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Vasculitis)
Show Figures

Figure 1

29 pages, 3008 KiB  
Review
Small Extracellular Vesicles in Neurodegenerative Disease: Emerging Roles in Pathogenesis, Biomarker Discovery, and Therapy
by Mousumi Ghosh, Amir-Hossein Bayat and Damien D. Pearse
Int. J. Mol. Sci. 2025, 26(15), 7246; https://doi.org/10.3390/ijms26157246 - 26 Jul 2025
Viewed by 286
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD [...] Read more.
Neurodegenerative diseases (NDDs) such as Alzheimer’s, Parkinson’s, ALS, and Huntington’s pose a growing global challenge due to their complex pathobiology and aging demographics. Once considered as cellular debris, small extracellular vesicles (sEVs) are now recognized as active mediators of intercellular signaling in NDD progression. These nanovesicles (~30–150 nm), capable of crossing the blood–brain barrier, carry pathological proteins, RNAs, and lipids, facilitating the spread of toxic species like Aβ, tau, TDP-43, and α-synuclein. sEVs are increasingly recognized as valuable diagnostic tools, outperforming traditional CSF biomarkers in early detection and disease monitoring. On the therapeutic front, engineered sEVs offer a promising platform for CNS-targeted delivery of siRNAs, CRISPR tools, and neuroprotective agents, demonstrating efficacy in preclinical models. However, translational hurdles persist, including standardization, scalability, and regulatory alignment. Promising solutions are emerging, such as CRISPR-based barcoding, which enables high-resolution tracking of vesicle biodistribution; AI-guided analytics to enhance quality control; and coordinated regulatory efforts by the FDA, EMA, and ISEV aimed at unifying identity and purity criteria under forthcoming Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines. This review critically examines the mechanistic roles, diagnostic potential, and therapeutic applications of sEVs in NDDs, and outlines key strategies for clinical translation. Full article
(This article belongs to the Special Issue Molecular Advances in Neurologic and Neurodegenerative Disorders)
Show Figures

Graphical abstract

17 pages, 440 KiB  
Review
Diagnosis and Management of Upper Tract Urothelial Carcinoma: A Review
by Domenique Escobar, Christopher Wang, Noah Suboc, Anishka D’Souza and Varsha Tulpule
Cancers 2025, 17(15), 2467; https://doi.org/10.3390/cancers17152467 - 25 Jul 2025
Viewed by 474
Abstract
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable [...] Read more.
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable prognosis compared to urothelial carcinoma of the bladder. Current treatment strategies for UTUC are largely derived from bladder cancer studies, underscoring the need for UTUC-directed research. This review provides a comprehensive overview of UTUC, encompassing diagnostic approaches, systemic and intraluminal therapies, surgical management, and future directions. Methods: A narrative review was conducted synthesizing evidence from guideline-based recommendations, retrospective and prospective clinical studies, and ongoing trials focused on UTUC. Results: Neoadjuvant cisplatin-based chemotherapy is increasingly preferred in UTUC due to the risk of postoperative renal impairment that may preclude adjuvant cisplatin use. Surgical management includes kidney-sparing approaches and radical nephroureterectomy (RNU), with selection guided by tumor risk and patient comorbidities. While endoscopic management (EM) preserves renal function, it carries a higher recurrence and surveillance burden; RNU remains standard for high-risk cases. Systemic therapy for advanced and metastatic UTUC mirrors that of bladder urothelial carcinoma. Enfortumab vedotin (EV) plus pembrolizumab showed superior efficacy over chemotherapy in the EV-302 trial, with improved response rate, progression-free survival, and overall survival across subgroups, including UTUC. For patients ineligible for EV, the CheckMate-901 study supported first-line chemoimmunotherapy with gemcitabine, cisplatin, and nivolumab. Further systemic therapy strategies include maintenance avelumab post-chemotherapy (JAVELIN Bladder 100), targeted therapies such as erdafitinib (THOR trial), and trastuzumab deruxtecan (DESTINY-PanTumor02) in FGFR2/3-altered and HER2-positive disease, respectively. Conclusions: Historically, the therapeutic landscape of UTUC has been extrapolated from bladder cancer; however, ongoing research specific to UTUC is deriving more precise regimens involving the use of immune checkpoint inhibitors, antibody–drug conjugates, and biomarker-driven therapies. Full article
(This article belongs to the Special Issue Upper Tract Urothelial Carcinoma: Current Knowledge and Perspectives)
Show Figures

Figure 1

13 pages, 8639 KiB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 760
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 1804 KiB  
Review
The 3D Language of Cancer: Communication via Extracellular Vesicles from Tumor Spheroids and Organoids
by Simona Campora and Alessandra Lo Cicero
Int. J. Mol. Sci. 2025, 26(15), 7104; https://doi.org/10.3390/ijms26157104 - 23 Jul 2025
Viewed by 366
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their [...] Read more.
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their composition and function. Traditional two-dimensional in vitro models are being progressively replaced by more advanced three-dimensional systems, such as tumor spheroids and organoids. These 3D models are particularly valuable in cancer research, providing a more accurate representation of the complex cellular and molecular heterogeneity that characterizes tumors, better mimicking the in vivo microenvironment compared to standard monolayer cultures. This review explores the role of EVs derived from tumor spheroids and organoids in key oncogenic processes, including tumor growth, metastasis, and interactions within the tumor microenvironment. We highlight how EVs contribute to the spread of cancer cells, affecting surrounding tissues, and promote immune evasion, which poses significant challenges in cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Figure 1

10 pages, 1286 KiB  
Communication
Establishment of an Assay with Ultrahigh Sensitivity for Detecting sEV-Derived PD-L1 as a Serum Biomarker for Lung Cancer—A Pilot Study Using TN-cyclon™
by Kyo Okita, Hasumi Arita, Keita Sudo, Teruki Yoshimura and Etsuro Ito
Curr. Issues Mol. Biol. 2025, 47(7), 564; https://doi.org/10.3390/cimb47070564 - 18 Jul 2025
Viewed by 370
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint protein. The soluble form of PD-L1 (sPD-L1) and PD-L1 derived from small extracellular vesicles (sEVPD-L1) are promising cancer biomarkers. While sEVPD-L1 in particular may contribute to immune evasion and is associated with a poor prognosis, [...] Read more.
Programmed death-ligand 1 (PD-L1) is an immune checkpoint protein. The soluble form of PD-L1 (sPD-L1) and PD-L1 derived from small extracellular vesicles (sEVPD-L1) are promising cancer biomarkers. While sEVPD-L1 in particular may contribute to immune evasion and is associated with a poor prognosis, it exists only in trace amounts, making it difficult to detect using conventional enzyme-linked immunosorbent assay (ELISA) methods. Therefore, we developed an ultrasensitive detection method, TN-cyclon™. The TN-cyclon™ method combines sandwich ELISA with enzyme cycling amplification. We applied TN-cyclon™ to measure recombinant PD-L1 protein and sEVPD-L1 in serum samples from cancer patients and healthy donors. Recombinant PD-L1 protein was measured with an ultrasensitive detection limit of 0.172 pg/mL. In clinical specimens, sEVPD-L1 levels were significantly higher in lung cancer patients than in healthy donors, whereas sPD-L1 levels measured with a conventional ELISA did not differ significantly between groups. Our results demonstrated that the TN-cyclon™ method exhibits a 20-fold increase in sensitivity compared to a conventional ELISA. Although this is a pilot study, our new assay enables the detection of very low concentrations of sEVPD-L1 in serum that can be used to evaluate the predictive and prognostic performance of sEVPD-L1 in lung cancer patients in future studies. Full article
(This article belongs to the Special Issue Cancer Biomarkers: Discovery and Applications)
Show Figures

Graphical abstract

25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Viewed by 239
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 2051 KiB  
Article
Urinary Extracellular Vesicle Signatures as Biomarkers in Prostate Cancer Patients
by Sigrun Lange, Darryl Ethan Bernstein, Nikolay Dimov, Srinivasu Puttaswamy, Ian Johnston, Igor Kraev, Sarah R. Needham, Nikhil Vasdev and Jameel M. Inal
Int. J. Mol. Sci. 2025, 26(14), 6895; https://doi.org/10.3390/ijms26146895 - 18 Jul 2025
Viewed by 607
Abstract
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study [...] Read more.
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study assessed U-EV profiles from individuals affected by PCa at Gleason scores 6–9, compared with healthy controls. U-EVs were characterised and assessed for proteomic cargo content by LC-MS/MS analysis. The U-EV proteomes were compared for enrichment of gene ontology (GO), KEGG, and Reactome pathways, as well as disease–gene associations. U-EVs ranged in size from 50 to 350 nm, with the majority falling within the 100–200 nm size range for all groups. U-EV protein cargoes from the PCa groups differed significantly from healthy controls, with 16 protein hits unique to the GS 6–7 and 88 hits to the GS 8–9 U-EVs. Pathway analysis showed increased enrichment in the PCa U-EVs of biological process GO (5 and 37 unique to GS 6–7 and GS 8–9, respectively), molecular function GO (3 and 6 unique to GS 6–7 and GS 8–9, respectively), and cellular component GO (10 and 22 unique to GS 6–7 and GS 8–9, respectively) pathways. A similar increase was seen for KEGG pathways (11 unique to GS 8–9) and Reactome pathways (102 unique to GS 8–9). Enrichment of disease–gene associations was also increased in the PCa U-EVs, with highest differences for the GS 8–9 U-EVs (26 unique terms). The pathway enrichment in the PCa U-EVs was related to several key inflammatory, cell differentiation, cell adhesion, oestrogen signalling, and infection pathways. Unique GO and KEGG pathways enriched for the GS 8–9 U-EVs were associated with cell–cell communication, immune and stress responses, apoptosis, peptidase activity, antioxidant activity, platelet aggregation, mitosis, proteasome, mRNA stability oxytocin signalling, cardiomyopathy, and several neurodegenerative diseases. Our findings highlight U-EVs as biomarkers to inform disease pathways in prostate cancer patients and offer a non-invasive biomarker tool for clinical use. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Functions of Extracellular Vesicles)
Show Figures

Figure 1

18 pages, 2644 KiB  
Article
Exploring the Potential of Extracellular Vesicles from Atlantic Cod (Gadus morhua L.) Serum and Mucus for Wound Healing In Vitro
by Stefania D’Alessio, Igor Kraev, Bergljót Magnadóttir and Sigrun Lange
Biology 2025, 14(7), 870; https://doi.org/10.3390/biology14070870 - 17 Jul 2025
Viewed by 1223
Abstract
Novel therapeutic approaches for wound healing have included biomaterials from the Atlantic cod (Gadus morhua L.), with promising results in wound management. The use of extracellular vesicles (EVs), which can be isolated from cod biofluids, remains to be studied. EVs play key [...] Read more.
Novel therapeutic approaches for wound healing have included biomaterials from the Atlantic cod (Gadus morhua L.), with promising results in wound management. The use of extracellular vesicles (EVs), which can be isolated from cod biofluids, remains to be studied. EVs play key roles in cellular communication, and their use both as biomarkers and as therapeutic agents is widely reported in human pathologies, particularly with respect to mesenchymal stem cells. This pilot study characterized the total proteomic cargo content of EVs from cod serum and mucus and assessed the EVs’ potential for regenerative activity in wound-healing processes, using human and mouse fibroblast and keratinocyte in vitro scratch injury models. The pro-regenerative potential of both cod serum EVs and mucus EVs was identified, with differing capacities for accelerating wound closure in fibroblast and keratinocyte cells. This was further supported by varying effects of the cod serum EVs and mucus EVs on cellular vimentin and FGF-2 levels. The serum EV and mucus EV protein cargoes differed with respect to abundance of protein hits and associated enriched functional GO and KEGG pathways, but both were associated with immune, stress and wound-healing processes. Cod EVs may present as innovative therapeutic options for regenerative medicine applications, and our reported findings provide valuable insights for future in-depth studies. Full article
Show Figures

Graphical abstract

18 pages, 2073 KiB  
Article
Amine-Modified Diatomaceous Earth Syringe Platform (DeSEI) for Efficient and Cost-Effective EV Isolation
by Hyo Joo Lee, Jinkwan Lee, Namheon Kim and Yong Shin
Int. J. Mol. Sci. 2025, 26(14), 6843; https://doi.org/10.3390/ijms26146843 - 16 Jul 2025
Viewed by 314
Abstract
Conventional methods for isolating extracellular vesicles (EVs) are often limited by long processing times, a low purity, and a reliance on specialized equipment. To overcome these challenges, we developed the DeSEI (amine-functionalized Diatomaceous earth-based Syringe platform for EV Isolation), a novel platform employing [...] Read more.
Conventional methods for isolating extracellular vesicles (EVs) are often limited by long processing times, a low purity, and a reliance on specialized equipment. To overcome these challenges, we developed the DeSEI (amine-functionalized Diatomaceous earth-based Syringe platform for EV Isolation), a novel platform employing low-cost, amine-functionalized diatomaceous earth (ADe) within a simple syringe–filter system. The capture mechanism leverages the electrostatic interaction between the positively charged ADe and the negatively charged EV surface, enabling a rapid and efficient isolation. The optimized 30 min protocol yields intact EVs with morphology, size, and protein markers comparable to those from ultracentrifugation, ensuring minimal cellular contamination. Notably, DeSEI exhibited a nearly 60-fold higher recovery efficiency of EV-derived miRNA compared to ultracentrifugation. The platform further proved its versatility with a rapid one-step miRNA extraction protocol and a user-friendly cartridge format. The direct miRNA extraction capability is particularly advantageous for a streamlined biomarker analysis, while the cartridge design illustrates a clear pathway toward developing point-of-care diagnostic tools. The DeSEI offers a promising alternative to existing methods for EV-based research by providing a combination of speed, simplicity, and procedural flexibility that does not require specialized equipment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop