Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,243)

Search Parameters:
Keywords = EC23

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2422 KiB  
Article
A Conserved N-Terminal Di-Arginine Motif Stabilizes Plant DGAT1 and Modulates Lipid Droplet Organization
by Somrutai Winichayakul, Hong Xue and Nick Roberts
Int. J. Mol. Sci. 2025, 26(15), 7406; https://doi.org/10.3390/ijms26157406 (registering DOI) - 31 Jul 2025
Abstract
Diacylglycerol-O-acyltransferase 1 (DGAT1, EC 2.3.1.20) is a pivotal enzyme in plant triacylglycerol (TAG) biosynthesis. Previous work identified conserved di-arginine (R) motifs (R-R, R-X-R, and R-X-X-R) in its N-terminal cytoplasmic acyl-CoA binding domain. To elucidate their functional significance, we engineered R-rich sequences in the [...] Read more.
Diacylglycerol-O-acyltransferase 1 (DGAT1, EC 2.3.1.20) is a pivotal enzyme in plant triacylglycerol (TAG) biosynthesis. Previous work identified conserved di-arginine (R) motifs (R-R, R-X-R, and R-X-X-R) in its N-terminal cytoplasmic acyl-CoA binding domain. To elucidate their functional significance, we engineered R-rich sequences in the N-termini of Tropaeolum majus and Zea mays DGAT1s. Comparative analysis with their respective non-mutant constructs showed that deleting or substituting R with glycine in the N-terminal region of DGAT1 markedly reduced lipid accumulation in both Camelina sativa seeds and Saccharomyces cerevisiae cells. Immunofluorescence imaging revealed co-localization of non-mutant and R-substituted DGAT1 with lipid droplets (LDs). However, disruption of an N-terminal di-R motif destabilizes DGAT1, alters LD organization, and impairs recombinant oleosin retention on LDs. Further evidence suggests that the di-R motif mediates DGAT1 retrieval from LDs to the endoplasmic reticulum (ER), implicating its role in dynamic LD–ER protein trafficking. These findings establish the conserved di-R motifs as important regulators of DGAT1 function and LD dynamics, offering insights for the engineering of oil content in diverse biological systems. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
16 pages, 2891 KiB  
Article
Hysteresis Loops Design for Nanoporous Ferroelectrics
by Xuan Huang, Fengjuan Yang, Lifei Du, Jiong Wang, Yongfeng Liang and Pingping Wu
Materials 2025, 18(15), 3606; https://doi.org/10.3390/ma18153606 (registering DOI) - 31 Jul 2025
Abstract
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we [...] Read more.
The design and adjustable properties of nanoporous materials are important for current and future technological applications, research, and development. In addition, nanoporous ferroelectric materials have the potential to achieve competitive ferroelectric, dielectric, and piezoelectric characteristics. In this work, using the phase-field model, we found that the shape of pores in barium titanite ceramics governs the formation of the ferroelectric domain structure and the switching hysteresis loop. A remanent polarization-coercive field (Pr-Ec) diagram is introduced to denote the shape of the hysteresis loops. We performed a fundamental study in understanding how the domain structures affect the properties of domain-engineered porous ferroelectrics. Simulation results show that the hysteresis loop of porous ferroelectrics can be designed by controlling the shape/orientation of the ellipse-shaped pores. Numerical simulations also verify that the dielectric/piezoelectric properties can be improved with artificially designed porous structures. These phase-field results may be useful in the development of highly performing lead-free ferroelectric/piezoelectric materials. Full article
(This article belongs to the Special Issue Advances in Piezoelectric/Dielectric Ceramics and Composites)
Show Figures

Figure 1

18 pages, 3738 KiB  
Article
Effect of Alternate Sprinkler Irrigation with Saline and Fresh Water on Soil Water–Salt Transport and Corn Growth
by Yue Jiang, Luya Wang, Yanfeng Li, Hao Li and Run Xue
Agronomy 2025, 15(8), 1854; https://doi.org/10.3390/agronomy15081854 (registering DOI) - 31 Jul 2025
Abstract
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels [...] Read more.
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels (3 and 5 g·L−1, representing S1 and S2, respectively) and three irrigation strategies—saline–fresh–saline–fresh (F1), saline–fresh (F2), and mixed saline–fresh (F3)—were tested, resulting in six treatments: S1F1, S1F2, S1F3, S2F1, S2F2, and S2F3. S1F1 significantly improved soil water retention at a 30–50 cm depth and reduced surface electrical conductivity (EC) and Na+ concentration (p < 0.05). S1F1 also promoted more uniform Mg2+ distribution and limited Ca2+ loss. Under high salinity (5 g·L−1), surface salt accumulation and ion concentration (Na+, Mg2+, and Ca2+) increased, particularly in S2F3. Corn growth under alternating irrigation (F1/F2) outperformed the mixed mode (F3), with S1F1 achieving the highest plant height, leaf area, grain number, and 100-grain weight. The S1F1 yield surpassed others by 0.4–3.0% and maintained a better ion balance. These results suggest that alternating irrigation with low-salinity water (S1F1) effectively regulates root-zone salinity and improves crop productivity, offering a practical strategy for the sustainable use of low-saline water resources. Full article
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 (registering DOI) - 30 Jul 2025
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

13 pages, 4029 KiB  
Article
Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China
by Sikai Liu, Juan Zhou, Jun Wen, Guobin Yang, Yangruixue Chen, Xing Li and Xiao Li
Atmosphere 2025, 16(8), 925; https://doi.org/10.3390/atmos16080925 - 30 Jul 2025
Abstract
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine [...] Read more.
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing summer maximum temperature (Tmax) variability across China during 1979–2014, with the variability defined as the standard deviation of daily Tmax anomalies for each summer. Results show that most CMIP6 models fail to reproduce the observed north–south gradient of Tmax variability with significant regional biases and limited agreement on temporal trends. The multi-model ensemble (MME) outperforms most individual models in terms of root-mean-square error and spatial correlation, but it still under-represents the observed temporal trends, especially over southeastern and central China. Taylor diagram analysis reveals that EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR, and the MME perform relatively well in capturing the spatial characteristics of Tmax variability, whereas MIROC6 shows the poorest performance. These findings highlight the persistent limitations in simulating intraseasonal Tmax variability and underscore the need for improved model representations of regional climate dynamics over China. Full article
(This article belongs to the Special Issue Extreme Climate Events: Causes, Risk and Adaptation)
Show Figures

Figure 1

18 pages, 8520 KiB  
Article
Cross-Layer Controller Tasking Scheme Using Deep Graph Learning for Edge-Controlled Industrial Internet of Things (IIoT)
by Abdullah Mohammed Alharthi, Fahad S. Altuwaijri, Mohammed Alsaadi, Mourad Elloumi and Ali A. M. Al-Kubati
Future Internet 2025, 17(8), 344; https://doi.org/10.3390/fi17080344 - 30 Jul 2025
Abstract
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking [...] Read more.
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking Scheme (CLCTS). The scheme operates through two primary phases: task grouping assignment and cross-layer control. In the first phase, controller nodes executing similar tasks are grouped based on task timing to achieve monotonic and synchronized completions. The second phase governs controller re-tasking both within and across these groups. Graph structures connect the groups to facilitate concurrent tasking and completion. A learning model is trained on inverse outcomes from the first phase to mitigate task acceptance errors (TAEs), while the second phase focuses on task migration learning to reduce task prolongation. Edge nodes interlink the groups and synchronize tasking, migration, and re-tasking operations across IIoT layers within unified completion periods. Departing from simulation-based approaches, this study presents a fully implemented framework that combines learning-driven scheduling with coordinated cross-layer control. The proposed CLCTS achieves an 8.67% reduction in overhead, a 7.36% decrease in task processing time, and a 17.41% reduction in TAEs while enhancing the completion ratio by 13.19% under maximum edge node deployment. Full article
Show Figures

Figure 1

19 pages, 4939 KiB  
Article
Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns
by Hui Liu, Zhen Wang, Xinyi Du, Fei Qi, Chaoyuan Wang and Zhengxiang Shi
Agriculture 2025, 15(15), 1645; https://doi.org/10.3390/agriculture15151645 - 30 Jul 2025
Abstract
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full [...] Read more.
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO2e head−1 year−1. A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO2e head−1 year−1 and 229 kg CO2e head−1 year−1, respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings. Full article
Show Figures

Figure 1

24 pages, 4319 KiB  
Article
Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
by Micaela Schmid, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio and Stefano Ramat
Bioengineering 2025, 12(8), 826; https://doi.org/10.3390/bioengineering12080826 (registering DOI) - 30 Jul 2025
Abstract
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the [...] Read more.
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the ExoAtlet II exoskeleton on static balance control and functional mobility in five individuals with MS (Expanded Disability Status Scale ≤ 2.5). Before and after the training, they were assessed in quiet standing under Eyes Open (EO) and Eyes Closed (EC) conditions and with the Timed Up and Go (TUG) test. Center of Pressure (CoP) Sway Area, Antero–Posterior (AP) and Medio–Lateral (ML) CoP displacement, Stay Time, and Total Instability Duration were computed. TUG test Total Duration, sit-to-stand, stand-to-sit, and linear walking phase duration were analyzed. To establish target reference values for rehabilitation advancement, the same evaluations were performed on a matched healthy cohort. After the training, an improvement in static balance with EO was observed towards HS values (reduced Sway Area, AP and ML CoP displacement, and Total Instability Duration and increased Stay Time). Enhancements under EC condition were less marked. TUG test performance improved, particularly in the stand-to-sit phase. These preliminary findings suggest functional benefits of exoskeleton gait training for individuals with MS. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

53 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

16 pages, 3079 KiB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

18 pages, 5013 KiB  
Article
Enhancing Document Forgery Detection with Edge-Focused Deep Learning
by Yong-Yeol Bae, Dae-Jea Cho and Ki-Hyun Jung
Symmetry 2025, 17(8), 1208; https://doi.org/10.3390/sym17081208 - 30 Jul 2025
Abstract
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically [...] Read more.
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically expected. These manipulations can disrupt the inherent symmetry of document layouts, making the detection of such inconsistencies crucial for forgery identification. Conventional CNN-based models face limitations in capturing such edge-level asymmetric features, as edge-related information tends to weaken through repeated convolution and pooling operations. To address this issue, this study proposes an edge-focused method composed of two components: the Edge Attention (EA) layer and the Edge Concatenation (EC) layer. The EA layer dynamically identifies channels that are highly responsive to edge features in the input feature map and applies learnable weights to emphasize them, enhancing the representation of boundary-related information, thereby emphasizing structurally significant boundaries. Subsequently, the EC layer extracts edge maps from the input image using the Sobel filter and concatenates them with the original feature maps along the channel dimension, allowing the model to explicitly incorporate edge information. To evaluate the effectiveness and compatibility of the proposed method, it was initially applied to a simple CNN architecture to isolate its impact. Subsequently, it was integrated into various widely used models, including DenseNet121, ResNet50, Vision Transformer (ViT), and a CAE-SVM-based document forgery detection model. Experiments were conducted on the DocTamper, Receipt, and MIDV-2020 datasets to assess classification accuracy and F1-score using both original and forged text images. Across all model architectures and datasets, the proposed EA–EC method consistently improved model performance, particularly by increasing sensitivity to asymmetric manipulations around text boundaries. These results demonstrate that the proposed edge-focused approach is not only effective but also highly adaptable, serving as a lightweight and modular extension that can be easily incorporated into existing deep learning-based document forgery detection frameworks. By reinforcing attention to structural inconsistencies often missed by standard convolutional networks, the proposed method provides a practical solution for enhancing the robustness and generalizability of forgery detection systems. Full article
Show Figures

Figure 1

18 pages, 2409 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Fructose-1,6-Bisphosphate Aldolase (FBA) Gene Family in Sweet Potato and Its Two Diploid Relatives
by Zhicheng Jiang, Taifeng Du, Yuanyuan Zhou, Zhen Qin, Aixian Li, Qingmei Wang, Liming Zhang and Fuyun Hou
Int. J. Mol. Sci. 2025, 26(15), 7348; https://doi.org/10.3390/ijms26157348 - 30 Jul 2025
Abstract
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their [...] Read more.
Fructose-1,6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key enzyme in glycolysis and the Calvin cycle, which plays crucial roles in carbon allocation and plant growth. The FBA family genes (FBA s) have been identified in several plants. However, their presence and roles in sweet potato remain unexplored. In this study, a total of 20 FBAs were identified in sweet potato and its wild wild diploidrelatives, including seven in sweet potato (Ipomoea batatas, 2n = 6x = 90), seven in I. trifida (2n = 2x = 30), and six in I. triloba (2n = 2x = 30). Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The conserved genes and protein structures suggest a high degree of functional conservation among FBA genes. IbFBAs may participate in storage root development and starch biosynthesis, especially IbFBA1 and IbFBA6, which warrant further investigation as candidate genes. Additionally, the FBAs could respond to drought and salt stress. They are also implicated in hormone crosstalk, particularly with ABA and GA. This work provides valuable insights into the structure and function of FBAs and identifies candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

33 pages, 2605 KiB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

33 pages, 11892 KiB  
Article
Experimental Study on Mechanical Properties of Waste Steel Fiber Polypropylene (EPP) Concrete
by Yanyan Zhao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(15), 2680; https://doi.org/10.3390/buildings15152680 - 29 Jul 2025
Abstract
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) [...] Read more.
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) to enhance its strength and toughness. Using the volume fractions of EPP and WSF as variables, specimens of EPP concrete (EC) and waste steel fiber-reinforced EPP concrete (WSFREC) were prepared and subjected to cube compressive strength tests, splitting tensile strength tests, and four-point flexural strength tests. The results indicate that EPP particles significantly improve the toughness of concrete but inevitably lead to a considerable reduction in strength. The incorporation of WSF substantially enhanced the splitting tensile strength and flexural strength of EC, with increases of at least 37.7% and 34.5%, respectively, while the improvement in cube compressive strength was relatively lower at only 23.6%. Scanning electron microscopy (SEM) observations of the interfacial transition zone (ITZ) and WSF surface morphology in WSFREC revealed that the addition of EPP particles introduces more defects in the concrete matrix. However, the inclusion of WSF promotes the formation of abundant hydration products on the fiber surface, mitigating matrix defects, improving the bond between WSF and the concrete matrix, effectively inhibiting crack propagation, and enhancing both the strength and toughness of the concrete. Full article
Show Figures

Figure 1

18 pages, 7222 KiB  
Article
Assessing Risks and Innovating Traceability in Campania’s Illegal Mussel Sale: A One Health Perspective
by Valeria Vuoso, Attilio Mondelli, Carlotta Ceniti, Iolanda Venuti, Giorgio Ciardella, Yolande Thérèse Rose Proroga, Bruna Nisci, Rosa Luisa Ambrosio and Aniello Anastasio
Foods 2025, 14(15), 2672; https://doi.org/10.3390/foods14152672 - 29 Jul 2025
Abstract
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed [...] Read more.
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed to evaluate their microbiological safety and trace their geographical origin. High loads of Escherichia coli, exceeding European regulatory limits (Regulation (EC) No 2073/2005), were detected in all samples. In addition, Salmonella Infantis strains resistant to trimethoprim-sulfamethoxazole and azithromycin were isolated, raising further concerns about antimicrobial resistance. Of the 93 Vibrio isolates, identified as V. alginolyticus and V. parahaemolyticus, 37.63% showed multidrug resistance. Approximately 68.57% of the isolates were resistant to tetracyclines and cephalosporins. The presence of resistance to last-resort antibiotics such as carbapenems (11.43%) is particularly alarming. Near-infrared spectroscopy, combined with chemometric models, was used to obtain traceability information, attributing a presumed origin to the seized mussel samples. Of the ten samples, seven were attributed to the Phlegraean area. These findings have provided valuable insights, reinforcing the need for continuous and rigorous surveillance and the integration of innovative tools to ensure seafood safety and support One Health approaches. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop