Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = EN AW-6082 aluminium alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4471 KB  
Article
Analysis of the Effect of Machining Parameters on the Cutting Tool Deflection in Curved Surface Machining
by Michał Leleń, Magdalena Zawada-Michałowska, Paweł Pieśko, Katarzyna Biruk-Urban, Jerzy Józwik, Jarosław Korpysa, Kamil Anasiewicz, Witold Habrat and Joanna Lisowicz
Appl. Sci. 2025, 15(20), 11013; https://doi.org/10.3390/app152011013 - 14 Oct 2025
Viewed by 729
Abstract
The aim of this study is to investigate the impact of machining parameters on the deflection of a cutting tool (i.e., end mill) in the milling of a surface with a curvilinear profile. Test samples were made of aluminium alloy EN AW-7075 T651. [...] Read more.
The aim of this study is to investigate the impact of machining parameters on the deflection of a cutting tool (i.e., end mill) in the milling of a surface with a curvilinear profile. Test samples were made of aluminium alloy EN AW-7075 T651. Experiments were conducted using the Gocator 2530 laser line profile sensor for real-time measurement of dynamic tool displacement with an inspection speed up to 10 kHz at resolution ranging from 0.028 to 0.054 mm. Response surface methodology was used. Five main technological factors were analysed: cutting speed, feed per tooth (cutting parameters), amplitude, term (curvilinear profile parameters), and the number of flutes (end mill parameter). Obtained data were filtered and visualised as 3D plots. The results showed that cutting speed and amplitude had the greatest impact on tool deflection, while feed per tooth also played a significant role in process stability. In particular, the use of tools with a higher number of flutes led to a considerable reduction in tool deflection, confirming their positive effect on the stability of the machining process. These findings may serve as a basis for the optimisation of machining parameters by taking into account the dynamic deformation of cutting tools. Full article
(This article belongs to the Special Issue Advances in Precision Machining Technology)
Show Figures

Figure 1

20 pages, 4842 KB  
Article
Design Methodology for Tensile Load Capacity of Rivet Nut Connections in Aluminium Alloy Profiles
by Arturs Ziverts, Dmitrijs Serdjuks, Janis Sliseris, Elza Briuka, Andrejs Podkoritovs and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(10), 533; https://doi.org/10.3390/jcs9100533 - 2 Oct 2025
Viewed by 1010
Abstract
This study presents a novel design method for determining the tensile load-bearing capacity of a rivet nut connection with an aluminium alloy profile. The method, developed based on the requirements of standards LVS EN 1993-1-8:2025, LVS EN 1999-1-1:2023, and LVS EN 1999-1-4:2023, incorporates [...] Read more.
This study presents a novel design method for determining the tensile load-bearing capacity of a rivet nut connection with an aluminium alloy profile. The method, developed based on the requirements of standards LVS EN 1993-1-8:2025, LVS EN 1999-1-1:2023, and LVS EN 1999-1-4:2023, incorporates checks on the aluminium profile web’s shear strength, rivet and rivet nut capacities, thread strength, and profile web buckling. Twenty-five laboratory specimens across five groups—with web thicknesses ranging from 2 mm to 5 mm and utilising rivet nuts made of AISI 303 1.4305 stainless steel and AW 5052 H32 aluminium alloy—were tested. The aluminium profiles were grade AW 6060 T66. Results show that using stainless steel rivet nuts increased the elastic-stage load-carrying capacity (Fp0.2) by 18.33% and the ultimate load capacity (Fm) by 15.89% compared to aluminium alloy nuts. The proposed design algorithm, validated by experimental tests and finite element method (FEM) analyses using Dlubal RFEM 6 (v. 4), predicts tensile resistance within a 10% accuracy. The study identifies pull-out of the aluminium profile wall as a critical failure mechanism, emphasising its inclusion to avoid overestimating connection capacity. This method provides a practical and reliable design tool for tensile load-bearing rivet nut connections in aluminium structural systems. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

20 pages, 18687 KB  
Article
Influence of Stirring Pin Geometry on Weld Appearance and Microstructure in Wire-Based Friction-Stir Additive Manufacturing of EN AW-6063 Aluminium
by Stefan Donaubauer, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(9), 306; https://doi.org/10.3390/jmmp9090306 - 5 Sep 2025
Cited by 1 | Viewed by 1602
Abstract
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are [...] Read more.
Additive manufacturing of metal components is predominantly based on fusion-welding processes involving melting and solidification. However, processing high-strength aluminium alloys presents challenges, including reduced mechanical properties and increased susceptibility to hot cracking. To address these issues, alternative solid-state processing methods for aluminium are being explored worldwide. One such method is wire-based friction-stir additive manufacturing, which builds on the principles of friction-stir welding. This study focused on assessing a range of pin tool designs to promote improved mixing between the filler material and substrate. The best results were achieved using a two-stirring-probe configuration, which was then employed to fabricate a multilayer wall made of EN AW-6063 aluminium alloy. The resulting structure showed significant grain refinement, with the deposited layers having an average grain size approximately four times smaller than that of the substrate, indicating dynamic recrystallisation. Tensile testing of the intermediate layer revealed a strength of 147 MPa and 10% elongation, corresponding to 77% of the filler wire strength. These findings highlight the potential of the W-FSAM process for producing near-net-shape, high-quality lightweight metal components with refined microstructures and reliable mechanical performance. Full article
Show Figures

Figure 1

20 pages, 6679 KB  
Article
The Influence of Heat Treatment on the Mechanical Properties of AlMn1Cu Aluminium Alloy with One-Sided AlSi7.5 Cladding Used in Heat Exchangers
by Martyna Zemlik, Beata Białobrzeska and Daniel Tokłowicz
Materials 2025, 18(16), 3915; https://doi.org/10.3390/ma18163915 - 21 Aug 2025
Cited by 1 | Viewed by 874
Abstract
The aim of this study was to determine the influence of heat treatment parameters on the microstructure and mechanical properties of the AlMn1Cu (EN AW-3003) aluminium alloy with a one-sided cladding layer of AlSi7.5 alloy (EN AW-4343). The investigation was conducted within an [...] Read more.
The aim of this study was to determine the influence of heat treatment parameters on the microstructure and mechanical properties of the AlMn1Cu (EN AW-3003) aluminium alloy with a one-sided cladding layer of AlSi7.5 alloy (EN AW-4343). The investigation was conducted within an annealing temperature range of 200 °C to 500 °C, analysing changes in hardness, mechanical strength, formability, and planar anisotropy. The results clearly indicate that within the temperature range of 300–340 °C, an intensive process of static recrystallisation occurs, leading to the restoration of a fine-grained and homogeneous microstructure. This is accompanied by a sharp reduction in hardness and yield strength, along with a significant increase in ductility and deep drawing capability. A notable reduction in the anisotropy of plastic properties was also observed, confirming effective homogenisation of the material’s microstructure. The findings unambiguously demonstrate that heat treatment within the range of 300–500 °C enables the formation of an isotropic microstructure with low hardness and high formability, rendering the material particularly suitable for shaping thin-walled components, including heat exchangers. Full article
Show Figures

Figure 1

19 pages, 9214 KB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 - 6 Aug 2025
Cited by 1 | Viewed by 2171
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

19 pages, 12427 KB  
Article
Influence of Heat Treatment Parameters on Microhardness of Aluminium Alloy EN AW 7075 Foams and Bulk Material
by Karla Kunac, Nikša Čatipović, Karla Antunović and Damir Jurić
Materials 2025, 18(15), 3562; https://doi.org/10.3390/ma18153562 - 29 Jul 2025
Viewed by 606
Abstract
Aluminium alloy foams have been widely used due to their excellent strength-to-weight ratio, low density, and outstanding properties such as high energy absorption and effective noise and heat insulation. In this study, aluminium machining chips have been used for foam production as a [...] Read more.
Aluminium alloy foams have been widely used due to their excellent strength-to-weight ratio, low density, and outstanding properties such as high energy absorption and effective noise and heat insulation. In this study, aluminium machining chips have been used for foam production as a potential recycling method. The process has involved solution heat treatment followed by artificial ageing. Researchers have been analysing the microhardness of both the foam and the bulk material, as well as examining their microstructures. The maximum microhardness value of the bulk material has been found to be 158 ± 2 HV1 at an ageing temperature of 175 ± 1 °C for 2 ± 0.02 h. For the foams, the highest microhardness of 150 ± 2 HV1 has been achieved after ageing at 150 ± 1 °C for 9 ± 0.02 h. Experimental planning has been carried out using Design Expert software. The optimisation process has identified 150 ± 1 °C for 2 ± 0.02 h as the optimum condition for artificial ageing. Full article
Show Figures

Figure 1

18 pages, 4701 KB  
Article
Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys
by Joanna Korzekwa, Adam Jarząbek, Marek Bara, Mateusz Niedźwiedź, Krzysztof Cwynar and Dariusz Oleszak
Materials 2025, 18(15), 3471; https://doi.org/10.3390/ma18153471 - 24 Jul 2025
Cited by 2 | Viewed by 778
Abstract
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on [...] Read more.
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on EN AW 5251 aluminium alloys, this paper presents a modification of the coating with tungsten disulfide (IF-WS2) nanopowder and its effect on coating resistance. The wear properties of Al2O3/IF-WS2 coatings in contact with a cast iron pin were investigated. The results include the analysis of the friction coefficient in the reciprocating motion without oil lubrication at two loads, the analysis of the wear intensity of the cast iron pin, the characterisation of wear scars, and the analysis of SGP parameters. Two-level factorial analysis showed that load and nanomodification significantly affected the load-bearing parameter Rk. Incorporation of the modifier, especially under higher loads, reduced the Rk value, thus improving the tribological durability of the contact pair. Both load and nanomodification had a notable impact on the coefficient of friction. The use of IF-WS2-modified coatings reduced the coefficient, and higher loads further enhanced this effect, by approximately 9% at a load of 0.3 MPa and 15% at a load of 0.6 MPa, indicating improved lubricating conditions under greater contact stress. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 5378 KB  
Article
Improving the Adhesive Properties by Sandblasting the Surface with Copper Slag and Glass Beads
by Jacek Ogrodniczek, Anna Rudawska, Agnieszka Skoczylas and Sławomir Kocira
Materials 2025, 18(8), 1746; https://doi.org/10.3390/ma18081746 - 10 Apr 2025
Cited by 2 | Viewed by 852
Abstract
The aim of the research was to examine the effect of sandblasting the adherent surfaces on the shear strength of aluminium alloy–glass adhesive joints. An EN AW-1050A aluminium alloy and non-hardened soda-lime glass were used as samples. The sandblasting materials in the study [...] Read more.
The aim of the research was to examine the effect of sandblasting the adherent surfaces on the shear strength of aluminium alloy–glass adhesive joints. An EN AW-1050A aluminium alloy and non-hardened soda-lime glass were used as samples. The sandblasting materials in the study were copper slag and glass beads. Due to the brittleness of the glass, an adhesive joint design was created to allow strength testing. The adhesive joints took the form of lap joints, where a glass sample was placed between two aluminium samples. The length of the glass sample corresponded to the length of the adhesive joint overlap. The bonding process of the glass samples was carried out in two stages in order to maintain the dimensions of the joint. The adhesive used in the test was a two-component epoxy adhesive prepared on the basis of bisphenol A and a polyamide curing agent mixed at a ratio of 80 g of curing agent per 100 g of epoxy resin. For each sandblasting agent, adhesive joints consisting of three variations of surface treatments were made: sandblasted aluminium alloy-sandblasted glass, sandblasted aluminium alloy-untreated glass, untreated aluminium alloy-sandblasted glass. The distance between the nozzle and treated surface was 10 ± 1 cm, and the pressure of sandblasting was 0.6 MPa. One sample of each material differing in surface preparation was selected for a topography analysis. The shear strength tests performed showed that sandblasting increased the strength of the adhesive joints of the glass and aluminium alloy. The highest strength was obtained for joints where both materials were prepared using copper slag sandblasting. This was confirmed through statistical analysis. Only for this type of joint, statistical significance relative to the other adhesive bonding variants was obtained. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Graphical abstract

21 pages, 8383 KB  
Article
Influence of Heat Treatment on Properties and Microstructure of EN AW-6082 Aluminium Alloy Drawpieces After Single-Point Incremental Sheet Forming
by Łukasz Kuczek, Krzysztof Żaba, Tomasz Trzepieciński, Mateusz Wąsikowski, Maciej Balcerzak and Ryszard Sitek
Appl. Sci. 2025, 15(2), 783; https://doi.org/10.3390/app15020783 - 14 Jan 2025
Cited by 5 | Viewed by 2173
Abstract
An EN AW-6082 aluminium alloy is one of the 6000 series aluminium alloys with the highest strength properties. Due to its favourable strength-to-density ratio, it is used, among others, in the automotive and aviation applications. It is also characterised by good formability, especially [...] Read more.
An EN AW-6082 aluminium alloy is one of the 6000 series aluminium alloys with the highest strength properties. Due to its favourable strength-to-density ratio, it is used, among others, in the automotive and aviation applications. It is also characterised by good formability, especially in the annealed condition. This article presents the results of investigations on the possibility of forming a 2 mm thick EN AW-6082 alloy sheet using the incremental sheet-forming process depending on the material condition (O, W, T4, T6). The microstructure of the material after heat treatment and the mechanical properties of the workpiece material in as-received state, as well as after forming, were examined. Additionally, for selected cases, additional heat treatment of the drawpieces was performed to improve their mechanical strength. The values of the limit-forming angle were determined for the materials tested. The values of this angle varied from 69° for the annealed sheet to 61° for the material in the T6 condition. The highest yield stress (YS) and ultimate tensile strength (UTS) were found for sheets (YS = 305 MPs and UTS = 324 MPa) and the artificially aged drawpieces (YS = 333 MPa and UTS = 390 MPa). Additional ageing after incremental sheet forming resulted in an increase in strength properties compared to drawpieces without additional heat treatment only in the case of drawpieces made of sheet metal after the solutionising and in T4 condition. Full article
Show Figures

Figure 1

18 pages, 15943 KB  
Article
Evaluation of Structural Transition Joints Cu-Al-AlMg3 Used in Galvanizer Hangers
by Milan Marônek, Jozef Bárta, Katarína Bártová, Miroslav Sahul, Martin Sahul, Matej Pašák, Petr Nesvadba and Petr Bezdička
Crystals 2024, 14(11), 974; https://doi.org/10.3390/cryst14110974 - 12 Nov 2024
Viewed by 1166
Abstract
The paper deals with the evaluation of the quality of Cu-Al-AlMg3 structural transition joints (STJ) made by explosion welding proposed for the renovation of galvanizer hangers. The three-layer joint consisted of electrolytic copper with a thickness of 25 mm, 2 mm of aluminium [...] Read more.
The paper deals with the evaluation of the quality of Cu-Al-AlMg3 structural transition joints (STJ) made by explosion welding proposed for the renovation of galvanizer hangers. The three-layer joint consisted of electrolytic copper with a thickness of 25 mm, 2 mm of aluminium represented by the AW1050 alloy, and 25 mm of the EN AW 575 aluminium alloy. Light microscopy analysis confirmed the wavy pattern of both interfaces of the welded joint and significant plastic deformation in close proximity to the waves. Microhardness measurement revealed a partial strain hardening of the AW5754 copper-aluminium alloy near the interface and a significant increase in microhardness in the vortex zone of waves, reaching a value of up to 863 HV 0.025. Microcracks were also observed in these places. The intermetallic phase Al2Cu was identified in the vortex zones by XRD analysis. As a continuous layer of intermetallic phase was not observed in the interface of the welded joint, it is possible to consider the used welding parameters as appropriate. A semi-quantitative EDX analysis revealed a diversity of chemical composition in the vortex zones, which does not correspond to the phase composition based on the equilibrium binary Al-Cu diagram due to non-equilibrium conditions in the formation of the welded joint interface. The bond strength of three-layer welded joint evaluated by the strength test ranged from 151 to 171 MPa, which represented approximately a two-fold increase in comparison to the ultimate tensile strength of alloy AW1050, while the failure occurred in all samples at the AW1050-AW5754 alloy interface. Full article
(This article belongs to the Special Issue Development of Light Alloys and Their Applications)
Show Figures

Figure 1

14 pages, 2747 KB  
Article
The Influence of Weld Interface Characteristics on the Bond Strength of Collision Welded Aluminium–Steel Joints
by Stefan Oliver Kraus, Johannes Bruder and Peter Groche
Materials 2024, 17(15), 3863; https://doi.org/10.3390/ma17153863 - 4 Aug 2024
Cited by 2 | Viewed by 1852
Abstract
Collision welding is a promising approach for joining conventional materials in identical or dissimilar combinations without heat-related strength loss, thereby opening up new lightweight potential. Widespread application of this technology is still limited by an insufficient state of knowledge with respect to the [...] Read more.
Collision welding is a promising approach for joining conventional materials in identical or dissimilar combinations without heat-related strength loss, thereby opening up new lightweight potential. Widespread application of this technology is still limited by an insufficient state of knowledge with respect to the underlying joining mechanisms. This paper applies collision welding to a material combination of DC04 steel and EN AW 6016 aluminium alloy. Firstly, the welding process window for the combination is determined by varying the collision speed and the collision angle, the two main influencing variables in collision welding, using a special model test rig. The process window area with the highest shear tensile strength of the welded joint is then determined using shear tensile tests and SEM images of the weld zone. The SEM investigations reveal four distinct metallographic structures in the weld zones, the area fractions of which are determined and correlated with collision angle and shear tensile strength. Full article
Show Figures

Figure 1

30 pages, 22755 KB  
Article
Material Parameter Identification for a Stress-State-Dependent Ductile Damage and Failure Model Applied to Clinch Joining
by Johannes Friedlein, Max Böhnke, Malte Schlichter, Mathias Bobbert, Gerson Meschut, Julia Mergheim and Paul Steinmann
J. Manuf. Mater. Process. 2024, 8(4), 157; https://doi.org/10.3390/jmmp8040157 - 24 Jul 2024
Cited by 2 | Viewed by 2128
Abstract
Similar to bulk metal forming, clinch joining is characterised by large plastic deformations and a variety of different 3D stress states, including severe compression. However, inherent to plastic forming is the nucleation and growth of defects, whose detrimental effects on the material behaviour [...] Read more.
Similar to bulk metal forming, clinch joining is characterised by large plastic deformations and a variety of different 3D stress states, including severe compression. However, inherent to plastic forming is the nucleation and growth of defects, whose detrimental effects on the material behaviour can be described by continuum damage models and eventually lead to material failure. As the damage evolution strongly depends on the stress state, a stress-state-dependent model is utilised to correctly track the accumulation. To formulate and parameterise this model, besides classical experiments, so-called modified punch tests are also integrated herein to enhance the calibration of the failure model by capturing a larger range of stress states and metal-forming-specific loading conditions. Moreover, when highly ductile materials are considered, such as the dual-phase steel HCT590X and the aluminium alloy EN AW-6014 T4 investigated here, strong necking and localisation might occur prior to fracture. This can alter the stress state and affect the actual strain at failure. This influence is captured by coupling plasticity and damage to incorporate the damage-induced softening effect. Its relative importance is shown by conducting inverse parameter identifications to determine damage and failure parameters for both mentioned ductile metals based on up to 12 different experiments. Full article
Show Figures

Figure 1

24 pages, 36019 KB  
Article
Tribological Performance of Anti-Wear Coatings on Tools for Forming Aluminium Alloy Sheets Used for Producing Pull-Off Caps
by Kamil Czapla, Krzysztof Żaba, Marcin Kot, Ilona Nejman, Marcin Madej and Tomasz Trzepieciński
Materials 2023, 16(19), 6465; https://doi.org/10.3390/ma16196465 - 28 Sep 2023
Cited by 5 | Viewed by 1771
Abstract
Ensuring adequate reliability of the production process of packaging closures has made it necessary to study the effect of annealing and varnishing variants on the strength and structural properties of the stock material. As a test material, EN AW-5052-H28 aluminium alloy sheets with [...] Read more.
Ensuring adequate reliability of the production process of packaging closures has made it necessary to study the effect of annealing and varnishing variants on the strength and structural properties of the stock material. As a test material, EN AW-5052-H28 aluminium alloy sheets with a thickness of 0.21 mm were used. The surface treatment of the test material involved varnishing the sheet metal surface using various varnishes and soaking the sheet metal. The coefficient of friction and the abrasion resistance of the coatings were determined using the T-21 ball-and-disc tribotester. The tested sheets were subjected to tribological analysis by the T-05 roller-block tribotester using countersamples made of Caldie and Sverker 21 tool steels. The results of the tests showed differences in mechanical and structural properties depending on the method of sample preparation. Based on the test results, significant differences in the adhesion of anti-wear coatings were found. The results revealed that the most favourable friction conditions are provided by the CrN coating. The (AlTi)N interlayer in the (AlTi)N/(AlCr)N coating adheres to the substrate over the entire tested area and no detachment from its surface was observed, which proves good bonding at the substrate/coating interface. The tested AlTiN/TiAlSiXN coating is characterised by a more homogeneous, compact microstructure compared to the (AlTi)N/(AlCr)N coating. Full article
Show Figures

Figure 1

13 pages, 7400 KB  
Article
Thermodynamic and Microstructural Analysis of Lead-Free Machining Aluminium Alloys with Indium and Bismuth Additions
by Simon Rečnik, Maja Vončina, Aleš Nagode and Jožef Medved
Materials 2023, 16(18), 6241; https://doi.org/10.3390/ma16186241 - 16 Sep 2023
Cited by 2 | Viewed by 2522
Abstract
The present study comprises an investigation involving thermodynamic analysis, microstructural characterisation, and a comparative examination of the solidification sequence in two different aluminium alloys: EN AW 6026 and EN AW 1370. These alloys were modified through the addition of pure indium and a [...] Read more.
The present study comprises an investigation involving thermodynamic analysis, microstructural characterisation, and a comparative examination of the solidification sequence in two different aluminium alloys: EN AW 6026 and EN AW 1370. These alloys were modified through the addition of pure indium and a master alloy consisting of indium and bismuth. The aim of this experiment was to evaluate the potential suitability of indium, either alone or in combination with bismuth, as a substitute for toxic lead in free-machining aluminium alloys. Thermodynamic analysis was carried out using Thermo-Calc TCAL-6 software, supplemented by differential scanning calorimetry (DSC) experiments. The microstructure of these modified alloys was characterised using SEM–EDS analysis. The results provide valuable insights into the formation of different phases and eutectics within the alloys studied. The results represent an important contribution to the development of innovative, lead-free aluminium alloys suitable for machining processes, especially for use in automatic CNC cutting machines. One of the most important findings of this research is the promising suitability of indium as a viable alternative to lead. This potential stems from indium’s ability to avoid interactions with other alloying elements and its tendency to solidify as homogeneously distributed particles with a low melting point. In contrast, the addition of bismuth does not improve the machinability of magnesium-containing aluminium alloys. This is primarily due to their interaction, which leads to the formation of the Mg3Bi2 phase, which solidifies as a eutectic with a high melting point. Consequently, the presence of bismuth appears to have a detrimental effect on the machining properties of the alloy when magnesium is present in the composition. Full article
Show Figures

Figure 1

16 pages, 3605 KB  
Article
Influence of Novel Beam Shapes on Laser-Based Processing of High-Strength Aluminium Alloys on the Basis of EN AW-5083 Single Weld Tracks
by Florian Nahr, Dominic Bartels, Richard Rothfelder and Michael Schmidt
J. Manuf. Mater. Process. 2023, 7(3), 93; https://doi.org/10.3390/jmmp7030093 - 9 May 2023
Cited by 30 | Viewed by 4868
Abstract
The commonly used Gaussian intensity distribution during the laser-based processing of metals can negatively affect melt pool stability, which might lead to defects such as porosity, hot cracking, or poor surface quality. Hot cracking is a major factor in limiting production rates of [...] Read more.
The commonly used Gaussian intensity distribution during the laser-based processing of metals can negatively affect melt pool stability, which might lead to defects such as porosity, hot cracking, or poor surface quality. Hot cracking is a major factor in limiting production rates of high-strength aluminium alloys in laser-based processes such as welding or the powder bed fusion of metals (PBF-LB/M). Going away from a Gaussian intensity distribution to ring-shaped profiles allows for a more even heat distribution during processing, resulting in more stable melt pools and reduced defect formations. Therefore, the aim of this study is to investigate the influence of different laser beam profiles on the processing of high-strength aluminium alloys by using a multicore fiber laser, allowing for in-house beam shaping. Single weld tracks on the aluminium alloy EN AW-5083 are produced with varying laser powers and weld speeds, as well as different beam profiles, ranging from Gaussian intensity distribution to point/ring profiles. The molten cross sections are analyzed regarding their geometry and defects, and the surface roughness of the weld tracks is measured. By using point/ring beam profiles, the processing window can be significantly increased. Hot cracking is considerably reduced for weld speeds of up to 1000 mm/s compared to the Gaussian beam profile. Furthermore, the melt pool width and depth are more stable, with varying parameters for the point/ring profiles, while the Gaussian beam tends to keyhole formation at higher beam powers. Finally, a strong decrease in surface roughness for the point/ring profiles, accompanied by a significantly reduced humping effect, starting even at lower beam powers of 200 W, can be observed. Therefore, these results show the potential of beam shaping for further applications in laser-based processing of high-strength aluminium alloys. Full article
(This article belongs to the Special Issue Progress in Powder-Based Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop