A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide
Abstract
:1. Introduction
2. Structure Design and the Material Properties of VO2
3. Results
3.1. Mechanism Analysis of the EIT Effect
3.2. Parameter Analysis
3.3. Dynamic Regulation of VO2
3.4. The ”Two-Particle” Model
3.5. Slow Light Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EIT | Electromagnetically induced transparency |
VO2 | Vanadium dioxide |
Q | Quality |
GMR | Guided mode resonance |
FWHM | Full width at half maximum |
References
- Liu, S.B.; Ning, R.X.; Zhu, J.L.; Zhang, Y.F. Multiband electromagnetically induced transparency-like on metamaterials. Opt. Commun. 2025, 574, 131065. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhao, Z.Y.; Ako, R.T.; Sriram, S.; Zhao, X.; Liu, H.X.; Bu, H.J. Moire photonic superlattice-induced transparency at commensurate angle in a terahertz metasurface composed of triple layer square lattices. Appl. Phys. Lett. 2024, 125, 141701. [Google Scholar] [CrossRef]
- Zhang, B.H.; Dong, A.L.; Wang, J.R.; Qin, M.; Liu, J.Q.; Huang, W.; Xiao, S.Y.; Li, H.J. Strong coupling and electromagnetically induced transparency in multiple-BIC-driven metasurfaces. Nano Lett. 2025, 25, 4568–4575. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.J.; Xiao, B.G.; Yu, J.B.; Xiao, L.H. A compact graphene metamaterial based on electromagnetically induced transparency effect. Opt. Commun. 2020, 475, 126266. [Google Scholar] [CrossRef]
- Zhu, J.; Xiong, J.Y. Tunable terahertz graphene metamaterial optical switches and sensors based on plasma-induced transparency. Measurement 2023, 220, 113302. [Google Scholar] [CrossRef]
- Wang, J.Q.; Sun, J.Y.; Mei, Y.W. Electric field dropping effect enhanced extraordinary sensitivity of THz electromagnetically induced transparency metamaterial. IEEE Sens. J. 2024, 24, 7807–7815. [Google Scholar]
- Vaswani, L.K.; Chouhan, B.S.; Panwar, A.; Kumar, G. Electromagnetically induced transparency in a strongly coupled orthogonal polarization-insensitive planar terahertz metamaterial. J. Phys. D Appl. Phys. 2024, 57, 075103. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X. Frequency shift in tunable electromagnetically induced transparency-like metamaterials. Plasmonics 2024, 19, 1487–1498. [Google Scholar] [CrossRef]
- Zhao, S.X.; Gao, L.; Zhang, W. Chirality-selective electromagnetically induced transparency in a dielectric metasurface based on chirality transfer between bright and dark modes. Appl. Phys. Lett. 2023, 123, 151701. [Google Scholar] [CrossRef]
- Shu, C.; Mei, J.S.; Sun, H.Y.; Chen, L.Y.; Sun, Y. Tunable electromagnetically induced transparency metamaterial utilizing bright-dark mode coupling between electric and toroidal resonances. Opt. Quant. Electron. 2024, 56, 43. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, L. Electromagnetically induced transparency metamaterials: Theories, designs and applications. J. Phys. D Appl. Phys. 2022, 55, 263003. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Dong, L.; Zhou, W.J.; Rong, M.X.; Zhang, X.Z.; Guo, J. Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express 2021, 11, 2109. [Google Scholar] [CrossRef]
- Long, L.S.; Taylor, S.; Wang, L.P. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photoincs 2020, 7, 2219–2227. [Google Scholar] [CrossRef]
- Wang, T.L.; Zhang, H.Y.; Zhang, Y.; Zhang, Y.P.; Cao, M.Y. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide. Opt. Express 2020, 28, 17434–17448. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.X.; Xiao, Z.Q.; Chen, Z.H.; Huang, W. Temperature tunable like-electromagnetically induced transparency in metasurface with vanadium dioxide. Eur. Phys. J. Plus 2021, 136, 751. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X.; Shu, F.Z. Dual-band tunable electromagnetically induced transparency in vanadium dioxide-based miniaturized terahertz metasurfaces. Mater. Res. Bull. 2024, 180, 113000. [Google Scholar] [CrossRef]
- Salama, N.A.; Alexeree, S.M.; Obayya, S.S.A.; Swillam, M.A. Silicon-based double fano resonances photonic integrated gas sensor. Sci. Rep. 2024, 14, 24811. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.I.; Nayemuzzaman, S.; Tabassum, S. Dual localized surface plasmon resonance sensors on a single optical fiber. IEEE Sens. Lett. 2023, 7, 9. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D. Guided-mode resonance enhanced Ge-on-Si self-powered surface illuminated photodetector for ultrahigh-speed optical communication systems. IEEE Sens. J. 2024, 24, 40669–40677. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.M.; Zhou, J. Terahertz polarization conversion in an electromagnetically induced transparency (EIT)-like metamaterial. Ann. Phys. 2021, 533, 2000528. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, S.J.; Li, J.J.; Gong, H.Y.; Liu, Z.Q.; Chen, J.; Fu, G.L.; Liu, X.S.; Pan, P.P.; Liu, G.Q. High Q transparency, strong third harmonic generation, and giant nonlinear chirality driven by toroidal dipole-quasi-BIC. Appl. Phys. Lett. 2024, 125, 181702. [Google Scholar] [CrossRef]
- Hu, J.; Lang, T.; Hong, Z.; Shen, C.Y.; Shi, G.H. Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. J. Lightwave Technol. 2018, 10, 1109. [Google Scholar] [CrossRef]
- Makhloufi, M.; Salah, H. Graphite based metamaterial for high frequency applications. J. Magn. Magn. Mater. 2022, 557, 169410. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, X.X. Polarization-insensitive electromagnetically induced transparency and its sensing performance based on spoof localized surface plasmons in vanadium dioxide-based terahertz metasurfaces. Phys. Chem. Chem. Phys. 2023, 25, 21074–21081. [Google Scholar] [CrossRef]
- Chen, M.M.; Xiao, Z.Y.; Lv, F.; Cui, Z.T.; Xu, Q.D. Dynamically tunable dual-band electromagnetically induced transparency-like in terahertz metamaterial. Opt. Mater. 2020, 107, 110060. [Google Scholar] [CrossRef]
- Chen, M.M.; Xiao, Z.Y.; Lu, X.J.; Lv, F.; Cui, Z.T. Dynamically tunable multi-resonance and polarization-insensitive electromagnetically induced transparency-like based on vanadium dioxide film. Opt. Mater. 2020, 102, 109811. [Google Scholar] [CrossRef]
- Xu, X.; Lou, J.; Gao, M.X.; Wu, S.Y.; Fang, G.Y.; Huang, Y.D. Ultrafast modulation of THz waves based on MoTe2-covered metasurface. Sensors 2023, 23, 1174. [Google Scholar] [CrossRef]
- Wang, Z.C.; Huang, H.H.; Zhang, H.; Zhao, W.R. Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications. J. Phys. D Appl. Phys. 2024, 48, 485101. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Dong, L.; Rong, M.X.; Gong, J.Y.; Meng, F.Y. Inverse design of electromagnetically induced transparency (EIT) metasurface based on deep convolutional generative adversarial network. Phys. Scr. 2023, 10, 105501. [Google Scholar] [CrossRef]
- Meng, Y.W.; Wang, Z.B.; Fang, S.J.; Liu, H.M. Reconfigurable negative group delay circuit with tunable group delay flatness. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23159. [Google Scholar] [CrossRef]
- Sun, Z.S.; Wang, X.; Wang, J.L.; Fan, B.; Zhang, Y.; Feng, Y. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta. Phys. Sinch. Ed. 2022, 71, 138101. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, T.S.; Liu, Z.H.; Yang, D.; Yang, Z.N.; Liu, R.; Liu, Y.; Wang, J.Y. Dual tunable electromagnetically induced transparency based on a grating-assisted double-layer graphene hybrid structure at terahertz frequencies. Nanomaterials 2022, 12, 3853. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.S.; Ren, B.; Jiang, Y.Y. Polarization-controlled electromagnetically induced transparency analogue based on multipolar resonances. Opt. Mater. Express 2022, 12, 3738–3748. [Google Scholar] [CrossRef]
- Chen, B.W.; Yang, S.X.; Chen, J.; Wu, J.B.; Chen, K.; Li, W.L.; Tan, Y.H.; Wang, Z.S.; Qiu, H.S.; Fan, K.B.; et al. Directional terahertz holography with thermally active Janus metasurface. Light Sci. Appl. 2023, 12, 136. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Man, Z.W.; Tang, A.W. Research progress of quantum dot photolithography patterning and direct photolithography application. Nano Res. 2024, 17, 10386–10411. [Google Scholar] [CrossRef]
- Zhou, X.C.; Wu, Y.; Yan, F.B.; Zhang, T.Z.; Ke, X.Y.; Meng, K.K.; Xu, X.G.; Li, Z.P.; Miao, J.; Chen, J.K.; et al. Revealing the high sensitivity in the metal toinsulator transition properties of the pulsed laser deposited VO2 thin films. Ceram. Int. 2021, 47, 25574–25579. [Google Scholar] [CrossRef]
- Lian, H.C.; Qi, L.H.; Luo, J.; Zhang, R.R. Drop-on-demand printing of edge-enhanced and conductive graphene twin-lines by coalescence regulation and multi-layers overwriting. 2D Mater. 2021, 8, 035004. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Li, E.Z.; Tang, B.; Yuan, Y. Polyphenylene oxide/SiO2 composites: Towards ultra-low dielectric loss and high thermal conductivity of microwave substrates. Appl. Surf. Sci. 2024, 672, 160809. [Google Scholar] [CrossRef]
- Hong, S.C.; Lee, M.; Lee, M.W.; Kim, D. Sharp phase transition by the enhanced lattice stability of low-temperature phase of Cr-doped VO2. Bull. Korean Chem. Soc. 2021, 42, 1232–1238. [Google Scholar] [CrossRef]
- Jahromi, H.D.; Hamedi, S. Artiffcial intelligence approach for calculating electronic and optical properties of nanocomposites. Mater. Res. Bull. 2021, 141, 111371. [Google Scholar] [CrossRef]
- Hamedi, S.; Jahromi, H.D.; Lotfiani, A. Artificial intelligence-aided nanoplasmonic biosensor modeling. Eng. Appl. Artif. Intel. 2023, 118, 105646. [Google Scholar] [CrossRef]
- Liu, C.J.; Sang, C.L.; Wu, X.S.; Cai, J.L.; Wang, J.W. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Esmail, B.A.F.; Koziel, S.; Szczepanski, S.; Majid, H.A. Overview of approaches for compensating inherent metamaterials losses. IEEE Access 2022, 10, 67058–67080. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Huo, Y.P.; Niu, Q.Q.; He, Q.; Hao, X.X. Band-stop filter based on tunable Fano resonance and electromagnetically induced transparency in metal-dielectric-metal waveguide coupling systems. Phys. Scripta 2021, 96, 015507. [Google Scholar] [CrossRef]
- Izadpour, A.R.; Jahromi, H.D.; Sheikhi, M.H. Plasmonic enhancement of colloidal quantum dot infrared photodetector photosensitivity. IEEE J. Quantum Electron. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D.; Samaneh, H. Silicon-Based Photovoltaic-nanoplasmonic biosensor with enhanced limit of detection and minimum detectable power. J. Lightwave Technol. 2022, 4, 1231–1237. [Google Scholar] [CrossRef]
Reference | Active Material | Center Frequency of the EIT Window | Modulation Depth |
---|---|---|---|
Ref. [25] | VO2 | 1.23 THz, 1.41 THz | 46%, 45% |
Ref. [26] | VO2 | 0.90 THz, 1.06 THz | 62.5%, 65% |
Ref. [27] | MoTe2 | 1.23 THz | 77% |
Ref. [28] | Graphene | 220.6 THz | 80% |
Proposed structure | VO2 | 1.02 THz, 1.15 THz | 75%, 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, S.; Wang, Y.; Dong, L.; Li, H.; Wang, Y.; Ding, X. A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics 2025, 12, 463. https://doi.org/10.3390/photonics12050463
Zhu L, Wang S, Wang Y, Dong L, Li H, Wang Y, Ding X. A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics. 2025; 12(5):463. https://doi.org/10.3390/photonics12050463
Chicago/Turabian StyleZhu, Lei, Shujie Wang, Yun Wang, Liang Dong, Hailong Li, Yiya Wang, and Xumin Ding. 2025. "A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide" Photonics 12, no. 5: 463. https://doi.org/10.3390/photonics12050463
APA StyleZhu, L., Wang, S., Wang, Y., Dong, L., Li, H., Wang, Y., & Ding, X. (2025). A Dual-Band Tunable Electromagnetically Induced Transparency (EIT) Metamaterial Based on Vanadium Dioxide. Photonics, 12(5), 463. https://doi.org/10.3390/photonics12050463