Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,047)

Search Parameters:
Keywords = ECE-R13

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5747 KiB  
Article
Functional Study of the BMP Signaling Pathway in Appendage Regeneration of Exopalaemon carinicauda
by Chaofan Xing, Yong Li, Zhenxiang Chen, Qingyuan Hu, Jiayi Sun, Huanyu Chen, Qi Zou, Yingying Li, Fei Yu, Chao Wang, Panpan Wang and Xin Shen
Biology 2025, 14(8), 940; https://doi.org/10.3390/biology14080940 - 25 Jul 2025
Viewed by 257
Abstract
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages [...] Read more.
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of E. carinicauda. A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h). Additionally, 7740 DEGs were identified between D0 and 14 d post-autotomy (D14d), with 3382 DEGs identified between D18h and D14d. Among them, differentially expressed genes such as EcR, RXR, BMP1, and Smad4 are related to muscle growth or molting and may be involved in the regeneration process. qRT-PCR results revealed that EcBMPR2 was expressed at relatively high levels in the gonad and ventral nerve cord tissues and that the highest level of expression was detected in the regenerative basal tissue at 24 h post-autotomy. In situ hybridization results indicated strong signals of this gene in the cells at the wound site at 72 h post-autotomy. Following knockdown of EcBMPR2, the expression levels of both EcBMPR1B and EcSmad1 were significantly downregulated, and long-term interference with the EcBMPR2 gene resulted in a significantly slower appendage regeneration process compared to the control group. When the downstream transcription factor EcSmad1 was knocked down, the two receptor genes EcBMPR2 and EcBMPR1B were downregulated, whereas EcBMP7 was upregulated. After inhibiting the BMP signaling pathway, the degree of cell aggregation at the autotomy site in the experimental group was significantly lower than that in the control group, the wound healing rate was delayed, and the blastema regeneration time was prolonged from 5 d to 7 d. Collectively, these results indicate that the BMP signaling pathway plays a critical role in the early stages of appendage regeneration in E. carinicauda. This study provides important theoretical insights for understanding limb regeneration in crustaceans. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

20 pages, 333 KiB  
Article
Interprofessional Collaboration in Obstetric and Midwifery Care—Multigroup Comparison of Midwives’ and Physicians’ Perspective
by Anja Alexandra Schulz and Markus Antonius Wirtz
Healthcare 2025, 13(15), 1798; https://doi.org/10.3390/healthcare13151798 - 24 Jul 2025
Viewed by 101
Abstract
Background: Interprofessional collaboration (IPC) is considered fundamental for integrated, high-quality woman-centered care. This study analyzes concordance/differences in the perspectives of midwives and physicians on IPC and Equitable Communication (EC) in prenatal/postpartum (PPC) and birth care (BC). Methods: The short form of [...] Read more.
Background: Interprofessional collaboration (IPC) is considered fundamental for integrated, high-quality woman-centered care. This study analyzes concordance/differences in the perspectives of midwives and physicians on IPC and Equitable Communication (EC) in prenatal/postpartum (PPC) and birth care (BC). Methods: The short form of the ICS Scale (ICS-R with eight items) adapted for the midwifery context, and the EC scale (three items) were completed by 293 midwives and 215 physicians in Germany. Profession- and the setting-specific differences were analyzed using t-tests and ANOVA with repeated measurements. Confirmatory factor analysis with nested model comparisons test the fairness of the scales. Results: Midwives’ ratings of all IPC aspects were systematically lower than physicians’ in both care settings (variance component professional group: η2p = 0.227/ 0.318), esp. for EC (d = 1.22–1.41). Both groups rated EC higher in BC. The setting effect was less pronounced among physicians for the ICS-R items than among midwives. Violations of test fairness reveal validity deficiencies when using the aggregated EC sum score for group comparisons. Conclusions: Fundamental professional differences were found in the IPC assessment between physicians and midwives. The results enhance the understanding of IPC dynamics and provide starting points for action to leverage IPC’s potential for woman-centered care. Full article
(This article belongs to the Special Issue Midwifery-Led Care and Practice: Promoting Maternal and Child Health)
31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 216
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

20 pages, 47324 KiB  
Article
A Real-Time Cotton Boll Disease Detection Model Based on Enhanced YOLOv11n
by Lei Yang, Wenhao Cui, Jingqian Li, Guotao Han, Qi Zhou, Yubin Lan, Jing Zhao and Yongliang Qiao
Appl. Sci. 2025, 15(14), 8085; https://doi.org/10.3390/app15148085 - 21 Jul 2025
Viewed by 220
Abstract
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study [...] Read more.
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study proposes an enhanced YOLOv11n model (YOLOv11n-ECS) for improved detection accuracy. A dataset of cotton boll diseases under different lighting conditions and shooting angles in the field was constructed. To mitigate false negatives and false positives encountered by the original YOLOv11n model during detection, the EMA (efficient multi-scale attention) mechanism is introduced to enhance the weights of important features and suppress irrelevant regions, thereby improving the detection accuracy of the model. Partial Convolution (PConv) is incorporated into the C3k2 module to reduce computational redundancy and lower the model’s computational complexity while maintaining high recognition accuracy. Furthermore, to enhance the localization accuracy of diseased bolls, the original CIoU loss is replaced with Shape-IoU. The improved model achieves floating point operations (FLOPs), parameter count, and model size at 96.8%, 96%, and 96.3% of the original YOLOv11n model, respectively. The improved model achieves an mAP@0.5 of 85.6% and an mAP@0.5:0.95 of 62.7%, representing improvements of 2.3 and 1.9 percentage points, respectively, over the baseline YOLOv11n model. Compared with CenterNet, Faster R-CNN, YOLOv8-LSW, MSA-DETR, DMN-YOLO, and YOLOv11n, the improved model shows mAP@0.5 improvements of 25.7, 21.2, 5.5, 4.0, 4.5, and 2.3 percentage points, respectively, along with corresponding mAP@0.5:0.95 increases of 25.6, 25.3, 8.3, 2.8, 1.8, and 1.9 percentage points. Deployed on a Jetson TX2 development board, the model achieves a recognition speed of 56 frames per second (FPS) and an mAP of 84.2%, confirming its suitability for real-time detection. Furthermore, the improved model effectively reduces instances of both false negatives and false positives for diseased cotton bolls while yielding higher detection confidence, thus providing robust technical support for intelligent cotton boll disease detection. Full article
Show Figures

Figure 1

14 pages, 1508 KiB  
Article
Effects of Trehalase on the Gene Expression of the Reproductive Regulation Pathway Network and Triglyceride Metabolism in Nilaparvata lugens (Stål)
by Bin Tang, Yuxin Ge, Yongkang Liu, Liwen Guan, Ye Han, Yang Zhu, Gao Hu and Yan Wu
Insects 2025, 16(7), 725; https://doi.org/10.3390/insects16070725 - 16 Jul 2025
Viewed by 324
Abstract
The high reproductive performance of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the key factors contributing to its serious damage. Studies have demonstrated that trehalose hydrolysis, catalyzed by trehalase (TRE), plays an important role in the reproductive regulation of N. lugens. [...] Read more.
The high reproductive performance of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the key factors contributing to its serious damage. Studies have demonstrated that trehalose hydrolysis, catalyzed by trehalase (TRE), plays an important role in the reproductive regulation of N. lugens. However, it remains unclear how TRE regulates the reproduction of N. lugens. To address this question, the current study was designed to investigate the effects of TRE on the reproductive regulatory network of N. lugens. Specifically, RNA interference (RNAi) was conducted by injecting double-stranded RNA (dsRNA) targeting the TRE genes, and a trehalase inhibitor, validamycin, was used to suppress TRE activity. Subsequently, the relative expression levels of key genes involved in the reproductive regulatory pathway, as well as the triglyceride content in the fat body and ovary, were determined. The results indicated that both dsTREs and validamycin treatment decreased the relative expression of Vitellogenin (Vg) without affecting the expression of its receptor, VgR. However, their impact on the reproductive regulatory network differed: dsTREs injection did not affect the relative expression of JHAMT and Met in the juvenile hormone signaling pathway, but resulted in the upregulation of USP and TOR, and inhibition of InR2 and S6K. In contrast, validamycin injection inhibited the expression of Met, USP, EcR, InR1, TOR, and S6K. Both dsTREs and validamycin inhibited the expression of Fas, but only validamycin decreased the ovarian triglyceride content. These findings suggest that the inhibition of TRE leads to alterations in reproductive regulatory signals, thereby reducing the reproductive capacity of N. lugens. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 240
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

20 pages, 6441 KiB  
Article
Tissue-Based Metabolomic Profiling of Endometrial Cancer and Hyperplasia
by Khalid Akkour, Afshan Masood, Maha Al Mogren, Reem H. AlMalki, Assim A. Alfadda, Salini Scaria Joy, Ali Bassi, Hani Alhalal, Maria Arafah, Othman Mahmoud Othman, Hadeel Mohammad Awwad, Anas M. Abdel Rahman and Hicham Benabdelkamel
Metabolites 2025, 15(7), 458; https://doi.org/10.3390/metabo15070458 - 5 Jul 2025
Viewed by 592
Abstract
Background: Endometrial cancer (EC) is the sixth most common cancer among women globally, with an estimated 420,000 new cases diagnosed annually. Methods: This study comprised patients with endometrial cancer (EC) (n = 17), hyperplasia (HY) (n = 17), and controls (CO) [...] Read more.
Background: Endometrial cancer (EC) is the sixth most common cancer among women globally, with an estimated 420,000 new cases diagnosed annually. Methods: This study comprised patients with endometrial cancer (EC) (n = 17), hyperplasia (HY) (n = 17), and controls (CO) (n = 20). Tissue was collected from the endometrium of all 54 patients, including patients with HY, EC, and CO, who underwent total hysterectomy. EC and HY diagnoses were confirmed based on histological examination. Untargeted metabolomics profiling was conducted using LC-HRMS. The partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models were used for univariate and multivariate statistical analysis. The fitness of the model (R2Y) and predictive ability (Q2) were used to create OPLS-DA models. ROC analysis was carried out, followed by network analysis using Ingenuity Pathway Analysis. Results: The top metabolites that can discriminate EC and HY from CO were identified. This revealed a decrease in the levels of the lipid species, specifically phosphatidic acid (PA) (PA (14:1/14:0), PA(10:0/17:0), PA(18:1-O(12,13)/12:0)), PG(a-13:0/a-13:0), ganglioside GA1 (d18:1/18:1), PS(14:1/14:0), TG(20:0/18:4/14:1), and CDP-DG(PGF2alpha/18:2), while the levels of 3-Dehydro-L-gulonate, Uridine diphosphate-N-acetylglucosamine, ganglioside GT2 (d18:1/14:0), gamma-glutamyl glutamic acid and oxidized glutathione were increased in cases of EC and HY as compared to CO. Bioinformatics analysis, specifically using Ingenuity Pathway Analysis (IPA), revealed distinct pathway enrichments for EC and HY. For EC, the most highly scored pathways were associated with cell-to-cell signaling and interaction, skeletal and muscular system development and function, and small-molecule biochemistry. In contrast, HY cases showed the highest scoring pathways related to inflammatory disease, inflammatory response, and organismal injury and abnormalities. Conclusions: Developing sensitive biomarkers could improve diagnosis and guide treatment decisions, particularly in identifying which patients with HY may safely avoid hysterectomy and be managed with hormonal therapy. Full article
Show Figures

Figure 1

16 pages, 864 KiB  
Article
Discovery of 4,5,6,7-Tetrahydrothieno [3,2-b] Pyridine as Novel Fungicide Lead Scaffold
by Ke Chen, Difan Deng, Yupeng Yin, Dongmei Xi, Phumbum Park, Wei Gao, Rui Liu and Kang Lei
Microorganisms 2025, 13(7), 1588; https://doi.org/10.3390/microorganisms13071588 - 5 Jul 2025
Viewed by 441
Abstract
To identify fungicide lead compounds with novel scaffold and high efficacy, a library of 4,5-dihydrotetrazolo [1,5-a]thieno [2,3-e]pyridine derivatives, consisting of 10 newly synthesized compounds and 12 previously reported compounds, was evaluated for their potential as fungicide agents. In vitro bioassay results indicated that [...] Read more.
To identify fungicide lead compounds with novel scaffold and high efficacy, a library of 4,5-dihydrotetrazolo [1,5-a]thieno [2,3-e]pyridine derivatives, consisting of 10 newly synthesized compounds and 12 previously reported compounds, was evaluated for their potential as fungicide agents. In vitro bioassay results indicated that some target compounds exhibited certain antifungal activity against the tested fungi at a concentration of 50 μg/mL. Especially, compounds I-1, I-5, I-7, and I-12 demonstrated promising antifungal activity against C. arachidicola, R. solani, and S. sclerotiorum, with EC50 values ranging from 4.61 to 6.66 μg/mL. Additionally, transcriptome analysis revealed that the molecular mode of action of compound I-12 involves the inhibition of nitrogen metabolism and the proteasome pathway. The present work demonstrates that 4,5,6,7-tetrahydrothieno [3,2-b] pyridine represents a promising lead scaffold and provides important theoretical foundations and innovative perspectives for the development of novel and highly efficient fungicides. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

16 pages, 2088 KiB  
Article
Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network
by Ivan Kopal, Ivan Labaj, Juliána Vršková, Marta Harničárová, Jan Valíček, Alžbeta Bakošová, Hakan Tozan and Ashish Khanna
Polymers 2025, 17(13), 1868; https://doi.org/10.3390/polym17131868 - 3 Jul 2025
Viewed by 462
Abstract
This paper presents an intelligent predictive system designed to support real-time decision making in the control of rubber blend mixing processes. The core of the system is a General Regression Neural Network (GRNN), which accurately predicts key process parameters, such as viscosity (expressed [...] Read more.
This paper presents an intelligent predictive system designed to support real-time decision making in the control of rubber blend mixing processes. The core of the system is a General Regression Neural Network (GRNN), which accurately predicts key process parameters, such as viscosity (expressed as torque), temperature, and energy consumption across varying masses of the processed material. The model can evaluate the mixing progress based on the initial 10% of input data, allowing early intervention and process optimisation. Experimental validation was conducted using a Brabender Plastograph EC Plus with a natural rubber-based blend in the mass range of 60–75 g. The GRNN kernel width parameter (σ) was optimised through a 10-fold cross-validation. High predictive accuracy was confirmed by values of the coefficient of determination (R2) approaching 1, and consistently low values of the root mean square error (RMSE). This system offers a robust and scalable solution for intelligent process control, productivity enhancement, and quality assurance across diverse industrial applications, beyond rubber blending. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Graphical abstract

25 pages, 12149 KiB  
Article
Total Flavones of Rhododendron Protect Against Ischemic Cerebral Injury by Regulating the Phosphorylation of the RhoA-ROCK2 Pathway via Endothelial-Derived H2S
by Xiaoqing Sun, Xingyu Zhang, Yuwen Li, Jiyue Wen, Zhiwu Chen and Shuo Chen
Curr. Issues Mol. Biol. 2025, 47(7), 513; https://doi.org/10.3390/cimb47070513 - 3 Jul 2025
Viewed by 350
Abstract
This study aims to investigate the mechanism by which the total flavones of Rhododendron (TFR) protect against cerebral ischemic injury through the endothelial-derived H2S-mediated regulation of RhoA phosphorylation at the Ser188 and Rho kinase 2 (ROCK2) phosphorylation at Thr436. [...] Read more.
This study aims to investigate the mechanism by which the total flavones of Rhododendron (TFR) protect against cerebral ischemic injury through the endothelial-derived H2S-mediated regulation of RhoA phosphorylation at the Ser188 and Rho kinase 2 (ROCK2) phosphorylation at Thr436. For experimental design, mouse or rat cerebrovascular endothelial cells (ECs) were cultured with or without neurons and subjected to hypoxia/reoxygenation (H/R) injury. The vasodilation of the cerebral basilar artery was assessed. Cerebral ischemia/reperfusion (I/R) injury was induced in mice by bilateral carotid artery ligation, followed by Morris water maze and open field behavioral assessments. The protein levels of cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), RhoA, ROCK2, p-RhoA (RhoA phosphorylated at Ser188), and p-ROCK2 (ROCK2 phosphorylated at Thr436) were quantified. Additionally, the activities of RhoA and ROCK2 were measured. Notably, TFR significantly inhibited H/R-induced H2S reduction and suppressed the increased expression and activity of RhoA and ROCK2 in ECs, effects attenuated by CSE or 3-MST knockout. Moreover, TFR-mediated cerebrovascular dilation was reduced by RhoA or ROCK2 inhibitors, while the protective effect of TFR against cerebral I/R injury in mice was markedly attenuated by the heterozygous knockout of ROCK2. In the ECs-co-cultured neurons, the inhibition of TFR on H/R-induced neuronal injury and decrease in H2S level in the co-culture was attenuated by the knockout of CSE or 3-MST in the ECs. TFR notably inhibited the H/R-induced upregulation of neuronal RhoA, ROCK2, and p-ROCK2 protein levels, as well as the activities of RhoA and ROCK2, while reversing the decrease in p-RhoA. However, the knockout of CSE or 3-MST in the ECs significantly attenuated the inhibition of TFR on these increases. Furthermore, 3-MST knockout in ECs attenuated the TFR-mediated suppression of p-RhoA reduction. Additionally, CSE or 3-MST knockout in ECs exacerbated H/R-induced neuronal injury, reduced H2S level in the co-culture system, and increased RhoA activity and ROCK2 expression in neurons. In summary, TFR protected against ischemic cerebral injury by endothelial-derived H2S promoting the phosphorylation of RhoA at Ser188 but inhibited the phosphorylation of ROCK2 at Thr436 to inhibit the RhoA-ROCK2 pathway in neurons. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 1436 KiB  
Article
Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma
by Sangyoung Lee, Da Hyun Kim, Sabin Shin, Jee Sun Min, Duk Yeon Kim, Seong Jun Jo, Ui Min Jerng and Soo Kyung Bae
Pharmaceuticals 2025, 18(7), 998; https://doi.org/10.3390/ph18070998 - 2 Jul 2025
Viewed by 411
Abstract
Background/Objectives: We developed and validated a robust and simple LC–MS/MS method for the simultaneous quantification of amoxicillin and clavulanate in human plasma relative to previously reported methods. Methods: Amoxicillin; clavulanate; and an internal standard, 4-hydroxytolbutamide, in human K2-EDTA plasma, [...] Read more.
Background/Objectives: We developed and validated a robust and simple LC–MS/MS method for the simultaneous quantification of amoxicillin and clavulanate in human plasma relative to previously reported methods. Methods: Amoxicillin; clavulanate; and an internal standard, 4-hydroxytolbutamide, in human K2-EDTA plasma, were deproteinized with acetonitrile and then subjected to back-extraction using distilled water–dichloromethane. Separation was performed on a Poroshell 120 EC-C18 column with a mobile-phase gradient comprising 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.5 mL/min within 6.5 min. The negative electrospray ionization modes were utilized to monitor the transitions of m/z 363.9→223.1 (amoxicillin), m/z 198.0→135.8 (clavulanate), and m/z 285.0→185.8 (4-hydroxytolbutamide). Results/Conclusions: Calibration curves exhibited linear ranges of 10–15,000 ng/mL for amoxicillin (r ≥ 0.9945) and 20–10,000 ng/mL for clavulanate (r ≥ 0.9959). Intra- and inter-day’s coefficients of variation, indicating the precision of the assay, were ≤7.08% for amoxicillin and ≤10.7% for clavulanate, and relative errors in accuracy ranged from −1.26% to 10.9% for amoxicillin and from −4.41% to 8.73% for clavulanate. All other validation results met regulatory criteria. Partial validation in lithium–heparin, sodium–heparin, and K3-EDTA plasma confirmed applicability in multicenter or large-scale studies. This assay demonstrated itself to be environmentally friendly, as assessed by the Analytical GREEnness (AGREE) tool, and was successfully applied to a clinical pharmacokinetic study of an Augmentin® IR tablet (250/125 mg). The inter-individual variabilities in clavulanate exposures (AUCt and Cmax) were significantly greater than in amoxicillin, and they may inform the clinical design of future drug–drug interaction. Full article
Show Figures

Graphical abstract

16 pages, 3403 KiB  
Article
IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems
by Soni Kumari, Nawab Ali, Mia Dagati and Younsuk Dong
AgriEngineering 2025, 7(7), 207; https://doi.org/10.3390/agriengineering7070207 - 1 Jul 2025
Viewed by 400
Abstract
Precision agriculture increasingly relies on real-time data from soil sensors to optimize irrigation and nutrient application. Soil moisture and electrical conductivity (EC) are key indicators in irrigation and fertigation systems, directly affecting water-use efficiency and nutrient delivery to crops. This study evaluates the [...] Read more.
Precision agriculture increasingly relies on real-time data from soil sensors to optimize irrigation and nutrient application. Soil moisture and electrical conductivity (EC) are key indicators in irrigation and fertigation systems, directly affecting water-use efficiency and nutrient delivery to crops. This study evaluates the performance of an IoT-based soil-monitoring system for real-time tracking of EC and soil moisture under varied fertigation conditions in both laboratory and field scenarios. The EC sensor showed strong agreement with laboratory YSI measurements (R2 = 0.999), confirming its accuracy. Column experiments were conducted in three soil types (sand, sandy loam, and loamy sand) to assess the EC and soil moisture response to fertigation. Sand showed rapid infiltration and low retention, with EC peaking at 420 µS/cm and moisture 0.33 cm3/cm3, indicating high leaching risk. Sandy loam retained the most moisture (0.35 cm3/cm3) and showed the highest EC (550 µS/cm), while loamy sand exhibited intermediate behavior. Fertilizer-specific responses showed higher EC in Calcium Ammonium Nitrate (CAN)-treated soils, while Monoammonium Phosphate (MAP) showed lower, more stable EC due to limited phosphorus mobility. Field validation confirmed that the IoT system effectively captured irrigation and fertigation events through synchronized EC and moisture peaks. These findings highlight the efficacy of IoT-based sensor networks for continuous, high-resolution soil monitoring and their potential to support precision fertigation strategies, enhancing nutrient-use efficiency while minimizing environmental losses. Full article
(This article belongs to the Section Agricultural Irrigation Systems)
Show Figures

Figure 1

24 pages, 6571 KiB  
Article
Leech Extract Enhances the Pro-Angiogenic Effects of Endothelial Cell-Derived Exosomes in a Mouse Model of Ischemic Stroke
by Yushuang Cao, Jin Sun, Lichen Guo, Meng Wang, Linlin Su, Tong Zhang, Shaoxia Wang, Lijuan Chai, Qing Yuan and Limin Hu
Curr. Issues Mol. Biol. 2025, 47(7), 499; https://doi.org/10.3390/cimb47070499 - 1 Jul 2025
Viewed by 315
Abstract
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech [...] Read more.
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech promotes angiogenesis through EC-Exo. Objective: This study aims to further explore whether leech regulates Exos to promote the establishment of collateral circulation in mice with ischemic stroke (IS) and the specific mechanisms involved. Methods: Here, we utilized an in vitro co-culture system comprising ECs and pericytes to investigate the impact of Leech-EC-Exo on enhancing the proliferation and migration of mouse brain microvascular pericytes (MBVPs). We further established an in vivo mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) to investigate the effects and underlying mechanisms of leech on collateral circulation establishment. Results: The findings demonstrated that leech significantly enhanced the in vitro cell migration number and migration number of pericytes. Therefore, it can also enhance the effect of EC-Exo on improving the infarct area and gait of mice, as well as modulating the HIFα-VEGF-DLL4-Notch1 signaling pathway to promote cerebral angiogenesis and facilitating the stable maturation of neovascularization in vivo. Conclusions: These results suggest that leech has the potential to enhance collateral circulation establishment, and its mechanism may involve the modulation of miRNA content in Exos and the promotion of signaling pathways associated with angiogenesis and vascular maturation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 20345 KiB  
Article
A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy
by Ilyas Nurmemet, Yilizhati Aili, Yang Xiang, Aihepa Aihaiti, Yu Qin and Bilali Aizezi
Agronomy 2025, 15(7), 1590; https://doi.org/10.3390/agronomy15071590 - 29 Jun 2025
Viewed by 243
Abstract
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and [...] Read more.
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and Sentinel-2 multispectral data for China’s Yutian Oasis. The random forest (RF) feature selection algorithm identified three optimal parameters: Huynen_vol (volume scattering component), RVI_Freeman (radar vegetation index), and NDSI (normalized difference salinity index). Based on the interactions of these three optimal features within the 3D feature space, we constructed the Optical-Radar Salinity Inversion Model (ORSIM). Subsequent validation using measured soil electrical conductivity (EC) data (May–June 2023) demonstrated strong model performance, with ORSIM achieving R2 = 0.75 and RMSE = 7.57 dS/m. Spatial analysis revealed distinct salinity distribution patterns: (1) Mildly salinized areas clustered in the central oasis region, and (2) severely salinized zones predominated in northern low-lying margins. This spatial heterogeneity strongly correlated with local topography-higher elevation (south) to desert depression (north) gradient. The 3D feature space approach advances soil salinity monitoring by overcoming traditional 2D limitations while providing an accurate, transferable framework for arid ecosystem management. Furthermore, this study significantly expands the application potential of SAR data in soil salinization research. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

15 pages, 676 KiB  
Article
Development of an HPLC-FLD Method for Estradiol and Metabolites: Application of Solid-Phase Microextraction
by Anna Kaliszewska, Piotr Struczyński, Tomasz Bączek and Lucyna Konieczna
Int. J. Mol. Sci. 2025, 26(13), 6194; https://doi.org/10.3390/ijms26136194 - 27 Jun 2025
Viewed by 442
Abstract
Estrogens are potent hormones involved in numerous physiological and pathological processes. Their typically low concentrations in biological samples necessitate highly sensitive analytical methods for accurate quantification. This study presents a high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method for quantifying estradiol and its [...] Read more.
Estrogens are potent hormones involved in numerous physiological and pathological processes. Their typically low concentrations in biological samples necessitate highly sensitive analytical methods for accurate quantification. This study presents a high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method for quantifying estradiol and its metabolites in blood serum and saliva. Analytes were extracted using solid-phase microextraction with a divinylbenzene sorbent and methanol as the desorption agent. FLD was performed after the derivatization of the analytes with dansyl chloride. Separation was achieved on a Poroshell 120 EC-C18 column (2.1 × 100 mm, 2.7 µm) at 50 °C using water with 0.1% formic acid and methanol as the mobile phase at 0.5 mL/min. A gradient elution increased the methanol concentration from 76% to 100% over 0–8 min, then it returned to 76% at 8.1 min and was held until 11 min had passed. Detection was at λEX 350 nm and λEM 530 nm. Good linearity was observed for estradiol, 2-hydroxyestradiol, and 2-methoxyestradiol (10–300 ng/mL; R2 = 0.9893–0.9995). The LOQ for all analytes was 10 ng/mL. Solid-phase microextraction (SPME) offered advantages over liquid–liquid extraction. The method is suitable for quantifying estrogens in the 10 ng/mL–1 µg/mL range. Full article
Show Figures

Figure 1

Back to TopTop