IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. IoT-Based Soil Moisture and EC-Monitoring System
2.1.1. Hardware and Software Design
2.1.2. Data Processing
2.2. Sensor Calibration
2.3. Experimental Design
2.3.1. Column Studies
2.3.2. Field Experiment
2.4. Data Analysis
3. Results
3.1. Calibration of IoT-Based Sensors
3.2. IoT-Based EC and Soil-Moisture-Monitoring System—Column Study
3.2.1. Effect of Fertigation on EC and Soil Moisture in Sand
3.2.2. Effect of Fertigation on EC and Soil Moisture in Loamy Sand
3.2.3. Effect of Fertigation on EC and Soil Moisture in Sandy Loam Soil
3.2.4. Differential EC Response to Fertilizer Applications in Soil Columns
3.3. IoT-Based EC and Soil-Moisture-Monitoring System—Field Study
3.4. Practical Implications of IoT-Based EC and Soil Moisture Sensors in Fertigation Management
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef] [PubMed]
- Hedley, C. The Role of Precision Agriculture for Improved Nutrient Management on Farms. J. Sci. Food Agric. 2015, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Zhang, S.; Liang, X.; Wang, P.; Guo, Y.; Sun, Q.; Zhou, J.; Chen, Z. Intelligent Drip Fertigation Increases Water and Nutrient Use Efficiency of Watermelon in Greenhouse without Compromising the Yield. Agric. Water Manag. 2023, 282, 108278. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of Soil EC for the Prediction of Soil Nutrient Regime under Different Soil Water and Organic Matter Contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent Soil Electrical Conductivity Measurements in Agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Krevh, V.; Filipović, L.; Petošić, D.; Mustać, I.; Bogunović, I.; Butorac, J.; Kisić, I.; Defterdarović, J.; Nakić, Z.; Kovač, Z.; et al. Long-Term Analysis of Soil Water Regime and Nitrate Dynamics at Agricultural Experimental Site: Field-Scale Monitoring and Numerical Modeling Using HYDRUS-1D. Agric. Water Manag. 2023, 275, 108039. [Google Scholar] [CrossRef]
- Plett, D.C.; Ranathunge, K.; Melino, V.J.; Kuya, N.; Uga, Y.; Kronzucker, H.J. The Intersection of Nitrogen Nutrition and Water Use in Plants: New Paths toward Improved Crop Productivity. J. Exp. Bot. 2020, 71, 4452–4468. [Google Scholar] [CrossRef]
- Baldi, E.; Quartieri, M.; Muzzi, E.; Noferini, M.; Toselli, M. Use of in Situ Soil Solution Electric Conductivity to Evaluate Mineral n in Commercial Orchards: Preliminary Results. Horticulturae 2020, 6, 39. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kameyama, K.; Shinogi, Y. Electrical Conductivity and Nitrate Concentrations in an Andisol Field Using Time Domain Reflectometry. In Proceedings of the 19th World Congress of Soil Science; Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Patriquin, D.G.; Blaikie, H.; Patriquin, M.J.; Yang, C. On-Farm Measurements of PH, Electrical Conductivity and Nitrate in Soil Extracts for Monitoring Coupling and Decoupling of Nutrient Cycles. Biol. Agric. Hortic. 1993, 9, 231–272. [Google Scholar] [CrossRef]
- Chtouki, M.; Laaziz, F.; Naciri, R.; Garré, S.; Nguyen, F.; Oukarroum, A. Interactive Effect of Soil Moisture Content and Phosphorus Fertilizer Form on Chickpea Growth, Photosynthesis, and Nutrient Uptake. Sci. Rep. 2022, 12, 6671. [Google Scholar] [CrossRef] [PubMed]
- Schattman, R.E.; Jean, H.; Faulkner, J.W.; Maden, R.; McKeag, L.; Nelson, K.C.; Grubinger, V.; Burnett, S.; Erich, M.S.; Ohno, T. Effects of Irrigation Scheduling Approaches on Soil Moisture and Vegetable Production in the Northeastern U.S.A. Agric. Water Manag. 2023, 287, 108428. [Google Scholar] [CrossRef]
- Reza, M.N.; Lee, K.H.; Karim, M.R.; Haque, M.A.; Bicamumakuba, E.; Dey, P.K.; Jang, Y.Y.; Chung, S.O. Trends of Soil and Solution Nutrient Sensing for Open Field and Hydroponic Cultivation in Facilitated Smart Agriculture. Sensors 2025, 25, 453. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, G.; Sun, X. Advanced Technologies of Soil Moisture Monitoring in Precision Agriculture: A Review. J. Agric. Food Res. 2024, 18, 101473. [Google Scholar] [CrossRef]
- Ali, N.; Dong, Y.; Rouland, G. Estimation of Deep Percolation in Agricultural Soils Utilizing a Weighing Lysimeter and Soil Moisture Sensors. Sci. Total Environ. 2025, 969, 178974. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil Electrical Conductivity as a Function of Soil Water Content and Implications for Soil Mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Islam, M.R.; Oliullah, K.; Kabir, M.M.; Alom, M.; Mridha, M.F. Machine Learning Enabled IoT System for Soil Nutrients Monitoring and Crop Recommendation. J. Agric. Food Res. 2023, 14, 100880. [Google Scholar] [CrossRef]
- Idris, F.; Latiff, A.A.; Buntat, M.A.; Lecthmanan, Y.; Berahim, Z. IoT-Based Fertigation System for Agriculture. Bull. Electr. Eng. Inform. 2024, 13, 1574–1581. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. Solar Fertigation: A Sustainable and Smart IoT-Based Irrigation and Fertilization System for Efficient Water and Nutrient Management. Agronomy 2022, 12, 1012. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Bogena, H.R.; Huisman, J.A.; Schilling, B.; Casadesús, J. On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors. Sensors 2019, 19, 3101. [Google Scholar] [CrossRef] [PubMed]
- Campos, N.G.S.; Rocha, A.R.; Gondim, R.; da Silva, T.L.C.; Gomes, D.G. Smart & Green: An Internet-of-Things Framework for Smart Irrigation. Sensors 2020, 20, 190. [Google Scholar] [CrossRef]
- Barnard, J.H.; Edeh, J.A.; van Rensburg, L.D.; du Preez, C.C. Calbration of an Apparent Electrical Conductivity Sensor Using Capacitance Probes for Determining Soil Water Content. Soil. Sci. Soc. Am. J. 2025, 89, e20799. [Google Scholar] [CrossRef]
- Minhal, F.; Ma’as, A.; Hanudin, E.; Sudira, P. Improvement of the Chemical Properties and Buffering Capacity of Coastal Sandy Soil as Affected by Clay and Organic By-Product Application. Soil. Water Res. 2020, 15, 93–100. [Google Scholar] [CrossRef]
- Nocco, M.A.; Ruark, M.D.; Kucharik, C.J. Apparent Electrical Conductivity Predicts Physical Properties of Coarse Soils. Geoderma 2019, 335, 1–11. [Google Scholar] [CrossRef]
- Mirzakhaninafchi, H.; Mani, I.; Hasan, M.; Nafchi, A.M.; Parray, R.A.; Kumar, D. Development of Prediction Models for Soil Nitrogen Management Based on Electrical Conductivity and Moisture Content. Sensors 2022, 22, 6728. [Google Scholar] [CrossRef]
- Domsch, H. Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Othaman, N.N.C.; Isa, M.N.M.; Hussin, R.; Ismail, R.C.; Naziri, S.Z.M.; Murad, S.A.Z.; Harun, A.; Ahmad, M.I. Development of Soil Electrical Conductivity (EC) Sensing System in Paddy Field. J. Phys. Conf. Ser. 2021, 1755, 012005. [Google Scholar] [CrossRef]
- Tavakoli, H.; Correa, J.; Vogel, S.; Oertel, M.; Zimne, M.; Heisig, M.; Harder, A.; Wruck, R.; Pätzold, S.; Leenen, M.; et al. The RapidMapper: State-of-the-Art in Mobile Proximal Soil Sensing Based on a Novel Multi-Sensor Platform. Comput. Electron. Agric. 2024, 226, 109443. [Google Scholar] [CrossRef]
- Puértolas, J.; Dodd, I.C. Evaluating Soil Evaporation and Transpiration Responses to Alternate Partial Rootzone Drying to Minimise Water Losses. Plant Soil. 2022, 480, 473–489. [Google Scholar] [CrossRef]
- Sebastian, B.; Lissarrague, J.R.; Santesteban, L.G.; Linares, R.; Junquera, P.; Baeza, P. Effect of Irrigation Frequency and Water Distribution Pattern on Leaf Gas Exchange of Cv. ‘Syrah’ Grown on a Clay Soil at Two Levels of Water Availability. Agric. Water Manag. 2016, 177, 410–418. [Google Scholar] [CrossRef]
- Kaplan, M.; Yilmaz, E.; Maltaş, A.; Torun, S.; Namal, E.R. Effect of Fertigation with Different PH and EC Levels on Selected Physical Soil Properties. Mediterr. Agric. Sci. 2022, 35, 105–111. [Google Scholar] [CrossRef]
Components | Quantity | Cost per unit (USD) | Manufacturer |
---|---|---|---|
Argon | 1 | 27.50 | Particle (San Francisco, CA, USA) |
Teros 12 | 6 | 245.10 | MeterGroup (Pullman, WA, USA) |
Adalogger FeatherWing | 1 | 8.95 | Adafruit Industries (New York, NY, USA) |
Class 10 MicroSD card | 1 | 9.99 | Sandisk (Milpitas, CA, USA) |
Solar charge controller | 1 | 29.99 | EcoWorthy (NorthPoint, Hong Kong) |
12V 7 Ah battery | 1 | 20.95 | Power Sonic (Reno, NV, USA) |
20W 12V solar panel | 1 | 25.00 | Newpowa (Ontario, CA, USA) |
ML-57F Weatherproof | 1 | 31.59 | Polycase (Avon, OH, USA) |
Soil Type | Sand (%) | Silt (%) | Clay (%) | pH | Lime Index | BrayP1 P | K (ppm) | Ca (ppm) | Mg (ppm) | NO3 (ppm) | OM (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | 91 | 2.9 | 6.1 | 4.6 | 72 | 38 | 6 | 43 | 4 | 2.1 | 0.3 |
Loamy sand | 85.5 | 4.9 | 9.6 | 4.1 | 65 | 57 | 16 | 93 | 11 | 12.3 | 4.3 |
Sandy loam | 77.6 | 11.9 | 10.5 | 6.7 | 72 | 73 | 66 | 607 | 56 | 4.1 | 0.9 |
Soil Depth | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g/cm3) | pH | Lime Index | BrayP1 P | K (ppm) | Ca (ppm) | Mg (ppm) | NO3 (ppm) | OM (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
15 cm | 72.6 | 15.9 | 11.5 | 1.356 | 5.9 | 69 | 244 | 155 | 789 | 170 | 13.0 | 3.2 |
30 cm | 73.6 | 15.9 | 10.5 | 1.8748 | 5.0 | 68 | 168 | 35 | 228 | 66 | 4.9 | 0.9 |
60 cm | 80.6 | 7.9 | 11.5 | 1.67 | 7.3 | 68 | 22 | 57 | 796 | 173 | 4.2 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, S.; Ali, N.; Dagati, M.; Dong, Y. IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems. AgriEngineering 2025, 7, 207. https://doi.org/10.3390/agriengineering7070207
Kumari S, Ali N, Dagati M, Dong Y. IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems. AgriEngineering. 2025; 7(7):207. https://doi.org/10.3390/agriengineering7070207
Chicago/Turabian StyleKumari, Soni, Nawab Ali, Mia Dagati, and Younsuk Dong. 2025. "IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems" AgriEngineering 7, no. 7: 207. https://doi.org/10.3390/agriengineering7070207
APA StyleKumari, S., Ali, N., Dagati, M., & Dong, Y. (2025). IoT-Enabled Soil Moisture and Conductivity Monitoring Under Controlled and Field Fertigation Systems. AgriEngineering, 7(7), 207. https://doi.org/10.3390/agriengineering7070207