Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = EIT resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4003 KB  
Review
Rydberg Atom-Based Sensors: Principles, Recent Advances, and Applications
by Dinelka Somaweera, Amer Abdulghani, Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Muthugalage I. U. Weerasinghe, Khalil As’ham, Ibrahim A. M. Al Ani, Morphy C. Dumlao, Andrey E. Miroshnichenko and Haroldo T. Hattori
Photonics 2025, 12(12), 1228; https://doi.org/10.3390/photonics12121228 - 12 Dec 2025
Viewed by 488
Abstract
Rydberg atoms are neutral atoms excited to high principal quantum number states, which endows them with exaggerated properties such as large electric dipole moments, long lifetimes, and extreme sensitivity to external electromagnetic fields. These characteristics form the foundation of Rydberg atom-based sensors, an [...] Read more.
Rydberg atoms are neutral atoms excited to high principal quantum number states, which endows them with exaggerated properties such as large electric dipole moments, long lifetimes, and extreme sensitivity to external electromagnetic fields. These characteristics form the foundation of Rydberg atom-based sensors, an emerging class of quantum devices capable of optically detecting electric fields across frequencies from DC to the terahertz regime. Rydberg-based electrometry operates through both Autler–Townes (AT) splitting of resonant Rydberg transitions and Stark-shift measurements for high-frequency or far-detuned fields, enabling broadband field sensing from DC to the THz regime. Using ladder-type electromagnetically induced transparency (EIT) and AT splitting, these sensors enable non-invasive, SI-traceable measurements of field amplitude, frequency, phase, and polarization. Recent developments have demonstrated broadband electric field probes, voltage calibration standards, and compact RF receivers based on thermal vapor cells and integrated photonic architectures. Furthermore, innovations in multi-photon EIT, superheterodyne readout, and multi wave mixing have expanded the dynamic range and bandwidth of Rydberg-based electrometry. Despite challenges related to environmental perturbations, linewidth broadening, and laser stabilization, ongoing advances in atomic control, hybrid photonic integration, and EIT-based readout promise scalable, chip-compatible sensors. This review summarizes the physical principles, experimental progress, and emerging applications of Rydberg atom-based sensing, emphasizing their potential for next generation quantum metrology, wireless communication, and precision field mapping. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 3079 KB  
Article
A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide
by Lei Zhu, Shujie Wang, Yun Wang, Liang Dong, Hailong Li, Yiya Wang and Xumin Ding
Photonics 2025, 12(5), 463; https://doi.org/10.3390/photonics12050463 - 9 May 2025
Cited by 1 | Viewed by 1410
Abstract
A dual-band tunable terahertz electromagnetically induced transparency (EIT) metamaterial is introduced. The EIT metamaterial consists of two rectangular split rings, two metal strips, and a patterned vanadium dioxide (VO2) located at the back. The rectangular split rings serve as the bright [...] Read more.
A dual-band tunable terahertz electromagnetically induced transparency (EIT) metamaterial is introduced. The EIT metamaterial consists of two rectangular split rings, two metal strips, and a patterned vanadium dioxide (VO2) located at the back. The rectangular split rings serve as the bright resonator to generate two resonance valleys at distinct frequencies. The metal strips act as the dark resonator and are indirectly activated via the coupling influence of the bright resonator. The EIT metamaterial’s response mechanism is analyzed via the field effect and the two-particle model, with theoretical fitting results showing strong agreement with the simulation results. Moreover, VO2’s conductivity is altered to dynamically control the EIT effect in both frequency bands. Two transparency windows, with modulation depths of 70% and 75%, are observed as the conductivity of VO2 decreases. Simultaneously, the simulation results reveal a favorable slow light effect, with group delays reaching 51 ps and 74 ps at the transparency windows. The proposed metamaterial holds considerable promise for future modulator, filter, and slow light device applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

9 pages, 4292 KB  
Article
High-Quality-Factor Electromagnetically Induced Transparency in All-Dielectric Metasurfaces Supporting Quasi-Bound States in the Continuum
by Lei Zhang, Zeyang Chu and Suxia Xie
Photonics 2025, 12(3), 291; https://doi.org/10.3390/photonics12030291 - 20 Mar 2025
Cited by 2 | Viewed by 1042
Abstract
Electromagnetically induced transparency based on bound states in the continuum (EIT-BIC) has emerged as a significant research focus in photonics due to its exceptionally high quality factor (Q-factor). This study investigates a periodic dielectric metasurface composed of silicon bar–square ring resonators, [...] Read more.
Electromagnetically induced transparency based on bound states in the continuum (EIT-BIC) has emerged as a significant research focus in photonics due to its exceptionally high quality factor (Q-factor). This study investigates a periodic dielectric metasurface composed of silicon bar–square ring resonators, with a comparative analysis of both monolayer and bilayer configurations. Through systematic examination of transmission spectra, electric field distributions, and Q-factors, we have identified the existence of EIT-BIC and quasi-BIC phenomena in these structures. The experimental results demonstrate distinct characteristics between monolayer and bilayer systems. In the monolayer configuration, a single BIC is observed in the low-frequency region, with its quasi-BIC state generating an EIT window. In contrast, the bilayer structure exhibits dual BICs and dual EIT phenomena in the same spectral range, demonstrating enhanced spectral modulation capabilities. Notably, in the high-frequency region, both configurations maintain a single BIC, with the number remaining independent of structural layer count. The number and spectral positions of BICs can be effectively modulated through variations in incident angle and structural symmetry. In particular, the bilayer configuration demonstrates superior modulation characteristics under oblique incidence conditions, where the quasi-BIC linewidth broadens with increasing incident angle, forming a broader high-Q transparency window. This comparative study between monolayer and bilayer systems not only elucidates the influence of structural layers on BIC characteristics but also provides new insights for flexible spectral control. These findings hold significant implications for artificial linear modulation and play a crucial role in the design of future ultra-high-sensitivity sensors, particularly in optimizing performance through structural layer engineering. Full article
(This article belongs to the Special Issue Terahertz Advancements in Fibers, Waveguides and Devices)
Show Figures

Figure 1

14 pages, 8579 KB  
Article
Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities
by Yong Zhao, Yuxuan Chen and Lijun Hao
Materials 2024, 17(24), 6213; https://doi.org/10.3390/ma17246213 - 19 Dec 2024
Viewed by 1575
Abstract
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ [...] Read more.
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are π and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method. The simulation results show that the proposed structure can achieve several kinds of spectra, including Fano, EIT and asymmetric EIT line shapes, which is dependent on the width of the bus waveguide. Compared to the previously proposed Fano resonator with 1D PCNCs, the proposed structures have the advantages of high transmission at the resonant peak, low insertion loss at non-resonant wavelengths, a wide free spectral range (FSR) and a high roll-off rate. Therefore, we believe the proposed structure can find broad applications in optical switches, modulators and sensors. Full article
Show Figures

Figure 1

8 pages, 1529 KB  
Article
Double Resonance of Electromagnetically Induced Transparency of Rydberg Atom in Counter-Propagating Configuration
by Chao Li, Guo Ma, Mingwei Lei and Meng Shi
Electronics 2024, 13(22), 4391; https://doi.org/10.3390/electronics13224391 - 8 Nov 2024
Cited by 2 | Viewed by 1412
Abstract
The double resonance phenomenon of EIT is studied through the ladder three-level Rydberg system. A probe laser with the wavelength λp=852.35 nm is used to coupling the ground state 6S1/2 to the middle state 6P3/2, and a [...] Read more.
The double resonance phenomenon of EIT is studied through the ladder three-level Rydberg system. A probe laser with the wavelength λp=852.35 nm is used to coupling the ground state 6S1/2 to the middle state 6P3/2, and a coupling laser with the wavelength λc=509.08 nm is implemented to couple the state 6P3/2 to the Rydberg state 62D5/2. A special optical scheme is designed, in which the co-propagating and counter-propagating configurations are both used. As a result, the double resonance of electromagnetically induced transparency (EIT) with the Rydberg atom is observed. By comparing the distance between the double peaks, it is found that the double resonance phenomenon comes from the Doppler effect, and the distance between the two resonance peaks in the absorption spectrum is related to the detuning of the resonant lasers. Full article
Show Figures

Figure 1

15 pages, 5530 KB  
Article
Regulation and Liquid Sensing of Electromagnetically Induced Transparency-like Phenomena Implemented in a SNAP Microresonator
by Chenxiang Liu, Minggang Chai, Chenglong Zheng, Chengfeng Xie, Chuanming Sun, Jiulin Shi, Xingdao He and Mengyu Wang
Sensors 2024, 24(21), 7069; https://doi.org/10.3390/s24217069 - 2 Nov 2024
Viewed by 1325
Abstract
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with [...] Read more.
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with one or more transparent windows are achieved due to dense mode families and tunable resonant frequencies. The experimental results can be well-fitted by the coupled mode theory. An automatically adjustable EIT-like effect is discovered by immersing the sensing region of the SNAP microresonator into an aqueous environment. The sharp lineshape and high slope of the transparent window allow us to achieve a liquid refractive index sensitivity of 2058.8 pm/RIU. Furthermore, we investigated a displacement sensing phenomenon by monitoring changes in the slope of the transparent window. We believe that the above results pave the way for multi-channel all-optical switching devices, multi-channel optical communications, and biochemical sensing processing. Full article
(This article belongs to the Special Issue Research Progress in Optical Microcavity-Based Sensing)
Show Figures

Figure 1

12 pages, 2681 KB  
Article
Analogue of High-Q Transparency Band and Sensitivity in All-Dielectric Metasurfaces Supporting Bound States in the Continuum
by Ling Shuai, Suxia Xie, Haoxuan Nan and Xin Guan
Photonics 2024, 11(8), 775; https://doi.org/10.3390/photonics11080775 - 20 Aug 2024
Viewed by 1684
Abstract
Bound states in the continuum (BICs), which are characterized by their high-quality factor, have become a focal point in modern optical research. This study investigates BICs within a periodic array of dielectric resonators, specifically composed of a silicon rectangular bar coupled with four [...] Read more.
Bound states in the continuum (BICs), which are characterized by their high-quality factor, have become a focal point in modern optical research. This study investigates BICs within a periodic array of dielectric resonators, specifically composed of a silicon rectangular bar coupled with four silicon rectangular blocks. Through the analysis of mode coupling, we demonstrate that the interaction between the blocks significantly modulates the eigenmodes of the bar, causing a redshift in all modes and enabling the formation of electromagnetically induced transparency based on BICs (EIT-BIC). Unlike typical EIT mechanisms, this EIT-BIC arises from the coupling of “bright” and “dark” modes both from the rectangular bar, offering novel insights for nanophotonic and photonic device design. Further, our systematic exploration of BIC formation mechanisms and their sensing properties by breaking structural symmetries and changing environmental refractive indices has shed light on the underlying physics. This research not only consolidates a robust theoretical framework for understanding BIC behavior but also paves the way for high-quality factor resonator and sensor development, as well as the precise control of photonic states. The findings significantly deepen our understanding of these phenomena and hold substantial promise for future photonic applications. Full article
Show Figures

Figure 1

21 pages, 4496 KB  
Article
Engineering Biomedical Problems to Detect Carcinomas: A Tomographic Impedance Approach
by Filippo Laganà, Danilo Prattico, Domenico De Carlo, Giuseppe Oliva, Salvatore A. Pullano and Salvatore Calcagno
Eng 2024, 5(3), 1594-1614; https://doi.org/10.3390/eng5030084 - 25 Jul 2024
Cited by 20 | Viewed by 1798
Abstract
Computed tomography (CT), magnetic resonance imaging (MRI), and radiography expose patients to electromagnetic fields (EMFs) and ionizing radiation. As an alternative, Electrical Impedance Tomography (EIT) offers a less EMF-influenced method for imaging by measuring superficial skin currents to provide a map of the [...] Read more.
Computed tomography (CT), magnetic resonance imaging (MRI), and radiography expose patients to electromagnetic fields (EMFs) and ionizing radiation. As an alternative, Electrical Impedance Tomography (EIT) offers a less EMF-influenced method for imaging by measuring superficial skin currents to provide a map of the body’s conductivity. EIT allows for functional monitoring of anatomical regions using low electromagnetic fields and minimal exposure times. This paper investigates the application of EIT for the morphological and functional assessment of tissues. Using the Finite Element Method (FEM) (Comsol 5.2), both two-dimensional and three-dimensional models and simulations of physiological and pathological tissues were developed to replicate EIT operations. The primary objective is to detect carcinoma by analysing the electrical impedance response to externally applied excitations. An eight-electrode tomograph was utilised for this purpose, specifically targeting epithelial tissue. The study allowed the characterisation of tomographs of any size and, therefore, the possibility to verify both their geometric profile and the ideal value of the excitation current to be delivered per second of the type of tissue to be analysed. Simulations were conducted to observe electrical impedance variations within a homogeneously modelled tissue and a carcinoma characterized by regular geometry. The outcomes demonstrated the potential of EIT as a viable technique for carcinoma detection, emphasizing its utility in medical diagnostics with reduced EMF exposure. Full article
(This article belongs to the Special Issue Feature Papers in Eng 2024)
Show Figures

Figure 1

12 pages, 2287 KB  
Article
Highly Sensitive Qualitative and Quantitative Identification of Cashmere and Wool Based on Terahertz Electromagnetically Induced Transparent Metasurface Biosensor
by Dongpeng Luo, Limin Xu, Lifeng Jia, Lianglun Cheng, Ping Tang and Jinyun Zhou
Biosensors 2024, 14(5), 240; https://doi.org/10.3390/bios14050240 - 10 May 2024
Cited by 4 | Viewed by 2526
Abstract
Cashmere and wool are both natural animal fibers used in the textile industry, but cashmere is of superior quality, is rarer, and more precious. It is therefore important to distinguish the two fibers accurately and effectively. However, challenges due to their similar appearance, [...] Read more.
Cashmere and wool are both natural animal fibers used in the textile industry, but cashmere is of superior quality, is rarer, and more precious. It is therefore important to distinguish the two fibers accurately and effectively. However, challenges due to their similar appearance, morphology, and physical and chemical properties remain. Herein, a terahertz electromagnetic inductive transparency (EIT) metasurface biosensor is introduced for qualitative and quantitative identification of cashmere and wool. The periodic unit structure of the metasurface consists of four rotationally symmetric resonators and two cross−arranged metal secants to form toroidal dipoles and electric dipoles, respectively, so that its effective sensing area can be greatly improved by 1075% compared to the traditional dipole mode, and the sensitivity will be up to 342 GHz/RIU. The amplitude and frequency shift changes of the terahertz transmission spectra caused by the different refractive indices of cashmere/wool can achieve highly sensitive label−free qualitative and quantitative identification of both. The experimental results show that the terahertz metasurface biosensor can work at a concentration of 0.02 mg/mL. It provides a new way to achieve high sensitivity, precision, and trace detection of cashmere/wool, and would be a valuable application for the cashmere industry. Full article
(This article belongs to the Special Issue Biomaterials for Biosensing Applications)
Show Figures

Figure 1

11 pages, 9036 KB  
Article
Tunable C4-Symmetry-Broken Metasurfaces Based on Phase Transition of Vanadium Dioxide (VO2)
by Yuting Zhang, Xiaoyuan Hao, Xueguang Lu, Meng Liu, Wanxia Huang, Cheng Zhang, Wei Huang, Yi Xu and Wentao Zhang
Materials 2024, 17(6), 1293; https://doi.org/10.3390/ma17061293 - 11 Mar 2024
Viewed by 1942
Abstract
Coupling is a ubiquitous phenomenon observed in various systems, which profoundly alters the original oscillation state of resonant systems and leads to the unique optical properties of metasurfaces. In this study, we introduce a terahertz (THz) tunable coupling metasurface characterized by a four-fold [...] Read more.
Coupling is a ubiquitous phenomenon observed in various systems, which profoundly alters the original oscillation state of resonant systems and leads to the unique optical properties of metasurfaces. In this study, we introduce a terahertz (THz) tunable coupling metasurface characterized by a four-fold rotation (C4) symmetry-breaking structural array achieved through the incorporation of vanadium dioxide (VO2). This disruption of the C4 symmetry results in dynamically controlled electromagnetic interactions and couplings between excitation modes. The coupling between new resonant modes modifies the peak of electromagnetic-induced transparency (EIT) within the C4 symmetric metasurfaces, simulating the mutual interference process between modes. Additionally, breaking the C4 symmetry enhances the mirror asymmetry, and imparts distinct chiral properties in the far-field during the experimental process. This research demonstrates promising applications in diverse fields, including biological monitoring, light modulation, sensing, and nonlinear enhancement. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

7 pages, 1344 KB  
Communication
Electromagnetically Induced Transparency Spectra of 6Li Rydberg Atoms
by Meimei Wu, Xin Bao, Shuxian Yu, Licheng Yi, Pingshuai Ren, Shujin Deng and Haibin Wu
Photonics 2023, 10(12), 1367; https://doi.org/10.3390/photonics10121367 - 12 Dec 2023
Cited by 2 | Viewed by 2902
Abstract
Rydberg atoms possess highly excited valence electrons that are far away from atomic cations. Compared with ground states, Rydberg states are excited states with a high principal quantum number n that exhibit large electric dipole moments and have a variety of applications in [...] Read more.
Rydberg atoms possess highly excited valence electrons that are far away from atomic cations. Compared with ground states, Rydberg states are excited states with a high principal quantum number n that exhibit large electric dipole moments and have a variety of applications in quantum information processing. In this communication, we report the measurement of the 6Li Rydberg excitation spectrum by ladder-type electromagnetically induced transparency (EIT) in a vapor cell. The 2pns/nd EIT spectra were recorded by sweeping the frequency of an ultraviolet Rydberg pumping laser while keeping the probing laser resonant to the 2s2p transition. All lasers were locked on an ultrastable optical Fabry-Pérot cavity and measured by an optical frequency comb. Our results provide valuable information to precisely determine quantum defects and enable novel experiments with Rydberg-dressed ultracold Fermi gases. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

14 pages, 2242 KB  
Article
Temperature Sensing via Electromagnetically Induced Transparency Vapor
by Teh-Chau Liau, Jian-Qi Shen and Shun-Feng Su
Coatings 2023, 13(11), 1887; https://doi.org/10.3390/coatings13111887 - 2 Nov 2023
Viewed by 1727
Abstract
The behavior of multilevel atomic ensembles (e.g., alkali-metal atoms) can be influenced significantly by the intensity of a driving field (or controlling/coupling field). The phase coherence between two transition pathways driven by a probe light and a driving field can lead to the [...] Read more.
The behavior of multilevel atomic ensembles (e.g., alkali-metal atoms) can be influenced significantly by the intensity of a driving field (or controlling/coupling field). The phase coherence between two transition pathways driven by a probe light and a driving field can lead to the effect known as electromagnetically induced transparency (EIT). In EIT, the probe light can pass through a three-level alkali-metal atomic vapor without absorption or reflection when two coherent resonances (transition pathways driven by the driving and probe fields) are present and the linewidths of the transparency windows are sufficiently narrow. The optical characteristics of atomic systems can also be affected by the Doppler broadening of the absorption profile in a spectroscope. Our analysis indicates that both broadenings (related to the transitions excited by the driving and probe fields) can be expanded, leading to an increase in the transmittance and reflectance broadenings when a coupling field with adaptive strength is applied; the corresponding temperature would, thus, be implemented and readable. We show that the most suitable preparation for temperature sensing via an EIT vapor is to provide 80 times the spontaneous decay rate (SDR) of the excited atomic levels. This configuration results in reflectance and transmittance values that range between zero and one and cover a temperature range of 0 K to 600 K. As an example, we demonstrate the integration of specialized coating technologies with EIT ensembles for temperature sensing in the range of dozens of kelvins at and above room temperature. A key advantage of this temperature-sensing system is its ability to use adaptive resonant visible light as the probe field. This novel approach may find applications in providing unprecedented levels of precision and control in temperature sensing for coating processes and in the design of other photonic or optical devices. It can also be used to determine the temperature-dependent behavior of the specific heat of alkali-metal solids and gases (including the latent heats of vaporization or sublimation of alkali-metal solids) through the reflection and transmission spectra of the vaporized EIT atomic vapors. Full article
Show Figures

Figure 1

15 pages, 5458 KB  
Article
Two-Photon Laser Excitation of Rb Rydberg Atoms in the Magneto-Optical Trap and Vapor Cell
by Denis B. Tretyakov, Vasily M. Entin, Ilya I. Beterov, Elena A. Yakshina, Yury Ya. Pechersky, Veniamin G. Gol’dort and Igor I. Ryabtsev
Photonics 2023, 10(11), 1201; https://doi.org/10.3390/photonics10111201 - 27 Oct 2023
Cited by 1 | Viewed by 4508
Abstract
We present our experimental results of two-photon laser excitation 5S1/2→5P3/2nS1/2 of Rb atoms to Rydberg nS1/2 states with a homemade 480 nm laser in the second excitation step. In an experiment with cold Rb [...] Read more.
We present our experimental results of two-photon laser excitation 5S1/2→5P3/2nS1/2 of Rb atoms to Rydberg nS1/2 states with a homemade 480 nm laser in the second excitation step. In an experiment with cold Rb atoms, we excited the 42S1/2 state and detected Rydberg atoms with a selective-field-ionization (SFI) detector that provides single-atom resolution. The resonance line shapes well agreed with numerical simulations in a three-level theoretical model. We also studied the multiatom spectra of Rydberg excitation of mesoscopic atom ensembles which are of interest to quantum information processing. In the experiment with hot Rb atoms, we first excited the 30S1/2 state and observed a narrow Rydberg EIT resonance. Its line shape also agreed well with theory. Then, we performed a similar experiment with the higher 41S1/2 state and observed the Autler–Townes splitting of the EIT resonance in the presence of a microwave field, which was in resonance with the microwave transition 41S→41P3/2. This allowed us to measure the average strength of the microwave field and, thus, demonstrate the operation of a Rydberg microwave sensor. We may conclude that the developed homemade laser at 480 nm substantially extends our capabilities for further experiments on quantum information and quantum sensing with Rydberg atoms. Full article
(This article belongs to the Special Issue Precision Atomic Spectroscopy)
Show Figures

Figure 1

14 pages, 640 KB  
Article
Precision Spectroscopy of Radiation Transitions between Singlet Rydberg States of the Group IIb and Yb Atoms
by Igor L. Glukhov, Aleksandr A. Kamenski, Vitaly D. Ovsiannikov and Vitaly G. Palchikov
Photonics 2023, 10(10), 1153; https://doi.org/10.3390/photonics10101153 - 13 Oct 2023
Cited by 5 | Viewed by 1907
Abstract
The measurements of microwave (μw) and radio-frequency (RF) radiation quantitative parameters may be based on the quantum–optical approach to determine the spectral characteristics of radiation transitions between the Rydberg states of atoms. Frequencies and matrix elements are calculated for dipole transitions between opposite-parity [...] Read more.
The measurements of microwave (μw) and radio-frequency (RF) radiation quantitative parameters may be based on the quantum–optical approach to determine the spectral characteristics of radiation transitions between the Rydberg states of atoms. Frequencies and matrix elements are calculated for dipole transitions between opposite-parity Rydberg states nL 1L and nL±1 1L±1 (where n= n,n±1,n±2) of the singlet series in the alkaline–earth–metal-like atoms of group IIb (Zn, Cd, Hg) and Yb. The matrix elements determine the shifts of Rydberg-state energy levels in the field of resonance μw or RF radiation, splitting the resonance of electromagnetically induced transparency (EIT) for intensely absorbed probe radiation. Numerical computations based on the single-electron quantum defect method (QDM) and the Fues’ model potential (FMP) approach with the use of the most reliable data from the current literature on quantum defect values are performed for frequencies and matrix elements of transitions between singlet Rydberg states of 1S0-, 1P1-, 1D2-, and 1F3-series in Zn, Cd, Hg, and Yb atoms. The calculated data are approximated by polynomials in the powers of the principal quantum numbers. The polynomial coefficients are determined with the use of a standard curve-fitting interpolation polynomial procedure for numerically calculated functions. These approximation expressions provide new possibilities for accurately evaluating the frequencies and matrix elements of dipole transitions between Rydberg states over a wide range of quantum numbers n >> 1, accompanied by the emission and absorption of μw and RF photons. Full article
(This article belongs to the Special Issue Precision Atomic Spectroscopy)
Show Figures

Figure 1

14 pages, 6080 KB  
Article
Electromagnetically Induced Transparency Analog of Asymmetric Perovskite Metamaterial in the THz Spectral Region
by Tae-Han Kim, Bo Wha Lee and Felix Jaetae Seo
Crystals 2023, 13(7), 1090; https://doi.org/10.3390/cryst13071090 - 12 Jul 2023
Viewed by 2295
Abstract
The analogy of electromagnetically induced transparency (EIT) in perovskite metamaterials is characterized by the numerical simulations in finite-difference time-domain (FDTD). The perovskite metamaterials consist of two cut wire resonators (CWRs) and a disk resonator (DR) on a polyimide substrate. The analysis revealed the [...] Read more.
The analogy of electromagnetically induced transparency (EIT) in perovskite metamaterials is characterized by the numerical simulations in finite-difference time-domain (FDTD). The perovskite metamaterials consist of two cut wire resonators (CWRs) and a disk resonator (DR) on a polyimide substrate. The analysis revealed the characteristic dynamics of the electromagnetic field, the near-field couplings of CWRs and DR, and the EIT-like spectral features of perovskite metamaterials as functions of the asymmetry parameter and polarization direction. The strong coupling and destructive interference of bright and bright–dark transitions in perovskite metamaterials displayed EIT-like transparency at 653.5 GHz with a high Q-factor of approximately 1470, a sensitivity of 531 GHz/RIU and a figure of merit of around 780. In addition, perovskite metamaterials exhibited slow light with a group delay of about 106 ps and a group index of approximately 3100. These results may provide an important perspective for understanding the coupling mechanism and applications of perovskite materials in slow-light devices, THz sensors, and tunable switching in THz spectral region. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

Back to TopTop