Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma
Abstract
1. Introduction
2. Results and Discussion
2.1. LC–MS/MS Optimization
2.2. Method Validation
2.2.1. Specificity and Sensitivity
2.2.2. Linearity
2.2.3. Carryover
2.2.4. Accuracy and Precision
2.2.5. Matrix Effects
2.2.6. Extraction Recovery
2.2.7. Dilution Integrity
2.2.8. Stability
2.2.9. Anticoagulant (Blood Collection-Tube Types) Effects
2.2.10. Clinical Application and Incurred Sample Reanalysis (ISR)
2.2.11. Greenness Assessment
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Instrumentation and Chromatographic Conditions
3.3. Preparation of the Calibration Standards and QC Samples
3.4. Plasma Sample Preparation
3.5. Method Validation
3.5.1. Specificity and Sensitivity
3.5.2. Linearity
3.5.3. Carryover
3.5.4. Accuracy and Precision
3.5.5. Matrix Effect
3.5.6. Extraction Recovery
3.5.7. Dilution Integrity
3.5.8. Stability
3.5.9. Anticoagulant (Blood Collection-Tube Types) Effects
3.5.10. Clinical Application and ISR
3.5.11. Greenness Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUCinf | Area under the plasma concentration–time curve from time zero to infinity |
AUCt | Area under the plasma concentration–time curve from time zero to time last time |
Cmax | Maximum plasma concentration |
CV | Coefficient of variation |
DDI | Drug–drug interaction |
HPLC | High-performance liquid chromatography |
IR | Immediate-release |
IS | Internal standard |
ISR | Incurred sample reanalysis |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
LC-MS | Liquid chromatography–mass spectrometry |
LLOQ | Lower limit of quantitation |
QC | Quality control |
RE | Relative error |
RSD | Relative standard deviation |
Tmax | Time to reach Cmax |
ULOQ | Upper limit of quantitation |
References
- Healthcare Big Data Open System. Prescription Statistics; HBDOS: Wonju, Republic of Korea, 2025; Available online: https://opendata.hira.or.kr/op/opc/olapGnlInfoTab3.do (accessed on 5 June 2025).
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Curr. Issues Mol. Biol. 2015, 17, 11–21. [Google Scholar] [PubMed]
- Sethi, S.; Breton, J.; Wynne, B. Efficacy and safety of pharmacokinetically enhanced amoxicillin-clavulanate at 2000/125 milligrams twice daily for 5 days versus amoxicillin-clavulanate at 875/125 milligrams twice daily for 7 days in the treatment of acute exacerbations of chronic bronchitis. Antimicrob. Agents Chemother. 2005, 49, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Brummel, G.; Knoderer, C.A. National Amoxicillin-Clavulanate Formulation Use Pattern: A Survey. J. Pediatr. Pharmacol. Ther. 2023, 28, 192–196. [Google Scholar] [CrossRef]
- White, A.R.; Kaye, C.; Poupard, J.; Pypstra, R.; Woodnutt, G.; Wynne, B. Augmentin (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: A review of the continuing development of an innovative antimicrobial agent. J. Antimicrob. Chemother. 2004, 53 (Suppl. 1), i3–i20. [Google Scholar] [CrossRef]
- Ploechl, E.; Huber, E.G. Clinical Experience with Intravenous Augmentin in the Treatment of Paediatric Infections. J. Int. Med. Res. 1986, 14, 153–157. [Google Scholar] [CrossRef]
- Kaye, C.M.; Allen, A.; Perry, S.; McDonagh, M.; Davy, M.; Storm, K.; Bird, N.; Dewit, O. The clinical pharmacokinetics of a new pharmacokinetically enhanced formulation of amoxicillin/clavulanate. Clin. Ther. 2001, 23, 578–584. [Google Scholar] [CrossRef]
- de Velde, F.; de Winter, B.C.; Koch, B.C.; van Gelder, T.; Mouton, J.W. Non-linear absorption pharmacokinetics of amoxicillin: Consequences for dosing regimens and clinical breakpoints. J. Antimicrob. Chemother. 2016, 71, 2909–2917. [Google Scholar] [CrossRef]
- Hoizey, G.; Lamiable, D.; Frances, C.; Trenque, T.; Kaltenbach, M.; Denis, J.; Millart, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J. Pharm. Biomed. Anal. 2002, 30, 661–666. [Google Scholar] [CrossRef]
- Foroutan, S.M.; Zarghi, A.; Shafaati, A.; Khoddam, A.; Movahed, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by isocratic reversed-phase HPLC using UV detection. J. Pharm. Biomed. Anal. 2007, 45, 531–534. [Google Scholar] [CrossRef]
- Yoon, K.H.; Lee, S.Y.; Kim, W.; Park, J.S.; Kim, H.J. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC-ESI mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 813, 121–127. [Google Scholar] [CrossRef]
- Cirić, B.; Jandrić, D.; Kilibarda, V.; Jović-Stosić, J.; Dragojević-Simić, V.; Vucinić, S. Simultaneous determination of amoxicillin and clavulanic acid in the human plasma by high performance liquid chromatography-mass spectrometry (UPLC/MS). Vojnosanit. Pregl. 2010, 67, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Balázsi, J.; Paizs, C.; Irimie, F.D.; Tosa, M.; Laszlo Csaba, B.; Tötös, R. Validated LC-MS/MS Method for the Concomitant Determination of Amoxicillin and Clavulanic Acid from Human Plasma. Stud. Univ. Babeș-Bolyai Chem. 2017, 62, 167–178. [Google Scholar] [CrossRef]
- Ajitha, A.; Thenmozhi, A.; Sridharan, D.; Rajamanickam, V.; Palanivelu, M. Rapid and sensitive LC-MS/MS method for the simultaneous estimation of amoxicillin and clavulanic acid in human plasma. Asian J. Pharm. Clin. Res. 2010, 3, 106–109. [Google Scholar]
- Chelladurai, R.; Jeevanantham, S.; Vignesh, R.; Baskaran, R. A novel and high-throughput method for the simultaneous determination of Amoxicillin and Clavulanic acid in human plasma by liquid chromatography coupled with tandem mass spectrometry. Int. J. Pharm. Pharm. Sci. 2012, 4, 648–652. [Google Scholar]
- Gaikwad, A.; Gavali, S.; Narendiran; Katale, D.; Bonde, S.; Bhadane, R.P. An LC–MS–MS method for the simultaneous quantification of amoxicillin and clavulanic acid in human plasma and its pharmacokinetic application. J. Pharm. Res. 2013, 6, 804–812. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, X.; Zhao, M.; Guo, B.; Cao, G.; Yu, J.; Chen, Y.; Zhang, J. Rapid and Simultaneous Quantitation of Amoxicillin and Clavulanic Acid in Human Plasma and Urine by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. Anal. Sci. 2016, 32, 1269–1276. [Google Scholar] [CrossRef]
- Rehm, S.; Rentsch, K.M. A 2D HPLC-MS/MS method for several antibiotics in blood plasma, plasma water, and diverse tissue samples. Anal. Bioanal. Chem. 2020, 412, 715–725. [Google Scholar] [CrossRef]
- Wu, J.; Wang, C.; Zhang, R.; Du, P.; Wang, Y.; Wu, P.; Chen, X.; Huang, Y.; Jia, Y.; Shen, J. SIL-IS LC-ESI-MS/MS method for simultaneous quick detection of amoxicillin and clavulanic acid in human plasma: Development, validation and its application to a pharmacokinetics study. Biomed. Chromatogr. 2024, 38, e5964. [Google Scholar] [CrossRef]
- Xi, W.; He, L.; Guo, C.; Cai, Q.; Zeng, Z. Simultaneous Determination of Amoxicillin and Clavulanic Acid in Dog Plasma by High-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal. Lett. 2012, 45, 1764–1776. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Xie, H.; Wang, R.; Jia, Z.; Men, X.; Xu, L.; Zhang, Q. Pharmacokinetics Study of Amoxycillin and Clavulanic acid (8:1)-A New Combination in Healthy Chinese Adult Male Volunteers Using the LC–MS/MS Method. Cell Biochem. Biophys. 2013, 65, 363–372. [Google Scholar] [CrossRef]
- Ji, S.; Song, F.; Zheng, Y.; Ding, L. Simultaneous determination of amoxicillin and clavulanic acid by LC—MS/MS in human plasma and its application to a bioequivalence study. J. China Pharm. Univ. 2019, 50, 699–706. (In Chinese) [Google Scholar] [CrossRef]
- Haginaka, J.U.N.; Nakagawa, T.; Uno, T. Stability of Clavulanic Acid in Aqueous Solutions. Chem. Pharm. Bull. 1981, 29, 3334–3341. [Google Scholar] [CrossRef]
- Santos, V.C.; Pereira, J.F.B.; Haga, R.B.; Rangel-Yagui, C.O.; Teixeira, J.A.C.; Converti, A.; Pessoa, A. Stability of clavulanic acid under variable pH, ionic strength and temperature conditions. A new kinetic approach. Biochem. Eng. J. 2009, 45, 89–93. [Google Scholar] [CrossRef]
- Hammad, S.F.; Hamid, M.A.A.; Adly, L.; Elagamy, S.H. Comprehensive review of greenness, whiteness, and blueness assessments of analytical methods. Green Anal. Chem. 2025, 12, 100209. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530. [Google Scholar] [CrossRef]
- Bower, J.F.; McClung, J.B.; Watson, C.; Osumi, T.; Pastre, K. Recommendations and best practices for reference standards and reagents used in bioanalytical method validation. AAPS J. 2014, 16, 352–356. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 5 June 2025).
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. M10 BIOANALYTICAL METHOD VALIDATION AND STUDY SAMPLE ANALYSIS. 2022. Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 5 June 2025).
- Al-Sallami, H.S.; Cheah, S.L.; Han, S.Y.; Liew, J.; Lim, J.; Ng, M.A.; Solanki, H.; Soo, R.J.; Tan, V.; Duffull, S.B. Between-subject variability: Should high be the new normal? Eur. J. Clin. Pharmacol. 2014, 70, 1403–1404. [Google Scholar] [CrossRef]
- Vree, T.B.; Dammers, E.; Exler, P.S. Identical pattern of highly variable absorption of clavulanic acid from four different oral formulations of co-amoxiclav in healthy subjects. J. Antimicrob. Chemother. 2003, 51, 373–378. [Google Scholar] [CrossRef]
- De Velde, F.; De Winter, B.C.M.; Koch, B.C.P.; Van Gelder, T.; Mouton, J.W. Highly variable absorption of clavulanic acid during the day: A population pharmacokinetic analysis. J. Antimicrob. Chemother. 2018, 73, 469–476. [Google Scholar] [CrossRef]
- Paintaud, G.; Alván, G.; Dahl, M.L.; Grahnén, A.; Sjövall, J.; Svensson, J.O. Nonlinearity of amoxicillin absorption kinetics in human. Eur. J. Clin. Pharmacol. 1992, 43, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M.; Yin, L. Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green analytical chemistry metrics: A review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef]
- Yin, L.; Yu, L.; Guo, Y.; Wang, C.; Ge, Y.; Zheng, X.; Zhang, N.; You, J.; Zhang, Y.; Shi, M. Green analytical chemistry metrics for evaluating the greenness of analytical procedures. J. Pharm. Anal. 2024, 14, 101013. [Google Scholar] [CrossRef]
Analytes | Instrument | Matrices | Sample Volume (µL) | Internal Standard | Sample Preparation | Injection Volume (µL) | Calibration Range (ng/mL) | Run Time (min) | Full Validation | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin | LC–MS/MS | Human plasma | 100 | 4-hydroxytolbutamide | PP followed by LLE | 5 | 10–15,000 | 6.5 | Yes | PM |
Clavulanate | 20–10,000 | |||||||||
Amoxicillin | HPLC | Human plasma | 100 | none | PP | 20 | 625–20,000 | 10 | n/a | [9] |
Clavulanate | 312.5–10,000 | |||||||||
Amoxicillin | HPLC | Human plasma | 500 | Allopurinol | PP followed by LLE | 50 | 200–12,000 | 10 | n/a | [10] |
Clavulanate | 147–4908 | |||||||||
Amoxicillin | LC–MS | Human plasma | 200 | Terbutaline | PP followed by LLE | 2 | 125–8000 | 3 | n/a | [11] |
Clavulanate | 62.5–4000 | |||||||||
Amoxicillin | LC–MS | Human plasma | 200 | Carbamazepine | PP | 4 | 10–40,000 | 5 | n/a | [12] |
Clavulanate | 10–10,000 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 450 | Ampicillin | PP with LLE | 15 | 190–22,222 | 5 | n/a | [13] |
Clavulanate | 147–4908 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 200 | Diclofenac | PP with LLE | none | 500–40,000 | none | n/a | [14] |
Clavulanate | 100–6000 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 250 | Hydrochlorothiazide | SPE and evaporation | 10 | 103–6822 | 2 | n/a | [15] |
Clavulanate | 46–3026 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 200 | Amoxicillin-d4 | SPE and evaporation | 10 | 50–31,500 | 1.5 | n/a | [16] |
Clavulanate | Ampicillin | 25–6000 | ||||||||
Amoxicillin | LC–MS/MS | Human plasma | 200 | Ampicillin | SPE and evaporation | 5 | 50–10,000 | 2.4 | Yes | [17] |
Clavulanate | 25–5000 | |||||||||
Amoxicillin | Human urine | Amoxicillin-d4 | 50–10,000 | |||||||
Clavulanate | Sulbactam | 50–10,000 | ||||||||
Amoxicillin | LC–MS/MS | Human plasma | 100 | Amoxicillin-d4 | PP followed by LLE | 50 | 3125–125,000 | 10.25 | n/a | [18] |
Clavulanate | 1000–40,000 | |||||||||
Amoxicillin | Human tissue | 5 (mg) | Amoxicillin-d4 | PP | 100 | 200–25,000 | ||||
Clavulanate | Flucloxacillin-13C415N | 200–25,000 | ||||||||
Amoxicillin | LC–MS/MS | Human plasma | 50 | Amoxicillin-d4 | PP followed by LLE and evaporation | 5 | 40–5000 | 4 | Yes | [19] |
Clavulanate | 30–2500 | |||||||||
Amoxicillin | LC–MS/MS | Dog plasma | 200 | none | PP | none | 0.5–500 | 12 | n/a | [20] |
Clavulanate | 0.5–500 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 100 | Clenbuterol hydrochloride | PP followed by LLE | 10 | 5–16,000 | 5.5 | n/a | [21] |
Clavulanate | 50–2000 | |||||||||
Amoxicillin | LC–MS/MS | Human plasma | 50 | Amoxicillin-d4 | LLE and evaporation | 5 | 20–5000 | 2 | n/a | [22] |
Clavulanate | 10–2500 |
Amoxicillin | Clavulanate | ||||||
---|---|---|---|---|---|---|---|
Calibration Concentrations (ng/mL) | Back-Calculated (Mean ± SD; ng/mL) | Precision (RSD, %) | Accuracy (RE, %) | Calibration Concentrations (ng/mL) | Back-Calculated (Mean ± SD; ng/mL) | Precision (RSD, %) | Accuracy (RE, %) |
10 | 9.83 ± 0.113 | 1.14 | 1.68 | 20 | 19.7 ± 0.264 | 1.34 | 1.42 |
50 | 53.2 ± 2.65 | 4.98 | −6.37 | 100 | 104 ± 5.57 | 5.38 | −3.57 |
250 | 269 ± 11.6 | 4.30 | −7.67 | 200 | 211 ± 8.60 | 4.08 | −5.25 |
500 | 525 ± 14.0 | 2.67 | −4.93 | 500 | 511 ± 16.6 | 3.25 | −2.20 |
2500 | 2550 ± 120 | 4.72 | −1.93 | 1000 | 1040 ± 46.5 | 4.49 | −3.60 |
7500 | 7040 ± 210 | 2.98 | 6.13 | 5000 | 4780 ± 107 | 2.23 | 4.33 |
15,000 | 13,000 ± 137 | 1.05 | 13.1 | 10,000 | 9110 ± 201 | 2.21 | 8.90 |
Slope | 0.000715 ± 0.0000513 | – | – | Slope | 0.000125 ± 0.0000108 | – | – |
Intercept | 0.000838 ± 0.000493 | – | – | Intercept | 0.000760 ± 0.000310 | – | – |
r | 0.9963 ± 0.00112 | – | – | r | 0.9978 ± 0.000929 | – | – |
Analytes | Spiked Concentration (ng/mL) | Intra-Day (n = 6) | Inter-Day (n = 10) | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (ng/mL) | Accuracy (RE, %) | Precision (RSD, %) | Mean ± SD (ng/mL) | Accuracy (RE, %) | Precision (RSD, %) | ||
Amoxicillin | 10 | 8.91 ± 0.476 | 10.9 | 5.34 | 8.98 ± 0.535 | 10.2 | 5.95 |
30 | 27.1 ± 1.47 | 9.88 | 5.44 | 28.3 ± 2.00 | 5.69 | 7.08 | |
6000 | 5730 ± 181 | 4.53 | 3.15 | 6070 ± 318 | −1.26 | 5.24 | |
12,000 | 10,700 ± 343 | 10.6 | 3.20 | 11,100 ± 263 | 7.91 | 2.38 | |
Clavulanate | 20 | 19.1 ± 2.04 | 4.75 | 10.7 | 19.6 ± 1.71 | 2.13 | 8.74 |
60 | 56.5 ± 2.68 | 5.82 | 4.74 | 62.3 ± 4.25 | −3.67 | 6.83 | |
4000 | 3830 ± 140 | 4.32 | 3.64 | 4180 ± 266 | −4.41 | 6.37 | |
8000 | 7300 ± 291 | 8.73 | 3.99 | 7840 ± 256 | 1.98 | 3.27 |
Amoxicillin | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plasma Lot | 30 ng/mL | 6000 ng/mL | 12,000 ng/mL | ||||||
Accuracy (RE, %) | RSD, % | IS Normalized MF | Accuracy (RE, %) | RSD, % | IS Normalized MF | Accuracy (RE, %) | RSD, % | IS Normalized MF | |
Lot-1 | 98.9 | 5.94 | 1.00 | 105 | 5.39 | 0.959 | 92.9 | 0.990 | 0.932 |
Lot-2 | 94.1 | 10.5 | 0.927 | 96.8 | 3.65 | 0.922 | 91.4 | 0.774 | 0.876 |
Lot-3 | 92.9 | 1.83 | 1.00 | 99.7 | 4.75 | 0.983 | 95.0 | 0.595 | 0.911 |
Lot-4 | 89.0 | 5.08 | 1.03 | 101 | 2.66 | 1.01 | 89.1 | 0.159 | 0.930 |
Lot-5 | 96.8 | 12.1 | 1.07 | 104 | 9.88 | 0.993 | 92.1 | 0.921 | 0.958 |
Lot-6 | 90.8 | 2.26 | 1.04 | 96.2 | 2.50 | 0.994 | 92.1 | 2.30 | 0.959 |
Lot-7 | 87.9 | 3.38 | 1.08 | 94.0 | 0.677 | 1.09 | 89.9 | 1.81 | 1.07 |
Lot-8 | 91.8 | 10.5 | 0.984 | 96.3 | 5.51 | 1.09 | 86.2 | 0.820 | 1.10 |
Clavulanate | |||||||||
Plasma Lot | 60 ng/mL | 4000 ng/mL | 8000 ng/mL | ||||||
Accuracy (RE, %) | RSD, % | IS Normalized MF | Accuracy (RE, %) | RSD, % | IS Normalized MF | Accuracy (RE, %) | RSD, % | IS Normalized MF | |
Lot-1 | 108 | 6.55 | 1.01 | 112 | 6.98 | 1.02 | 99.4 | 2.28 | 0.990 |
Lot-2 | 103 | 8.53 | 0.929 | 98.6 | 1.65 | 0.934 | 96.8 | 0.365 | 0.903 |
Lot-3 | 107 | 1.99 | 0.964 | 103 | 5.42 | 1.00 | 103 | 2.07 | 0.965 |
Lot-4 | 97.7 | 1.23 | 0.981 | 105 | 1.35 | 1.02 | 96.9 | 1.90 | 0.962 |
Lot-5 | 103 | 13.1 | 1.02 | 104 | 11.0 | 1.04 | 94.6 | 1.12 | 1.00 |
Lot-6 | 92.4 | 2.60 | 1.05 | 98.2 | 2.67 | 1.04 | 94.0 | 5.57 | 1.02 |
Lot-7 | 96.1 | 7.21 | 1.09 | 93.1 | 0.608 | 1.12 | 91.3 | 1.16 | 1.12 |
Lot-8 | 94.1 | 5.79 | 1.02 | 95.8 | 5.46 | 1.13 | 88.6 | 2.95 | 1.12 |
Analytes | Spiked Concentration (ng/mL) | Extraction Recovery (%) | |
---|---|---|---|
Mean ± SD | RSD | ||
Amoxicillin | 30 | 87.4 ± 4.36 | 5.00 |
6000 | 86.7 ± 3.03 | 3.50 | |
12,000 | 87.4 ± 3.68 | 4.21 | |
Clavulanate | 60 | 85.7 ± 4.15 | 4.85 |
4000 | 85.4 ± 2.91 | 2.91 | |
8000 | 85.8 ± 3.53 | 3.53 | |
4-Hydroxytolbutamide | 20 | 87.9 ± 2.77 | 4.87 |
Analytes | Spiked Concentration (ng/mL) | Benchtop (4 h, Ambient) | Long-Term (60 Days, −80 °C) | Freeze–Thaw (3 Cycles) | Post-Preparative (24 h at 4 °C, Autosampler) | ||||
---|---|---|---|---|---|---|---|---|---|
RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | ||
Amoxicillin | 30 | 5.28 | 4.99 | 3.56 | 3.78 | 12.8 | 2.25 | −7.46 | 4.86 |
6000 | 5.58 | 2.22 | 7.56 | 10.2 | 11.2 | 1.11 | 3.33 | 3.35 | |
12,000 | 6.99 | 2.17 | 13.0 | 6.49 | 13.1 | 3.37 | 12.0 | 2.49 | |
Clavulanate | 60 | 12.5 | 2.48 | 2.41 | 8.78 | 13.8 | 4.19 | −3.10 | 6.32 |
4000 | 14.0 | 3.61 | 7.64 | 8.30 | 12.3 | 2.15 | 6.48 | 2.13 | |
8000 | 14.0 | 1.69 | 12.3 | 7.34 | 14.3 | 3.78 | 11.8 | 2.87 |
Anticoagulants | Analytes | Spiked Concentration (ng/mL) | Intra-Day (n = 6) | ||
---|---|---|---|---|---|
Mean ± SD (ng/mL) | Accuracy (RE, %) | Precision (RSD, %) | |||
Lithium–heparin | Amoxicillin | 30 | 30.9 ± 0.999 | 3.14 | 3.23 |
6000 | 5900 ± 266 | −1.62 | 4.51 | ||
12,000 | 11,100 ± 554 | −7.63 | 5.00 | ||
Clavulanate | 60 | 58.2 ± 2.44 | −2.90 | 4.19 | |
4000 | 3940 ± 252 | −1.53 | 6.41 | ||
8000 | 7830 ± 487 | −2.20 | 6.22 | ||
Sodium–heparin | Amoxicillin | 30 | 29.8 ± 1.30 | −0.806 | 4.35 |
6000 | 5990 ± 151 | −0.133 | 2.52 | ||
12,000 | 11,860 ± 996 | −1.15 | 8.40 | ||
Clavulanate | 60 | 63.6 ± 2.75 | 6.48 | 4.33 | |
4000 | 3950 ± 73.4 | −1.16 | 1.86 | ||
8000 | 7990 ± 352 | −0.217 | 4.40 | ||
K3-EDTA | Amoxicillin | 30 | 31.8 ± 1.26 | 5.72 | 3.97 |
6000 | 6015 ± 365 | 0.417 | 6.08 | ||
12,000 | 11,700 ± 596 | −3.00 | 5.11 | ||
Clavulanate | 60 | 59.6 ± 5.30 | −1.41 | 8.90 | |
4000 | 3800 ± 148 | −7.37 | 3.88 | ||
8000 | 7760 ± 398 | −3.10 | 5.13 |
Parameters | Amoxicillin | Clavulanate |
---|---|---|
Mean ± SD | Mean ± SD | |
AUCt (ng∙h/mL) | 12,200 ± 2240 | 5630 ± 2660 |
AUCinf (ng∙h/mL) | 12,300 ± 2250 | 5680 ± 2650 |
Cmax (ng/mL) | 5050 ± 1150 | 2430 ± 1070 |
Tmax (h) | 1.5 [0.5–2.0] | 1.5 [1.0–2.5] |
Terminal t1/2 (h) | 1.26 ± 0.188 | 0.972 ± 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, D.H.; Shin, S.; Min, J.S.; Kim, D.Y.; Jo, S.J.; Jerng, U.M.; Bae, S.K. Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma. Pharmaceuticals 2025, 18, 998. https://doi.org/10.3390/ph18070998
Lee S, Kim DH, Shin S, Min JS, Kim DY, Jo SJ, Jerng UM, Bae SK. Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma. Pharmaceuticals. 2025; 18(7):998. https://doi.org/10.3390/ph18070998
Chicago/Turabian StyleLee, Sangyoung, Da Hyun Kim, Sabin Shin, Jee Sun Min, Duk Yeon Kim, Seong Jun Jo, Ui Min Jerng, and Soo Kyung Bae. 2025. "Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma" Pharmaceuticals 18, no. 7: 998. https://doi.org/10.3390/ph18070998
APA StyleLee, S., Kim, D. H., Shin, S., Min, J. S., Kim, D. Y., Jo, S. J., Jerng, U. M., & Bae, S. K. (2025). Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma. Pharmaceuticals, 18(7), 998. https://doi.org/10.3390/ph18070998