A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide
Abstract
1. Introduction
2. Structure Design and the Material Properties of VO2
3. Results
3.1. Mechanism Analysis of the EIT Effect
3.2. Parameter Analysis
3.3. Dynamic Regulation of VO2
3.4. The ”Two-Particle” Model
3.5. Slow Light Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EIT | Electromagnetically induced transparency |
VO2 | Vanadium dioxide |
Q | Quality |
GMR | Guided mode resonance |
FWHM | Full width at half maximum |
References
- Liu, S.B.; Ning, R.X.; Zhu, J.L.; Zhang, Y.F. Multiband electromagnetically induced transparency-like on metamaterials. Opt. Commun. 2025, 574, 131065. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhao, Z.Y.; Ako, R.T.; Sriram, S.; Zhao, X.; Liu, H.X.; Bu, H.J. Moire photonic superlattice-induced transparency at commensurate angle in a terahertz metasurface composed of triple layer square lattices. Appl. Phys. Lett. 2024, 125, 141701. [Google Scholar] [CrossRef]
- Zhang, B.H.; Dong, A.L.; Wang, J.R.; Qin, M.; Liu, J.Q.; Huang, W.; Xiao, S.Y.; Li, H.J. Strong coupling and electromagnetically induced transparency in multiple-BIC-driven metasurfaces. Nano Lett. 2025, 25, 4568–4575. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.J.; Xiao, B.G.; Yu, J.B.; Xiao, L.H. A compact graphene metamaterial based on electromagnetically induced transparency effect. Opt. Commun. 2020, 475, 126266. [Google Scholar] [CrossRef]
- Zhu, J.; Xiong, J.Y. Tunable terahertz graphene metamaterial optical switches and sensors based on plasma-induced transparency. Measurement 2023, 220, 113302. [Google Scholar] [CrossRef]
- Wang, J.Q.; Sun, J.Y.; Mei, Y.W. Electric field dropping effect enhanced extraordinary sensitivity of THz electromagnetically induced transparency metamaterial. IEEE Sens. J. 2024, 24, 7807–7815. [Google Scholar]
- Vaswani, L.K.; Chouhan, B.S.; Panwar, A.; Kumar, G. Electromagnetically induced transparency in a strongly coupled orthogonal polarization-insensitive planar terahertz metamaterial. J. Phys. D Appl. Phys. 2024, 57, 075103. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X. Frequency shift in tunable electromagnetically induced transparency-like metamaterials. Plasmonics 2024, 19, 1487–1498. [Google Scholar] [CrossRef]
- Zhao, S.X.; Gao, L.; Zhang, W. Chirality-selective electromagnetically induced transparency in a dielectric metasurface based on chirality transfer between bright and dark modes. Appl. Phys. Lett. 2023, 123, 151701. [Google Scholar] [CrossRef]
- Shu, C.; Mei, J.S.; Sun, H.Y.; Chen, L.Y.; Sun, Y. Tunable electromagnetically induced transparency metamaterial utilizing bright-dark mode coupling between electric and toroidal resonances. Opt. Quant. Electron. 2024, 56, 43. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, L. Electromagnetically induced transparency metamaterials: Theories, designs and applications. J. Phys. D Appl. Phys. 2022, 55, 263003. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Dong, L.; Zhou, W.J.; Rong, M.X.; Zhang, X.Z.; Guo, J. Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express 2021, 11, 2109. [Google Scholar] [CrossRef]
- Long, L.S.; Taylor, S.; Wang, L.P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photoincs 2020, 7, 2219–2227. [Google Scholar] [CrossRef]
- Wang, T.L.; Zhang, H.Y.; Zhang, Y.; Zhang, Y.P.; Cao, M.Y. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide. Opt. Express 2020, 28, 17434–17448. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.X.; Xiao, Z.Q.; Chen, Z.H.; Huang, W. Temperature tunable like-electromagnetically induced transparency in metasurface with vanadium dioxide. Eur. Phys. J. Plus 2021, 136, 751. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X.; Shu, F.Z. Dual-band tunable electromagnetically induced transparency in vanadium dioxide-based miniaturized terahertz metasurfaces. Mater. Res. Bull. 2024, 180, 113000. [Google Scholar] [CrossRef]
- Salama, N.A.; Alexeree, S.M.; Obayya, S.S.A.; Swillam, M.A. Silicon-based double fano resonances photonic integrated gas sensor. Sci. Rep. 2024, 14, 24811. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.I.; Nayemuzzaman, S.; Tabassum, S. Dual localized surface plasmon resonance sensors on a single optical fiber. IEEE Sens. Lett. 2023, 7, 9. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D. Guided-mode resonance enhanced Ge-on-Si self-powered surface illuminated photodetector for ultrahigh-speed optical communication systems. IEEE Sens. J. 2024, 24, 40669–40677. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.M.; Zhou, J. Terahertz polarization conversion in an electromagnetically induced transparency (EIT)-like metamaterial. Ann. Phys. 2021, 533, 2000528. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, S.J.; Li, J.J.; Gong, H.Y.; Liu, Z.Q.; Chen, J.; Fu, G.L.; Liu, X.S.; Pan, P.P.; Liu, G.Q. High Q transparency, strong third harmonic generation, and giant nonlinear chirality driven by toroidal dipole-quasi-BIC. Appl. Phys. Lett. 2024, 125, 181702. [Google Scholar] [CrossRef]
- Hu, J.; Lang, T.; Hong, Z.; Shen, C.Y.; Shi, G.H. Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. J. Lightwave Technol. 2018, 10, 1109. [Google Scholar] [CrossRef]
- Makhloufi, M.; Salah, H. Graphite based metamaterial for high frequency applications. J. Magn. Magn. Mater. 2022, 557, 169410. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X. Polarization-insensitive electromagnetically induced transparency and its sensing performance based on spoof localized surface plasmons in vanadium dioxide-based terahertz metasurfaces. Phys. Chem. Chem. Phys. 2023, 25, 21074–21081. [Google Scholar] [CrossRef]
- Chen, M.M.; Xiao, Z.Y.; Lv, F.; Cui, Z.T.; Xu, Q.D. Dynamically tunable dual-band electromagnetically induced transparency-like in terahertz metamaterial. Opt. Mater. 2020, 107, 110060. [Google Scholar] [CrossRef]
- Chen, M.M.; Xiao, Z.Y.; Lu, X.J.; Lv, F.; Cui, Z.T. Dynamically tunable multi-resonance and polarization-insensitive electromagnetically induced transparency-like based on vanadium dioxide film. Opt. Mater. 2020, 102, 109811. [Google Scholar] [CrossRef]
- Xu, X.; Lou, J.; Gao, M.X.; Wu, S.Y.; Fang, G.Y.; Huang, Y.D. Ultrafast modulation of THz waves based on MoTe2-covered metasurface. Sensors 2023, 23, 1174. [Google Scholar] [CrossRef]
- Wang, Z.C.; Huang, H.H.; Zhang, H.; Zhao, W.R. Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications. J. Phys. D Appl. Phys. 2024, 48, 485101. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Dong, L.; Rong, M.X.; Gong, J.Y.; Meng, F.Y. Inverse design of electromagnetically induced transparency (EIT) metasurface based on deep convolutional generative adversarial network. Phys. Scr. 2023, 10, 105501. [Google Scholar] [CrossRef]
- Meng, Y.W.; Wang, Z.B.; Fang, S.J.; Liu, H.M. Reconfigurable negative group delay circuit with tunable group delay flatness. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23159. [Google Scholar] [CrossRef]
- Sun, Z.S.; Wang, X.; Wang, J.L.; Fan, B.; Zhang, Y.; Feng, Y. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta. Phys. Sinch. Ed. 2022, 71, 138101. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, T.S.; Liu, Z.H.; Yang, D.; Yang, Z.N.; Liu, R.; Liu, Y.; Wang, J.Y. Dual tunable electromagnetically induced transparency based on a grating-assisted double-layer graphene hybrid structure at terahertz frequencies. Nanomaterials 2022, 12, 3853. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.S.; Ren, B.; Jiang, Y.Y. Polarization-controlled electromagnetically induced transparency analogue based on multipolar resonances. Opt. Mater. Express 2022, 12, 3738–3748. [Google Scholar] [CrossRef]
- Chen, B.W.; Yang, S.X.; Chen, J.; Wu, J.B.; Chen, K.; Li, W.L.; Tan, Y.H.; Wang, Z.S.; Qiu, H.S.; Fan, K.B.; et al. Directional terahertz holography with thermally active Janus metasurface. Light Sci. Appl. 2023, 12, 136. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Man, Z.W.; Tang, A.W. Research progress of quantum dot photolithography patterning and direct photolithography application. Nano Res. 2024, 17, 10386–10411. [Google Scholar] [CrossRef]
- Zhou, X.C.; Wu, Y.; Yan, F.B.; Zhang, T.Z.; Ke, X.Y.; Meng, K.K.; Xu, X.G.; Li, Z.P.; Miao, J.; Chen, J.K.; et al. Revealing the high sensitivity in the metal toinsulator transition properties of the pulsed laser deposited VO2 thin films. Ceram. Int. 2021, 47, 25574–25579. [Google Scholar] [CrossRef]
- Lian, H.C.; Qi, L.H.; Luo, J.; Zhang, R.R. Drop-on-demand printing of edge-enhanced and conductive graphene twin-lines by coalescence regulation and multi-layers overwriting. 2D Mater. 2021, 8, 035004. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Li, E.Z.; Tang, B.; Yuan, Y. Polyphenylene oxide/SiO2 composites: Towards ultra-low dielectric loss and high thermal conductivity of microwave substrates. Appl. Surf. Sci. 2024, 672, 160809. [Google Scholar] [CrossRef]
- Hong, S.C.; Lee, M.; Lee, M.W.; Kim, D. Sharp phase transition by the enhanced lattice stability of low-temperature phase of Cr-doped VO2. Bull. Korean Chem. Soc. 2021, 42, 1232–1238. [Google Scholar] [CrossRef]
- Jahromi, H.D.; Hamedi, S. Artiffcial intelligence approach for calculating electronic and optical properties of nanocomposites. Mater. Res. Bull. 2021, 141, 111371. [Google Scholar] [CrossRef]
- Hamedi, S.; Jahromi, H.D.; Lotfiani, A. Artificial intelligence-aided nanoplasmonic biosensor modeling. Eng. Appl. Artif. Intel. 2023, 118, 105646. [Google Scholar] [CrossRef]
- Liu, C.J.; Sang, C.L.; Wu, X.S.; Cai, J.L.; Wang, J.W. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Esmail, B.A.F.; Koziel, S.; Szczepanski, S.; Majid, H.A. Overview of approaches for compensating inherent metamaterials losses. IEEE Access 2022, 10, 67058–67080. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Huo, Y.P.; Niu, Q.Q.; He, Q.; Hao, X.X. Band-stop filter based on tunable Fano resonance and electromagnetically induced transparency in metal-dielectric-metal waveguide coupling systems. Phys. Scripta 2021, 96, 015507. [Google Scholar] [CrossRef]
- Izadpour, A.R.; Jahromi, H.D.; Sheikhi, M.H. Plasmonic enhancement of colloidal quantum dot infrared photodetector photosensitivity. IEEE J. Quantum Electron. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D.; Samaneh, H. Silicon-Based Photovoltaic-nanoplasmonic biosensor with enhanced limit of detection and minimum detectable power. J. Lightwave Technol. 2022, 4, 1231–1237. [Google Scholar] [CrossRef]
Reference | Active Material | Center Frequency of the EIT Window | Modulation Depth |
---|---|---|---|
Ref. [25] | VO2 | 1.23 THz, 1.41 THz | 46%, 45% |
Ref. [26] | VO2 | 0.90 THz, 1.06 THz | 62.5%, 65% |
Ref. [27] | MoTe2 | 1.23 THz | 77% |
Ref. [28] | Graphene | 220.6 THz | 80% |
Proposed structure | VO2 | 1.02 THz, 1.15 THz | 75%, 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, S.; Wang, Y.; Dong, L.; Li, H.; Wang, Y.; Ding, X. A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics 2025, 12, 463. https://doi.org/10.3390/photonics12050463
Zhu L, Wang S, Wang Y, Dong L, Li H, Wang Y, Ding X. A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics. 2025; 12(5):463. https://doi.org/10.3390/photonics12050463
Chicago/Turabian StyleZhu, Lei, Shujie Wang, Yun Wang, Liang Dong, Hailong Li, Yiya Wang, and Xumin Ding. 2025. "A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide" Photonics 12, no. 5: 463. https://doi.org/10.3390/photonics12050463
APA StyleZhu, L., Wang, S., Wang, Y., Dong, L., Li, H., Wang, Y., & Ding, X. (2025). A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics, 12(5), 463. https://doi.org/10.3390/photonics12050463