Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = EPS foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14082 KiB  
Article
Macrophage EP4 Deficiency Drives Atherosclerosis Progression via CD36-Mediated Lipid Uptake and M1 Polarization
by Xinyu Tang, Qian Chen, Manli Guo, Ying Wen, Cuiping Jia, Yun Bu, Ting Wang, Yuan Zhang and Waiho Tang
Cells 2025, 14(13), 1021; https://doi.org/10.3390/cells14131021 - 4 Jul 2025
Viewed by 503
Abstract
Atherosclerosis is a chronic inflammatory disease and a major pathological basis of numerous cardiovascular conditions, with a high global mortality rate. Macrophages play a pivotal role in its pathogenesis through phenotypic switching and foam cell formation. Prostaglandin E2 receptor subtype 4 (EP4) highly [...] Read more.
Atherosclerosis is a chronic inflammatory disease and a major pathological basis of numerous cardiovascular conditions, with a high global mortality rate. Macrophages play a pivotal role in its pathogenesis through phenotypic switching and foam cell formation. Prostaglandin E2 receptor subtype 4 (EP4) highly expressed on the macrophage surface, is involved in various pathophysiological processes, such as inflammation and lipid metabolism. However, the role of macrophage EP4 in the progression of atherosclerosis remains unclear. To determine whether macrophage EP4 affects the progression of atherosclerosis by regulating foam cell formation and macrophage polarization. Myeloid-specific EP4 knockout mice with an ApoE-deficient background were fed a Western diet for 16 weeks. Our results showed that EP4 expression was significantly downregulated during atherosclerosis. EP4 deficiency was found to exacerbate atherosclerotic plaque formation and destabilizes plaques. In vitro studies further demonstrated that loss of EP4 in myeloid cells promoted foam cell formation and M1 macrophage polarization. Both transcriptomic and proteomic analysis showed that EP4 may regulate these processes by regulating CD36 expression in macrophage, which was further confirmed by Western blot and qPCR. In summary, deficiency of EP4 receptor in macrophages enhance foam cell formation and M1 polarization by upregulating CD36 expression, thereby accelerating the progression of atherosclerosis. Full article
Show Figures

Graphical abstract

16 pages, 5588 KiB  
Article
Experimental Study on Impact Responses of Geofoam Reinforced Sand Cushion for Rockfall Hazard Mitigation
by Xiaoyu Meng, Qinghui Jiang, Huajian Gao and Hanlin Feng
Sustainability 2025, 17(13), 6057; https://doi.org/10.3390/su17136057 - 2 Jul 2025
Viewed by 246
Abstract
In rockfall hazard mitigation, geofoam has been used in the cushion layer to improve the sustainability of the rockfall gallery, such as impact resistance enhancement and dead load reduction. Impact tests were conducted to study the effect of geofoam type, thickness, and impact [...] Read more.
In rockfall hazard mitigation, geofoam has been used in the cushion layer to improve the sustainability of the rockfall gallery, such as impact resistance enhancement and dead load reduction. Impact tests were conducted to study the effect of geofoam type, thickness, and impact energy on the impact responses of the sand cushion layer. The test results showed that placing geofoam in the sand cushion can reduce the peak impact force of the rockfall and the peak acceleration of the gallery slab by up to 80%. While the peak impact stress at the cushion layer bottom can also be reduced by geofoam under low impact energy, thicker geofoam layers (e.g., 4 and 6 cm) increased peak impact stress when the rockfall had high impact energy. Placing geofoam at the bottom of the cushion to replace one third of the sand cushion thickness can enhance the impact resistance of the cushion layer. Under low impact energy, expandable polyethylene (EPE) foam resulted in lower impact force on the rockfall, reduced impact stress within the sand cushion, and diminished vibration of the gallery slab compared with polystyrene (EPS) foam with a constant thickness. However, EPS foam is suitable for use in sand cushions of rockfall galleries subjected to high-energy rock impacts. Moreover, EPE foam exhibits superior resilience, resulting in less damage compared to EPS foam. Full article
Show Figures

Figure 1

19 pages, 3753 KiB  
Article
Dynamic Response of EPS Foam in Packaging: Experimental Tests and Constitutive Modeling
by Pei Li, Heng Zhang and Leilei Chen
Polymers 2025, 17(12), 1606; https://doi.org/10.3390/polym17121606 - 9 Jun 2025
Viewed by 527
Abstract
Expanded polystyrene (EPS) foam is widely used in energy-absorbing structures for packaging applications; however, its mechanical behavior under dynamic loading conditions remains insufficiently characterized. To address this, the dynamic responses of EPS foam used in television packaging were first examined experimentally through drop [...] Read more.
Expanded polystyrene (EPS) foam is widely used in energy-absorbing structures for packaging applications; however, its mechanical behavior under dynamic loading conditions remains insufficiently characterized. To address this, the dynamic responses of EPS foam used in television packaging were first examined experimentally through drop tests. Building on these findings, a rate-sensitive constitutive model was developed to incorporate tensile damage mechanisms and tension–compression asymmetry, enabling unified modeling of both tensile and compressive deformation in complex structural applications. The proposed model was calibrated using standardized tension, compression, and shear tests, and subsequently employed to simulate three-point bending and dynamic compression scenarios involving EPS foam components. The simulation results demonstrated favorable agreement with experimental observations, confirming the accuracy and robustness of the proposed constitutive model in predicting the dynamic mechanical behavior of EPS foam. Full article
Show Figures

Figure 1

18 pages, 2648 KiB  
Article
Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials
by Kaixing Fan, Jie Wei and Chengdong Feng
Materials 2025, 18(12), 2671; https://doi.org/10.3390/ma18122671 - 6 Jun 2025
Viewed by 557
Abstract
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior [...] Read more.
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior to being incorporated into the foamed concrete mixtures. Ordinary Portland cement (OPC) was partially replaced with various SCMs, namely, silica fume (SF), mineral powder (MP), and metakaolin (MK) at substitution levels of 3%, 6%, and 9%. Key indicators to evaluate the material performance of foamed concrete included 28-day uniaxial compressive strength, thermal conductivity, mass loss rate under thermal cycling, volumetric water absorption, and shrinkage. The results noted that all three SCMs improved the uniaxial compressive strength of foamed concrete, with MP achieving the greatest improvement, approximately 97% at the 9% replacement level. Thermal conductivity increased slightly with the addition of SF or MP but decreased with MK, highlighting the superior insulation capability of MK. Both SF and MK reduced the mass loss rate under thermal cycling, with SF exhibiting the highest thermal stability. Furthermore, MK was most effective in minimizing water absorption and shrinkage, attributed to its high pozzolanic reactivity and the resulting refinement of the microstructures. Full article
Show Figures

Figure 1

20 pages, 5810 KiB  
Article
The Effects of the Substrate Length and Cultivation Time on the Physical and Mechanical Properties of Mycelium-Based Cushioning Materials from Salix psammophila and Peanut Straw
by Xiaowen Song, Shuoye Chen, Jianxin Wu, Ziyi Cai, Yanfeng Zhang, Risu Na, He Lv, Cong He, Tingting Wu and Xiulun Wang
Biomimetics 2025, 10(6), 371; https://doi.org/10.3390/biomimetics10060371 - 5 Jun 2025
Viewed by 588
Abstract
Mycelium-based biocomposites represent a novel class of environmentally friendly materials. This study investigated the potential of using Salix psammophila and peanut straw as substrates for cultivating Pleurotus ostreatus and Ganoderma lucidum, respectively, to fabricate mycelium-based cushioning materials. The results demonstrated that the [...] Read more.
Mycelium-based biocomposites represent a novel class of environmentally friendly materials. This study investigated the potential of using Salix psammophila and peanut straw as substrates for cultivating Pleurotus ostreatus and Ganoderma lucidum, respectively, to fabricate mycelium-based cushioning materials. The results demonstrated that the Pleurotus ostreatus-based cushion material using Salix psammophila (POSM) outperformed the Ganoderma lucidum-based cushion material using peanut straw (GLPM) in terms of overall performance. Both materials presented optimal comprehensive properties when the cultivation period reached 30 days. Increasing the substrate length enhanced most of the material properties. The resulting density ranged from 0.13 to 0.16 g/cm3, which was higher than that of polystyrene foam. The contact angles of both materials exceeded 120°, whereas their elastic springback rates reached 50.2% and 43.2%, and their thermal conductivities were 0.049 W/m·K and 0.051 W/m·K, respectively. Additionally, thermogravimetric analysis revealed that both materials exhibited similar thermal degradation behavior and relatively high thermal stability. These findings align with those of previous studies on mycelium composites and indicate that the physical and mechanical properties of the materials are largely comparable to those of expanded polystyrene (EPS). In conclusion, the developed mycelium-based cushioning materials promote the efficient utilization of agricultural residues and hold promise as a sustainable alternative to EPS, offering broad application prospects in the transportation and packaging sectors. Full article
Show Figures

Figure 1

20 pages, 3486 KiB  
Article
Effects of Different Litchi E-Commerce Logistics Packaging Methods on Microenvironment and Fruit Quality Variations
by Jiaming Guo, Dongfeng Liu, Guopeng Lin, Haofeng Qiu, Peng Guo, Zhiwu Ding, Dinghe Wu, Jianye Wang and Enli Lv
Foods 2025, 14(8), 1305; https://doi.org/10.3390/foods14081305 - 9 Apr 2025
Viewed by 890
Abstract
“Foam container + ice pack” is a common packaging form for e-commerce logistics of litchis. However, there are numerous factors affecting the temperature variation under this logistics mode, making it difficult to control the packaging temperature and litchi quality during the e-commerce logistics [...] Read more.
“Foam container + ice pack” is a common packaging form for e-commerce logistics of litchis. However, there are numerous factors affecting the temperature variation under this logistics mode, making it difficult to control the packaging temperature and litchi quality during the e-commerce logistics process. In order to explore the impact of the packaging scheme on the packaging environment temperature and the quality variation in litchis during the “foam container + ice pack” logistics process, this paper takes the number of ice packs, the terminal pre-cooling temperature of litchis, the weight of litchis, and whether to use aluminum foil insulating film as variable factors to study the impact rules of these factors on the EPS (Expanded Polystyrene) foam container environment temperature, the total number of fruit pericarp, and the marketable fruit rate. The experimental results show the following trends: the terminal pre-cooling temperature has a significant impact on the daily average temperature of the fruit layer; the packaging environment temperature of the 15 °C pre-cooling group on the first day and the second day is 5.00 °C and 2.78 °C higher than that of the 5 °C pre-cooling experimental group, respectively. Moreover, under this treatment, the growth rate of fruit pericarp fungi is relatively fast, which could reach 3.87 Lg (CFU/g) on the second day. Increasing the amount of litchis could maintain a lower temperature environment, but it will cause the relative conductivity increasing 4.12% compared with the groups with no weight increasing. Increasing the number of ice packs could significantly reduce the decline rate of fruit soluble solids in the first two days. The research results of this paper are expected to provide a certain reference for the quality assurance logistics and the formulation of long-distance transportation strategies for perishable agricultural products. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 5374 KiB  
Article
Research on Flexural Performance of Basalt Fiber-Reinforced Steel–Expanded Polystyrene Foam Concrete Composite Wall Panels
by Fang Liu, Long Zhao, Longxin Yuan, Gang Wu, Ran Zheng and Yusong Mu
Buildings 2025, 15(2), 285; https://doi.org/10.3390/buildings15020285 - 19 Jan 2025
Viewed by 1122
Abstract
This paper presents a novel design of prefabricated steel–EPS foam concrete composite wall panels, which can solve issues such as long curing times, decreased impermeability and durability, easy corrosion of steel reinforcement, and difficult construction under the cold climate conditions in Northeast China. [...] Read more.
This paper presents a novel design of prefabricated steel–EPS foam concrete composite wall panels, which can solve issues such as long curing times, decreased impermeability and durability, easy corrosion of steel reinforcement, and difficult construction under the cold climate conditions in Northeast China. A parametric analysis of the composite wallboard was carried out using the finite-element analysis software ABAQUS 6.12. In-depth exploration was conducted on the contributions of parameters such as the density of foam concrete, the strength of cold-formed thin-walled C-section steel, and the cross-sectional height of cold-formed thin-walled C-section steel compared to the overall flexural bearing capacity of the composite wallboard as well as the impacts of these parameters on the failure modes. The mechanical properties of the composite wallboard were verified through four-point bending tests. The bearing capacity of this composite wallboard can reach up to 100.58 kN at most, and its flexural bearing capacity can reach 30.44 kN·m. Meanwhile, its ductility coefficient of 2.9 is also within the optimal range. The research results confirm the superior mechanical properties of the designed composite wallboard, providing beneficial references for the research on similar composite material structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 1892 KiB  
Article
Enhancing Thermal Insulation Property and Flexibility of Starch/Poly(butylene adipate terephthalate) (PBAT) Blend Foam by Improving Rheological Properties
by JunGi Hong, Junhyuk Lee, Sung Kyu Kim, Dasom Son, DongHo Kang and Jin Kie Shim
Polymers 2025, 17(2), 138; https://doi.org/10.3390/polym17020138 - 8 Jan 2025
Cited by 1 | Viewed by 1227
Abstract
Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect [...] Read more.
Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing. We fabricated a starch/PBAT blend with systematically controlled blending ratios (0, 10, 15, 20, and 25 wt%) to analyze their effect on the interaction and characteristics of blended foam. The blending of starch and PBAT significantly reduced complex viscosity, enhancing resin flow during the foaming process. This improvement in resin flow led to increases in expansion ratio while reducing density and cell wall thickness. The thermo-insulation performance improved to 0.043 W/mK with 20 wt% of PBAT due to the enhanced expansion ratio and cell morphology. Additionally, the flexural strain at break improved significantly from 2.8 ± 0.6% to 9.6 ± 1.0% with increasing PBAT content. Enhanced water resistance was also observed, demonstrated by a reduction in water absorption and an extension of dissolution time. Overall, these findings underscore the potential of starch/PBAT foam to improve the thermal-insulating property, flexibility, and water resistance while maintaining their biodegradability and sustainability. Full article
(This article belongs to the Special Issue Advances in Rheology of Bio-Based Polymeric Materials)
Show Figures

Graphical abstract

14 pages, 6084 KiB  
Article
Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels
by Ercan Şimşir, Yelda Akçin Ergün and İbrahim Yavuz
Polymers 2024, 16(24), 3553; https://doi.org/10.3390/polym16243553 - 20 Dec 2024
Cited by 2 | Viewed by 1501
Abstract
Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer [...] Read more.
Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry. Fabrics woven from goat wool were used as the natural fiber. Polymer foam with expanded polystyrene (EPS) and extruded polystyrene (XPS) structures was used as the core material. During production, fibers were bonded to the upper and lower layers of the core structures using resin. The hand lay-up method was used in production. After resin application, the samples were cured under a heated press for 2 h. After the production was completed, the material was cut according to the standards (10-20-30 Joule), and impact and bending tests were conducted at three different energy levels. The experiments revealed that at 10 J, the material exhibited rebound; at 20 J, it showed resistance to stabbing; and at 30 J, it experienced penetration. While EPS foam demonstrated higher impact resistance in the 10 J test, it was found that XPS foam exhibited better impact resistance and absorption capabilities in the 20 J and 30 J tests. Due to the open and semi-closed cell structure of EPS foams and the closed cell structure of XPS foams, it has been concluded that XPS foams exhibit higher impact resistance and better energy absorption properties Full article
Show Figures

Graphical abstract

15 pages, 4483 KiB  
Article
Fabrication and Performance Regulation of Lightweight Porous Electromagnetic Absorbing Materials via CO2 Nucleation-Free Foaming of EP
by Tienan Dong, Jingru Quan, Funing Huang, Yitong Guan, Zihong Lin, Zeyao Wang, Yuheng Liu, Zusheng Hang, Yupei Zhao and Yu’an Huang
Polymers 2024, 16(24), 3549; https://doi.org/10.3390/polym16243549 - 19 Dec 2024
Viewed by 807
Abstract
In this study, CO2 reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO2, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption [...] Read more.
In this study, CO2 reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO2, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents. Ultimately, a lightweight epoxy foam absorbing material (LFAM) was developed. BET tests showed that 2.0 wt% carbon-based wave-absorbing agents (LFAMs–A2) expanded the material’s volume to 4.6 times its original size, forming a uniform porous structure. VNA tests revealed that LFAMs–A2 achieved a minimum reflection loss of −13.25 dB and an absorption bandwidth of 3.7 GHz in the 12–18 GHz range. The material with 2.0 wt% ferrite-based wave-absorbing agents (LFAMs–C2) achieved a minimum reflection loss of −26.83 dB at 16.6 GHz and an absorption bandwidth of 5.3 GHz, nearly covering the Ku band. DSC tests indicated that the material maintained good thermal stability at 150 °C. This study provides a new approach for lightweight coatings and structural optimization, with broad application potential in 5G communications, microwave anechoic chambers, and aerospace fields. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

17 pages, 4901 KiB  
Article
Assessing the Conformity of Mycelium Biocomposites for Ecological Insulation Solutions
by Ilze Irbe, Mikelis Kirpluks, Mikus Kampuss, Laura Andze, Ulla Milbreta and Inese Filipova
Materials 2024, 17(24), 6111; https://doi.org/10.3390/ma17246111 - 13 Dec 2024
Cited by 2 | Viewed by 1087
Abstract
In this study, different combinations of mycelium biocomposites (MBs) were developed using primary substrates sourced from the local agricultural, wood processing, and paper industries. The physicomechanical properties, thermal conductivity, and fire behavior were evaluated. The highest bending strength was achieved in composites containing [...] Read more.
In this study, different combinations of mycelium biocomposites (MBs) were developed using primary substrates sourced from the local agricultural, wood processing, and paper industries. The physicomechanical properties, thermal conductivity, and fire behavior were evaluated. The highest bending strength was achieved in composites containing waste fibers and birch sanding dust, with a strength competitive with that of synthetic polymers like EPS and XPS, as well as some commercial building materials. The lowest thermal conductivity was observed in hemp-based MB, with a lambda coefficient of 40 m·W·m−1·K−1, making these composites competitive with non-mycelium insulation materials, including synthetic polymers such as EPS and XPS. Additionally, MB exhibited superior fire resistance compared to various synthetic foams and composite materials. They showed lower peak heat release rates (134–243 k·W·m−2) and total smoke release (7–281 m2·m−2) than synthetic polymers, and lower total heat release (6–62 k·W·m−2) compared to certain wood composites. Overall, the mechanical and thermal properties, along with the fire performance of MB, support their potential as a sustainable alternative to petroleum-based and traditional composite materials in the building industry. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

17 pages, 8527 KiB  
Article
Effects of Partially Filled EPS Foam on Compressive Behavior of Aluminum Hexagonal Honeycombs
by Itsara Rojana, Anchalee Manonukul and Julaluk Carmai
Materials 2024, 17(23), 5945; https://doi.org/10.3390/ma17235945 - 4 Dec 2024
Viewed by 769
Abstract
This study investigates the compressive behavior of aluminum honeycombs partially filled with expanded polystyrene (EPS) foam, emphasizing the effects of filler area fractions and vertex contact locations on energy absorption and crush characteristics. Axial quasi-static compression tests evaluated energy absorption, mean crush force, [...] Read more.
This study investigates the compressive behavior of aluminum honeycombs partially filled with expanded polystyrene (EPS) foam, emphasizing the effects of filler area fractions and vertex contact locations on energy absorption and crush characteristics. Axial quasi-static compression tests evaluated energy absorption, mean crush force, specific energy absorption, and crush force efficiency. Results revealed that partially filled honeycombs significantly enhance energy absorption and mean crush force compared to their unfilled counterparts. However, higher filler area fractions increased mass, reducing specific energy absorption. Circular fillers exhibited lower energy absorption than hexagonal fillers due to their larger contact radius, which reduces stress concentration. The interaction between cell walls and fillers influenced densification strain, with wall–midpoint vertex contacts increasing peak force by reinforcing walls, while corner contacts reduced peak force but improved crush force efficiency. These findings underscore the potential of optimized, partially filled honeycombs for lightweight, energy-absorbing applications, particularly in automotive engineering. Full article
Show Figures

Figure 1

17 pages, 4377 KiB  
Article
Carbon Footprints of a Conventional Norwegian Detached House Exposed to Flooding
by Line Berg Oppedal and Tore Kvande
Buildings 2024, 14(7), 1967; https://doi.org/10.3390/buildings14071967 - 28 Jun 2024
Viewed by 1195
Abstract
Rehabilitating water-damaged structures in buildings results in increased material extraction and energy use, and, consequently, a higher carbon footprint of the housing industry. Despite its prevalence, quantifying the carbon footprint caused by water damage or flooding has not gained much attention. Thus, this [...] Read more.
Rehabilitating water-damaged structures in buildings results in increased material extraction and energy use, and, consequently, a higher carbon footprint of the housing industry. Despite its prevalence, quantifying the carbon footprint caused by water damage or flooding has not gained much attention. Thus, this study investigated the quantitative carbon footprint associated with rehabilitating flooding in a detached house caused by torrential rain. Three different construction methods of the house were looked at; a timber frame construction, a masonry variant made by concrete blocks of Lightweight Expanded Clay Aggregate (LECA), and an alternative with exterior walls composed of concrete-moulded Expanded Polystyrene (EPS) foam boards. A life-cycle assessment according to NS 3720 was used to investigate the carbon footprint (CO2eq.) of typical flooding in a detached building. Rehabilitating the flooding in a house with concrete-moulded boards resulted in a lower carbon footprint (2.45 × 103 CO2eq.) than rehabilitating the same flooding in a house with LECA masonry (7.56 × 103 CO2eq.) and timber frames (2.49 × 103 CO2eq.). However, the timber-frame house had the lowest total carbon footprint (2.95 × 104 CO2eq.) owing to their original low footprint. This study found that flooding significantly contributed to the carbon footprint of buildings and, therefore, the topic should be given attention when choosing a construction method and moisture safety strategy. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 11497 KiB  
Article
Study on the Characteristics of Downwash Field Range and Consistency of Spray Deposition of Agricultural UAVs
by Zongru Liu, Rong Gao, Yinwei Zhao, Han Wu, Yunting Liang, Ke Liang, Dong Liu, Taoran Huang, Shaoqiang Xie, Jia Lv and Jiyu Li
Agriculture 2024, 14(6), 931; https://doi.org/10.3390/agriculture14060931 - 13 Jun 2024
Cited by 3 | Viewed by 2157
Abstract
Agricultural unmanned aerial vehicles (UAVs), increasingly integral to crop protection through spraying operations, are significantly influenced by their downwash fields, which in turn affect the distribution of spray droplets. The key parameters impacting spray deposition patterns are the velocity of the downwash airflow [...] Read more.
Agricultural unmanned aerial vehicles (UAVs), increasingly integral to crop protection through spraying operations, are significantly influenced by their downwash fields, which in turn affect the distribution of spray droplets. The key parameters impacting spray deposition patterns are the velocity of the downwash airflow and its spatial extent. Understanding the interplay of these parameters can enhance the efficacy of UAV applications in agriculture. Previous research has predominantly focused on downwash airflow velocity, often neglecting the spatial scope of the downwash. This paper presents an applied foundational study grounded in the compressible Reynolds-averaged Navier–Stokes (RANS) equations. Leveraging a dependable k-ε turbulence model and dynamic mesh technology, it develops an effective three-dimensional computational fluid dynamics (CFD) approach to analyze the downwash field’s distribution characteristics during UAV hover. To validate the CFD method, a visualization test was conducted using EPS (expanded polystyrene foam) balls dispersed in the airspace beneath the UAV, illustrating the airflow’s spatial distribution. Additionally, a parameter η was introduced to quantify changes in the wind field’s range, enabling the mapping of the cross-sectional area of the downwash airflow at various velocities within the UAV’s airspace. The study reveals that the downwash field’s overall shape evolves from a “four-point type” to a “square-like” and then to an “ellipse-like” configuration. Lower downwash airflow velocities exhibit a more rapid expansion of the wind field area. High-velocity downwash areas are concentrated beneath each rotor, while lower-velocity zones coalesce under each rotor and extend downward, forming a continuous expanse. Within the UAV’s downwash area, the deposition of droplets is more pronounced. At a given nozzle position, an increase in downwash airflow velocity correlates with greater droplet deposition within the downwash field. This research bridges a gap in downwash field studies, offering a solid theoretical foundation for the development of future UAV downwash field models. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

12 pages, 3124 KiB  
Article
Biodegradation Mechanism of Polystyrene by Mealworms (Tenebrio molitor) and Nutrients Influencing Their Growth
by Hisayuki Nakatani, Yuto Yamaura, Yuma Mizuno, Suguru Motokucho, Anh Thi Ngoc Dao and Hiroyuki Nakahara
Polymers 2024, 16(12), 1632; https://doi.org/10.3390/polym16121632 - 9 Jun 2024
Cited by 2 | Viewed by 2695
Abstract
A degradation mechanism of polystyrene (PS) in mealworms reared on expanded PS (EPS) was investigated by its decrease in molecular weight and change in chemical structure. A 33% decrease in molecular weight was observed for the digested PS in the frass after 1 [...] Read more.
A degradation mechanism of polystyrene (PS) in mealworms reared on expanded PS (EPS) was investigated by its decrease in molecular weight and change in chemical structure. A 33% decrease in molecular weight was observed for the digested PS in the frass after 1 week of feeding to mealworms. The FT-IR and py-GC/MS spectra of the digested PS showed radical oxidative reactions taking place in the mealworm body. The presence of hydroperoxide, alcohol and phenol groups was confirmed, and dimer fragments of styrene with quinone and phenol groups were obtained. The decrease in molecular weight and the alternation of benzene rings indicated that autoxidation and quinonization via phenolic intermediates occurred simultaneously in the mealworm body. The survival rate of mealworms reared on EPS was higher than that of starved worms, indicating that EPS was a nutrient source. However, no weight gain was observed in mealworms fed EPS alone. Comparison with the mixed diets with bran or urethane foams (PU) indicated that protein, phosphorus and magnesium components absent from EPS were required for mealworm growth. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop