Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
2.3. Testing Methods
3. Results and Discussion
3.1. Uniaxial Compressive Strength
3.2. Thermal Conductivity
3.3. Durability Under Thermal Cycling
3.4. Volumetric Water Absorption
3.5. Shrinkage
4. Conclusions
- The addition of SF and MP evidently enhanced the 28-day uniaxial compressive strength of EP-aggregated foamed concrete, likely due to the synergistic effects of their pozzolanic reactivity and micro-filler effects. MK showed a distinct optimal substitution level, beyond which further strength gains were not observed. This may be attributed to the formation of low-density calcium aluminosilicate hydrate phases and the reduction in the amount of reactive cement. Among all SCMs, MP yielded the highest strength gain at equal replacement levels, outperforming both SF and MK.
- The thermal conductivity of EP-aggregated foamed concrete increased with SF and MP addition, particularly at higher substitution levels, which may be related to their ability to increase the solid phase proportion and bulk density of the concrete. Conversely, MK consistently reduced thermal conductivity, enhancing the material’s insulation performance.
- EP-aggregated foamed concrete incorporating SF, MP, or MK exhibited reduced mass loss rates, improving durability as substitution levels increased. These phenomena suggested that SCMs likely enhanced the interfacial bonding and crack resistance, limiting microcrack propagation. The replacement of SF at 3% and 6% achieved the lowest mass loss rates, indicating an optimal range for durability enhancement. At the 9% level, MP provided the most notable improvement.
- Increasing MP content led to higher volumetric water absorption, likely due to incomplete pore filling by MP and cement hydration products. In contrast, SF and MK reduced water absorption by decreasing pore connectivity, with MK showing the greatest effect.
- Higher SF substitution increased the drying shrinkage of EP-aggregated foamed concrete, possibly due to accelerated hydration and pore densification. MP reduced shrinkage at moderate levels but increased it at 9%. MK consistently minimized shrinkage across all levels by regulating hydration and refining pore structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borri, E.; Zsembinszki, G.; Cabeza, L.F. Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Appl. Therm. Eng. 2021, 189, 116666. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Iovane, T.; Mastellone, M.; Mauro, G.M. The evolution of building energy retrofit via double-skin and responsive façades: A review. Sol. Energy 2021, 224, 703–717. [Google Scholar] [CrossRef]
- Iyigundogdu, Z.; Ürünveren, H.; Beycioğlu, A.; Ibadov, N. Antimicrobial Activity of Eco-Friendly Fly-Ash-Based Geopolymer Mortar. Materials 2025, 18, 1735. [Google Scholar] [CrossRef]
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Zhang, L. Sustainability of compact cities: A review of inter-building effect on building energy and solar energy use. Sustain. Cities Soc. 2021, 72, 103035. [Google Scholar] [CrossRef]
- Hur, K.; Lee, H.J.; Wi, S.; Chang, S.J.; Kim, S. Barrier effect of insulation against harmful chemical substances according to the wall surface construction of layered building materials. Constr. Build. Mater. 2023, 368, 130430. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, L.; Wang, Z.; Zhang, J.; Liu, X.; Zhang, L. Effects of wall configuration on building energy performance subject to different climatic zones of China. Appl. Energy 2017, 185, 1565–1573. [Google Scholar] [CrossRef]
- Yamauchi, S.; Chao, L.; Matsushima, E.; Ito, H.; Uetsuji, Y. Multiscale computational study on the thermal properties and CO2 emission reduction effect of bio-insulation materials sprayed with cellulose nanofibers. Constr. Build. Mater. 2025, 465, 140161. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, J.; Mousavi, S.; Rismanchi, B.; Yap, P.-S. Wall insulation materials in different climate zones: A review on challenges and opportunities of available alternatives. Thermo 2023, 3, 38–65. [Google Scholar] [CrossRef]
- Ye, Q.; Gong, Y.; Ren, H.; Peng, L.; Zhang, H. Theoretical, numerical and experimental studies on thermal insulation performance of different cross laminated timber walls. J. Build. Eng. 2023, 72, 106640. [Google Scholar] [CrossRef]
- Wei, J.; Wang, T.; Zhong, Y.; Zhang, Y.; Leung, C.K. Performance Evaluation of Foamed Concrete with Lightweight Aggregate: Strength, Shrinkage, and Thermal Conductivity. Materials 2024, 17, 3869. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Li, H.; Liu, W. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Constr. Build. Mater. 2014, 72, 256–261. [Google Scholar] [CrossRef]
- Ma, C.; Chen, B. Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement. Constr. Build. Mater. 2017, 137, 160–168. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Xu, H.; Peng, Y.; Yuan, Q.; Gao, J. The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceram. Int. 2022, 48, 12884–12896. [Google Scholar] [CrossRef]
- Alharthai, M.; Mydin, M.A.O.; Alimrani, N.S.; Majeed, S.S.; Tayeh, B.A. Evaluating deterioration of the properties of lightweight foamed concrete at elevated temperatures. J. Build. Eng. 2024, 84, 108515. [Google Scholar] [CrossRef]
- Guo, M.; He, Y.; Zhi, X. Experimental Research on Dynamic Mechanical Properties of High-Density Foamed Concrete. Materials 2024, 17, 4781. [Google Scholar] [CrossRef] [PubMed]
- Amran, Y.M.; Farzadnia, N.; Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Ibrahim, O.M.O.; Tayeh, B.A. Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar. Adv. Concr. Constr 2020, 10, 537–546. [Google Scholar]
- Ramli Sulong, N.H.; Mustapa, S.A.S.; Abdul Rashid, M.K. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J. Appl. Polym. Sci. 2019, 136, 47529. [Google Scholar] [CrossRef]
- Jin, X.; Wu, X.; Cui, S.; Wang, W.; Zhang, Y.; Sun, S.; Sun, D. A robust adhesion between extruded polystyrene foam and mortar through different chemical linkages under ultraviolet-ozone irradiation. Constr. Build. Mater. 2022, 345, 128414. [Google Scholar] [CrossRef]
- Schackow, A.; Effting, C.; Folgueras, M.V.; Güths, S.; Mendes, G.A. Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 2014, 57, 190–197. [Google Scholar] [CrossRef]
- Dixit, A.; Dai Pang, S.; Kang, S.-H.; Moon, J. Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cem. Concr. Compos. 2019, 102, 185–197. [Google Scholar] [CrossRef]
- Wang, W.; Sun, S.; Zhao, X.; Cui, S.; Wang, J.; Shi, Y.; Sun, D.; Liu, H.; Jin, X. The surface modification of extruded polystyrene foams through UV curing and its stable adhesion to mortar. Constr. Build. Mater. 2022, 359, 129507. [Google Scholar] [CrossRef]
- Kumm, M.; Söderström, J.; Lönnermark, A. EPS insulated façade fires from a fire and rescue perspective. In Proceedings of the MATEC Web of Conferences, Paris, France, 10–13 July 2013; p. 05003. [Google Scholar]
- Murillo, A.M.; Abisambra, G.V.; Acosta, P.A.; Quesada, Q.C.; Tutikian, B.F.; Ehrenbring, H.Z. Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating. J. Mater. Res. Technol. 2021, 12, 1958–1969. [Google Scholar] [CrossRef]
- Pereira, D.; Gago, A.; Proença, J.; Morgado, T. Fire performance of sandwich wall assemblies. Compos. Part B Eng. 2016, 93, 123–131. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, Q.; Ding, S.; Wang, Z.; Xie, H. Enhanced thermal stability, flame retardancy, and mechanical properties of casein-modified rigid polyurethane foams. Case Stud. Therm. Eng. 2025, 69, 106039. [Google Scholar] [CrossRef]
- Lanzón, M.; Castellón, F.J.; Ayala, M. Effect of the expanded perlite dose on the fire performance of gypsum plasters. Constr. Build. Mater. 2022, 346, 128494. [Google Scholar] [CrossRef]
- Gencel, O.; Bayraktar, O.Y.; Kaplan, G.; Arslan, O.; Nodehi, M.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Constr. Build. Mater. 2022, 320, 126187. [Google Scholar] [CrossRef]
- Sharook, S.; Sathyan, D.; Madhavan, M.K. Thermo-mechanical and durability properties of expanded perlite aggregate foamed concrete. Proc. Inst. Civ. Eng.-Constr. Mater. 2020, 176, 141–149. [Google Scholar] [CrossRef]
- Akbulut, Z.F.; Yavuz, D.; Tawfik, T.A.; Smarzewski, P.; Guler, S. Examining the workability, mechanical, and thermal characteristics of eco-friendly, structural self-compacting lightweight concrete enhanced with fly ash and silica fume. Materials 2024, 17, 3504. [Google Scholar] [CrossRef]
- Mohammad, M.; Masad, E.; Seers, T.; Al-Ghamdi, S.G. Properties and Microstructure Distribution of High-Performance Thermal Insulation Concrete. Materials 2020, 13, 2091. [Google Scholar] [CrossRef] [PubMed]
- Leyton-Vergara, M.; Pérez-Fargallo, A.; Pulido-Arcas, J.; Cárdenas-Triviño, G.; Piggot-Navarrete, J. Influence of Granulometry on Thermal and Mechanical Properties of Cement Mortars Containing Expanded Perlite as a Lightweight Aggregate. Materials 2019, 12, 4013. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, A. Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries; Gulf Professional Publishing: London, UK, 2014. [Google Scholar]
- McElroy, D. Insulation Materials, Testing, and Applications; ASTM International: West Conshohocken, PA, USA, 1990; Volume 1030. [Google Scholar]
- Li, M.; Ju, Y. Experimental measurements and evaluation of the expanded water repellent perlite used for the cargo containment system of LNG carrier. Cryogenics 2017, 87, 49–57. [Google Scholar] [CrossRef]
- Gürsoy, M.; Karaman, M. Hydrophobic coating of expanded perlite particles by plasma polymerization. Chem. Eng. J. 2016, 284, 343–350. [Google Scholar] [CrossRef]
- Jia, G.; Li, Z.; Liu, P.; Jing, Q. Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. J. Non-Cryst. Solids 2018, 482, 192–202. [Google Scholar] [CrossRef]
- Gencel, O.; Nodehi, M.; Bayraktar, O.Y.; Kaplan, G.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Constr. Build. Mater. 2022, 326, 126861. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Hatungimana, D.; Ramyar, K. Effect of fly ash and silica fume on hardened properties of foam concrete. Constr. Build. Mater. 2019, 194, 1–11. [Google Scholar] [CrossRef]
- Oren, O.H.; Gholampour, A.; Gencel, O.; Ozbakkaloglu, T. Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate. Constr. Build. Mater. 2020, 238, 117774. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Yan, C.; Ding, Y.; Zhang, X.; Zhao, J. Investigating the Mechanical and Durability Characteristics of Fly Ash Foam Concrete. Materials 2022, 15, 6077. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, W. The effects of pozzolanic powder on foam concrete pore structure and frost resistance. Constr. Build. Mater. 2019, 208, 135–143. [Google Scholar] [CrossRef]
- Bing, C.; Zhen, W.; Ning, L. Experimental research on properties of high-strength foamed concrete. J. Mater. Civ. Eng. 2012, 24, 113–118. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, X.; Guo, S.; Zhang, L.; Ren, J. A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio. Constr. Build. Mater. 2022, 339, 127683. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, Q.; Liu, C.; Xing, Z. Preparation of Ca-Al-Fe deicing salt and modified with sodium methyl silicate for reducing the influence of concrete structure. Constr. Build. Mater. 2018, 172, 263–271. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, S. Effect on Silt Capillary Water Absorption upon Addition of Sodium Methyl Silicate (SMS) and Microscopic Mechanism Analysis. Coatings 2020, 10, 724. [Google Scholar] [CrossRef]
- GB/T 50081:2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Standardization Administration of China: Beijing, China, 2019.
- GB/T 10295:2008; Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties-Heat Flow Meter Apparatus. Standardization Administration of China: Beijing, China, 2008.
- GB/T 17146:2015; Building Materials-Determination of Water Vapour Transmission Properties. Standardization Administration of China: Beijing, China, 2015.
- GB/T 50082:2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. Standardization Administration of China: Beijing, China, 2009.
- Kim, J.J.; Foley, E.M.; Taha, M.M.R. Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cem. Concr. Compos. 2013, 36, 65–70. [Google Scholar] [CrossRef]
- Vishavkarma, A.; Kizhakkumodom Venkatanarayanan, H. Assessment of pore structure of foam concrete containing slag for improved durability performance in reinforced concrete applications. J. Build. Eng. 2024, 86, 108939. [Google Scholar] [CrossRef]
- Miao, X.; Yuan, A.; Wang, K.; Chen, Q.; Wang, X.; Kong, H.; Wang, J. Mechanical and autogenous shrinkage properties of coarse aggregate ultra-high performance concrete (CA-UHPC): The effect of mineral admixtures. J. Build. Eng. 2024, 98, 111154. [Google Scholar] [CrossRef]
- Said-Mansour, M.; Kadri, E.-H.; Kenai, S.; Ghrici, M.; Bennaceur, R. Influence of calcined kaolin on mortar properties. Constr. Build. Mater. 2011, 25, 2275–2282. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Chow, P.; Memon, S. Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Constr. Build. Mater. 2015, 95, 696–702. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of high fly ash content on the compressive strength of foamed concrete. Cem. Concr. Res. 2001, 31, 105–112. [Google Scholar] [CrossRef]
- Boukhelf, F.; Cherif, R.; Trabelsi, A.; Belarbi, R.; Bouiadjra, M.B. On the hygrothermal behavior of concrete containing glass powder and silica fume. J. Clean. Prod. 2021, 318, 128647. [Google Scholar] [CrossRef]
- Tang, P.; Wen, J.; Fu, Y.; Liu, X.; Chen, W. Improving the early-age properties of eco-binder with high volume waste gypsum: Hydration process and ettringite formation. J. Build. Eng. 2024, 86, 108988. [Google Scholar] [CrossRef]
- Kunghan, R.; Sunghan, R.; Shighan, R.B.; Liighan, R. Research on Several Physico-Mehcanical Properties of Lightweight Aggregate Concrete. Int. J. Cem. Compos. Lightweight Concr. 1980, 2, 185–191. [Google Scholar]
- Duan, P.; Yan, C.; Zhou, W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 2017, 78, 108–119. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Tayeh, B.A. Metakaolin in ultra-high-performance concrete: A critical review of its effectiveness as a green and sustainable admixture. Case Stud. Constr. Mater. 2024, 21, e03967. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, L.; Li, J.; Shi, D. Silica Fume and Nanosilica Effects on Mechanical and Shrinkage Properties of Foam Concrete for Structural Application. Adv. Mater. Sci. Eng. 2020, 2020, 3963089. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; Sikora, P.; Chung, S.-Y.; Stephan, D. The performance of ultra-lightweight foamed concrete incorporating nanosilica. Arch. Civ. Mech. Eng. 2021, 21, 79. [Google Scholar] [CrossRef]
- Abed, A.H.; Nahhab, A.H. Drying shrinkage and sorptivity of mortar incorporated with palm Ash, silica Fume, or metakaolin. Mater. Lett. 2025, 385, 138146. [Google Scholar] [CrossRef]
- Khwairakpam, S.; Gandhi, I.S.R.; Sahu, S.S. State-of-the-art review on shrinkage behaviour of foamed concrete. J. Struct. Eng. 2020, 46, 475–484. [Google Scholar]
- Weng, J.-R.; Liao, W.-C. Microstructure and shrinkage behavior of high-performance concrete containing supplementary cementitious materials. Constr. Build. Mater. 2021, 308, 125045. [Google Scholar] [CrossRef]
Supplementary Cementitious Materials | Chemical Compositions (w.-%) | Physical Properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | Al2O3 | SO3 | SiO2 | Fe2O3 | MgO | K2O | Na2O | Others | Specific Surface Area (m2/kg) | Loss on Ignition (%) | Average Particle Size (µm) | |
MP | 40.15 | 11.95 | 1.80 | 34.58 | 2.52 | 5.77 | 0.48 | 0.36 | 2.39 | 439 | <2.8 | 8–10 |
MK | 0.20 | 42.60 | 0.05 | 48.70 | 4.90 | 0.28 | 0.46 | 0.26 | 2.55 | >16,000 | <0.75 | 2–4 |
SF | 0.28 | 0.36 | 0.16 | 90.58 | 0.1 | 3.85 | 2.56 | 0.52 | 1.59 | >15,000 | 2.10 | 0.1–0.3 |
Sample | OPC | MP | MK | SF | EP | Foaming Agent (%) | Water-To-Binder Ratio |
---|---|---|---|---|---|---|---|
A0 | 300 | 0 | 0 | 0 | 150 | 2.0 | 0.50 |
A0-MP-3% | 291 | 9 | 0 | 0 | |||
A0-MP-6% | 282 | 18 | 0 | 0 | |||
A0-MP-9% | 273 | 27 | 0 | 0 | |||
A0-MK-3% | 291 | 0 | 9 | 0 | |||
A0-MK-6% | 282 | 0 | 18 | 0 | |||
A0-MK-9% | 273 | 0 | 27 | 0 | |||
A0-SF-3% | 291 | 0 | 0 | 9 | |||
A0-SF-6% | 282 | 0 | 0 | 18 | |||
A0-SF-9% | 273 | 0 | 0 | 27 |
Sample | Bulk Density (Unit: kg/m3) |
---|---|
A0 | 302 ± 10 |
A0-SF-3% | 331 ± 10 |
A0-SF-6% | 368 ± 10 |
A0-SF-9% | 384 ± 10 |
A0-MP-3% | 306 ± 10 |
A0-MP-6% | 328 ± 10 |
A0-MP-9% | 346 ± 10 |
A0-MK-3% | 291 ± 10 |
A0-MK-6% | 265 ± 10 |
A0-MK-9% | 252 ± 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, K.; Wei, J.; Feng, C. Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials. Materials 2025, 18, 2671. https://doi.org/10.3390/ma18122671
Fan K, Wei J, Feng C. Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials. Materials. 2025; 18(12):2671. https://doi.org/10.3390/ma18122671
Chicago/Turabian StyleFan, Kaixing, Jie Wei, and Chengdong Feng. 2025. "Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials" Materials 18, no. 12: 2671. https://doi.org/10.3390/ma18122671
APA StyleFan, K., Wei, J., & Feng, C. (2025). Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials. Materials, 18(12), 2671. https://doi.org/10.3390/ma18122671