Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (627)

Search Parameters:
Keywords = E484K mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4942 KiB  
Article
Detection of XPO1E571K Gene Mutation from Cell-Free DNA in Blood Circulation of Lymphoma Patients by FAST-COLD PCR
by Suwit Duangmano, Natsima Viriyaadhammaa, Pinyaphat Khamphikham, Nutjeera Intasai, Adisak Tantiworawit, Teerada Daroontum, Sawitree Chiampanichayakul and Songyot Anuchapreeda
Int. J. Mol. Sci. 2025, 26(15), 7324; https://doi.org/10.3390/ijms26157324 - 29 Jul 2025
Viewed by 153
Abstract
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as [...] Read more.
The XPO1 (exportin 1) gene encodes exportin 1 protein responsible for transporting proteins and RNA from the nucleus to the cytoplasm. It has been used as a biomarker for lymphoma detection. XPO1E571K mutation has been frequently observed and identified as a good prognostic indicator for lymphoma patients. The detection of a target molecule released by lymphoma cells into blood circulation (cell-free circulating tumor DNA, cfDNA) is a better method than tissue biopsy. However, cfDNA concentration in blood circulation is very low in cancer patients. Therefore, a precise and sensitive method is needed. In this study, cfDNA was extracted, and then the XPO1 gene was detected and amplified using conventional PCR. Sanger sequencing was employed to verify the DNA sequences. FAST-COLD-PCR was developed to detect XPO1E571K gene mutation using a CFX96 Touch Real-Time PCR System. The optimal critical temperature (Tc) was 73.3 °C, allowing selective amplification of XPO1E571K mutant DNA while wild-type XPO1 could not be amplified. XPO1E571K gene mutation can be detected by this method with high specificity and sensitivity in lymphoma patients. This approach facilitates rapid and straightforward detection in a timely manner after the diagnosis. Accordingly, the optimized FAST-COLD-PCR conditions can be used as a prototype for XPO1E571K mutant detection in lymphoma patients. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

14 pages, 1771 KiB  
Article
An Adaptive Overcurrent Protection Method for Distribution Networks Based on Dynamic Multi-Objective Optimization Algorithm
by Biao Xu, Fan Ouyang, Yangyang Li, Kun Yu, Fei Ao, Hui Li and Liming Tan
Algorithms 2025, 18(8), 472; https://doi.org/10.3390/a18080472 - 28 Jul 2025
Viewed by 125
Abstract
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This [...] Read more.
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This paper proposes an adaptive overcurrent protection method based on an improved NSGA-II algorithm. By dynamically detecting renewable power fluctuations and generating adaptive solutions, the method enables the online optimization of protection parameters, effectively reducing misoperation rates, shortening operation times, and significantly improving the reliability and resilience of distribution networks. Using the rate of renewable power variation as the core criterion, renewable power changes are categorized into abrupt and gradual scenarios. Depending on the scenario, either a random solution injection strategy (DNSGA-II-A) or a Gaussian mutation strategy (DNSGA-II-B) is dynamically applied to adjust overcurrent protection settings and time delays, ensuring real-time alignment with grid conditions. Hard constraints such as sensitivity, selectivity, and misoperation rate are embedded to guarantee compliance with relay protection standards. Additionally, the convergence of the Pareto front change rate serves as the termination condition, reducing computational redundancy and avoiding local optima. Simulation tests on a 10 kV distribution network integrated with a wind farm validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 423
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

22 pages, 26577 KiB  
Article
Loss of C-Terminal Coiled-Coil Domains in SDCCAG8 Impairs Centriolar Satellites and Causes Defective Sperm Flagellum Biogenesis and Male Fertility
by Kecheng Li, Xiaoli Zhou, Wenna Liu, Yange Wang, Zilong Zhang, Houbin Zhang and Li Jiang
Cells 2025, 14(15), 1135; https://doi.org/10.3390/cells14151135 - 23 Jul 2025
Viewed by 354
Abstract
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon [...] Read more.
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon cancer autoantigen protein 8 (SDCCAG8), which encodes a protein containing eight coiled-coil (CC) domains, has been associated with syndromic ciliopathies and male infertility. However, its exact role in male infertility remains undefined. Here, we used an Sdccag8 mutant mouse carrying a CC domains 5–8 truncated mutation (c.1351–1352insG p.E451GfsX467) that models the mutation causing Senior–Løken syndrome (c.1339–1340insG p.E447GfsX463) in humans. The homozygous Sdccag8 mutant mice exhibit male infertility characterized by multiple morphological abnormalities of the flagella (MMAF) and dysmorphic structures in the sperm manchette. A mechanistic study revealed that the SDCCAG8 protein is localized to the manchette and centrosomal region and interacts with PCM1, the scaffold protein of centriolar satellites, through its CC domains 5–7. The absence of the CC domains 5–7 in mutant spermatids destabilizes PCM1, which fails to recruit satellite components such as Bardet–Biedl syndrome 4 (BBS4) and centrosomal protein of 131 kDa (CEP131) to satellites, resulting in defective sperm flagellum biogenesis, as BBS4 and CEP131 are essential to flagellum biogenesis. In conclusion, this study reveals the central role of SDCCAG8 in maintaining centriolar satellite integrity during sperm flagellum biogenesis. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis)
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 334
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective
by Jessica Ribeiro, Vanessa Silva, Catarina Freitas, Pedro Pinto, Madalena Vieira-Pinto, Rita Batista, Alexandra Nunes, João Paulo Gomes, José Eduardo Pereira, Gilberto Igrejas, Lillian Barros, Sandrina A. Heleno, Filipa S. Reis and Patrícia Poeta
Vet. Sci. 2025, 12(7), 675; https://doi.org/10.3390/vetsci12070675 - 17 Jul 2025
Viewed by 359
Abstract
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic [...] Read more.
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic analysis revealed a diverse population spanning 15 sequence types, including ST155, ST201, and ST58. Resistance to tetracycline and ciprofloxacin was common, and several isolates carried genes encoding β-lactamases, including blaTEM-1B. Chromosomal mutations associated with quinolone and fosfomycin resistance (e.g., gyrA p.S83L, glpT_E448K) were also identified. WGS revealed a high number of virulence-associated genes per isolate (58–96), notably those linked to adhesion (fim, ecp clusters), secretion systems (T6SS), and iron acquisition (ent, fep, fes), suggesting strong pathogenic potential. Many isolates harbored virulence markers typical of ExPEC/APEC, such as iss, ompT, and traT, even in the absence of multidrug resistance. Our findings suggest that E. coli from sternal bursitis may act as reservoirs of resistance and virulence traits relevant to animal and public health. This highlights the need for including such lesions in genomic surveillance programs and reinforces the importance of integrated One Health approaches. Full article
Show Figures

Graphical abstract

29 pages, 2426 KiB  
Review
Transmembrane Protein 43: Molecular and Pathogenetic Implications in Arrhythmogenic Cardiomyopathy and Various Other Diseases
by Buyan-Ochir Orgil, Mekaea S. Spaulding, Harrison P. Smith, Zainab Baba, Neely R. Alberson, Enkhzul Batsaikhan, Jeffrey A. Towbin and Enkhsaikhan Purevjav
Int. J. Mol. Sci. 2025, 26(14), 6856; https://doi.org/10.3390/ijms26146856 - 17 Jul 2025
Viewed by 243
Abstract
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction [...] Read more.
Transmembrane protein 43 (TMEM43 or LUMA) encodes a highly conserved protein found in the nuclear and endoplasmic reticulum membranes of many cell types and the intercalated discs and adherens junctions of cardiac myocytes. TMEM43 is involved in facilitating intra/extracellular signal transduction to the nucleus via the linker of the nucleoskeleton and cytoskeleton complex. Genetic mutations may result in reduced TMEM43 expression and altered TMEM43 protein cellular localization, resulting in impaired cell polarization, intracellular force transmission, and cell–cell connections. The p.S358L mutation causes arrhythmogenic right ventricular cardiomyopathy type-5 and is associated with increased absorption of lipids, fatty acids, and cholesterol in the mouse small intestine, which may promote fibro-fatty replacement of cardiac myocytes. Mutations (p.E85K and p.I91V) have been identified in patients with Emery–Dreifuss Muscular Dystrophy-related myopathies. Other mutations also lead to auditory neuropathy spectrum disorder-associated hearing loss and have a negative association with cancer progression and tumor cell survival. This review explores the pathogenesis of TMEM43 mutation-associated diseases in humans, highlighting animal and in vitro studies that describe the molecular details of disease processes and clinical, histologic, and molecular manifestations. Additionally, we discuss TMEM43 expression-related conditions and how each disease may progress to severe and life-threatening states. Full article
Show Figures

Figure 1

21 pages, 1308 KiB  
Article
Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
by Alexander Tristancho-Baró, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, Rosa Martínez, Carmen Torres and Antonio Rezusta
Antibiotics 2025, 14(7), 703; https://doi.org/10.3390/antibiotics14070703 - 12 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims [...] Read more.
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims to investigate the genomic determinants associated with cefiderocol resistance in CPE isolates of human origin. Methods: Comparative genomic analyses were conducted between cefiderocol-susceptible and -resistant CPE isolates recovered from human clinical and epidemiological samples at a tertiary care hospital. Whole-genome sequencing, variant annotation, structural modelling, and pangenome analysis were performed to characterize resistance mechanisms. Results: A total of 59 isolates (29 resistant and 30 susceptible) were analyzed, predominantly comprising Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. The most frequent carbapenemase gene among the resistant isolates was blaNDM, which was also present in a subset of susceptible strains. The resistant isolates exhibited a significantly higher burden of non-synonymous mutations in their siderophore receptor genes, notably within fecR, fecA, fiu, and cirA. Structural modelling predicted deleterious effects for mutations such as fecR:G104S and fecA:A190T. Additionally, porin loss and loop 3 insertions (e.g., GD/TD) in OmpK36, as well as OmpK35 truncations, were more frequent in the resistant isolates, particularly in high-risk clones such as ST395 and ST512. Genes associated with toxin–antitoxin systems (chpB2, pemI) and a hypothetical metalloprotease (group_2577) were uniquely found in the resistant group. Conclusions: Cefiderocol resistance in CPE appears to be multifactorial. NDM-type metallo-β-lactamases and missense mutations in siderophore uptake systems—especially in those encoded by fec, fhu, and cir operons—play a central role. These may be further potentiated by alterations in membrane permeability, such as porin disruption and efflux deregulation. The integration of genomic and structural approaches provides valuable insights into emerging resistance mechanisms and may support the development of diagnostic tools and therapeutic strategies. Full article
Show Figures

Graphical abstract

16 pages, 871 KiB  
Article
Primary HSV-2 Infection in an Immunocompromised Patient Reveals High Diversity of Drug-Resistance Mutations in the Viral DNA Polymerase
by Hanna Helena Schalkwijk, Sarah Gillemot, Emilie Frobert, Florence Morfin, Sophie Ducastelle, Anne Conrad, Pierre Fiten, Ghislain Opdenakker, Robert Snoeck and Graciela Andrei
Viruses 2025, 17(7), 962; https://doi.org/10.3390/v17070962 - 9 Jul 2025
Viewed by 399
Abstract
Herpes simplex virus 2 (HSV-2) remains a significant cause of morbidity and mortality in immunocompromised individuals, despite the availability of effective antivirals. Infections caused by drug-resistant isolates are an emerging concern among these patients. Understanding evolutionary aspects of HSV-2 resistance is crucial for [...] Read more.
Herpes simplex virus 2 (HSV-2) remains a significant cause of morbidity and mortality in immunocompromised individuals, despite the availability of effective antivirals. Infections caused by drug-resistant isolates are an emerging concern among these patients. Understanding evolutionary aspects of HSV-2 resistance is crucial for designing improved therapeutic strategies. Here, we characterized 11 HSV-2 isolates recovered from various body sites of a single immunocompromised patient suffering from a primary HSV-2 infection unresponsive to acyclovir and foscarnet. The isolates were analyzed phenotypically and genotypically (Sanger sequencing of viral thymidine kinase and DNA polymerase genes). Viral clone isolations, deep sequencing, viral growth kinetics, and dual infection competition assays were performed retrospectively to assess viral heterogeneity and fitness. Sanger sequencing identified mixed populations of DNA polymerase mutant variants. Viral clones were plaque-purified and genotyped, revealing 17 DNA polymerase mutations (K533E, A606V, C625R, R628C, A724V, S725G, S729N, I731F, Q732R, M789T/K, Y823C, V842M, R847C, F923L, T934A, and R964H) associated with acyclovir and foscarnet resistance. Deep-sequencing of the DNA polymerase detected drug-resistant variants ranging between 1 and 95%, although the first two isolates had a wild-type DNA polymerase. Some mutants showed reduced fitness, evidenced by (i) the frequency of variants identified by deep-sequencing not correlating with the proportion of mutants found by plaque-purification, (ii) loss of the variants upon passaging in cell culture, or (iii) reduced frequencies in competition assays. This study reveals the rapid evolution of heterogeneous drug-resistant HSV-2 populations under antiviral therapy, highlighting the need for alternative treatment options and resistance surveillance, especially in severe infections. Full article
(This article belongs to the Special Issue Mechanisms of Herpesvirus Resistance)
Show Figures

Graphical abstract

22 pages, 1347 KiB  
Article
The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples
by Mehwish Rizvi, Noman Khan, Ambreen Fatima, Rabia Bushra, Ale Zehra, Farah Saeed and Khitab Gul
Microorganisms 2025, 13(7), 1577; https://doi.org/10.3390/microorganisms13071577 - 4 Jul 2025
Viewed by 537
Abstract
Klebsiella pneumoniae is a major public health concern due to its role in Gram-negative bacteremia, which leads to high mortality and increased healthcare costs. This study characterizes phenotypic and genomic features of K. pneumoniae isolates from clinical samples in Karachi, Pakistan. Among 507 [...] Read more.
Klebsiella pneumoniae is a major public health concern due to its role in Gram-negative bacteremia, which leads to high mortality and increased healthcare costs. This study characterizes phenotypic and genomic features of K. pneumoniae isolates from clinical samples in Karachi, Pakistan. Among 507 isolates, 213 (42%) were carbapenem-resistant based on disk diffusion and MIC testing. Urine (29.7%) and blood (28.3%) were the most common sources, with infections predominantly affecting males (64.7%) and individuals aged 50–70 years. Colistin was the only antibiotic showing consistent activity against these isolates. The whole-genome sequencing of 24 carbapenem-resistant K. pneumoniae (CR-KP) isolates revealed blaNDM-5 (45.8%) as the dominant carbapenemase gene, followed by blaNDM-1 (12.5%) and blaOXA-232 (54.2%). Other detected blaOXA variants included blaOXA-1, blaOXA-4, blaOXA-10, and blaOXA-18. The predominant beta-lactamase gene was blaCTX-M-15 (91.6%), followed by blaCTX-M-163, blaCTX-M-186, and blaCTX-M-194. Sequence types ST147, ST231, ST29, and ST11 were associated with resistance. Plasmid profiling revealed IncR (61.5%), IncL (15.4%), and IncC (7.7%) as common plasmid types. Importantly, resistance was driven not only by acquired genes but also by chromosomal mutations. Porin mutations in OmpK36 and OmpK37 (e.g., P170M, I128M, N230G, A217S) reduced drug influx, while acrR and ramR mutations (e.g., P161R, G164A, P157*) led to efflux pump overexpression, enhancing resistance to fluoroquinolones and tigecycline. These findings highlight a complex resistance landscape driven by diverse carbapenemases and ESBLs, underlining the urgent need for robust antimicrobial stewardship and surveillance strategies. Full article
Show Figures

Figure 1

11 pages, 4880 KiB  
Communication
The Nosocomial Transmission of Carbapenem-Resistant Gram-Negative Bacteria in a Hospital in Baoding City, China
by Shengnan Liao, Wei Su, Tianjiao Li, Zeyang Li, Zihan Pei, Jie Zhang and Wenjuan Yin
Microbiol. Res. 2025, 16(7), 147; https://doi.org/10.3390/microbiolres16070147 - 2 Jul 2025
Viewed by 280
Abstract
Background: The global rise of multidrug-resistant Gram-negative bacteria, particularly non-fermenting species and carbapenemase-producing Enterobacteriaceae, poses a significant challenge to hospital infection control. Methods: In this study, a total of 89 Acinetobacter spp. isolates, 14 Pseudomonas aeruginosa, and 14 carbapenem-resistant Enterobacteriaceae isolates were [...] Read more.
Background: The global rise of multidrug-resistant Gram-negative bacteria, particularly non-fermenting species and carbapenemase-producing Enterobacteriaceae, poses a significant challenge to hospital infection control. Methods: In this study, a total of 89 Acinetobacter spp. isolates, 14 Pseudomonas aeruginosa, and 14 carbapenem-resistant Enterobacteriaceae isolates were collected from patients in a tertiary hospital. Whole-genome sequencing and antimicrobial susceptibility testing were conducted. Resistance mechanisms and evolutionary relationships were analyzed using phylogenetic analysis and genetic context mapping. Results: Among the non-fermenting isolates, A. baumannii exhibited high resistance to carbapenems, clustering into distinct clonal groups enriched with genes associated with biofilm formation and virulence genes. P. aeruginosa isolates harbored fewer resistance genes but carried notable mutations in the efflux pump systems and the oprD gene. In Enterobacteriaceae, four blaNDM alleles were identified within a conservative structural sequence, while blaKPC-2 was located in a non-Tn4401 structure flanked by IS481- and IS1182-like insertion sequences. Phylogenetic analysis revealed that blaNDM-positive E. coli strains were closely related to susceptible lineages, indicating horizontal gene transfer. Conversely, K. pneumoniae isolates harboring blaKPC-2 formed a tight clonal cluster, suggesting clonal expansion. Conclusions: The study reveals distinct transmission patterns between resistance genes: horizontal dissemination of blaNDM and clonal expansion of blaKPC-2 in K. pneumoniae. These findings emphasize the need for resistance-gene-specific genomic surveillance and infection control strategies to prevent further nosocomial dissemination. Full article
Show Figures

Figure 1

17 pages, 3588 KiB  
Article
Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence
by Pamela I. Huanambal Esquén, Diego A. Leonardo, Livia R. Manzine, Erick Suclupe Farro, Jessica K. Kajfasz, Suelen S. Mello, Mara C. L. Nogueira, João Renato Muniz, Alessandro S. Nascimento, Michael S. Gilmore, Jacqueline Abranches, José A. Lemos and Ilana L. B. C. Camargo
Int. J. Mol. Sci. 2025, 26(13), 5935; https://doi.org/10.3390/ijms26135935 - 20 Jun 2025
Viewed by 453
Abstract
Daptomycin (DAP) is a therapeutic option for vancomycin-resistant Enterococcus faecium (VRE) infections, but DAP resistance may occur during treatment. Previously, we identified a mutation within the E. faecium lafB gene that induces hypersusceptibility to DAP. The lafB gene encodes a glycosyltransferase involved in [...] Read more.
Daptomycin (DAP) is a therapeutic option for vancomycin-resistant Enterococcus faecium (VRE) infections, but DAP resistance may occur during treatment. Previously, we identified a mutation within the E. faecium lafB gene that induces hypersusceptibility to DAP. The lafB gene encodes a glycosyltransferase involved in lipoteichoic acid anchor synthesis, which makes it a promising target for enhancing DAP efficacy. In this study, we characterized E. faecium LafB protein (EfLafB) biophysical properties, used AlphaFold3 to predict LafB in silico three-dimensional structure, and determined lafB gene mutation’s role in virulence, comparing E. faecium HBSJRP18 (DAP-hypersusceptible) and a lafB revertant, HBSJRP18_2.7, and analyzing bacterial growth kinetics, biofilm formation ability, and virulence in a Galleria mellonella model. After gene cloning and expressing and purifying EfLafB, circular dichroism and SEC-MALS assays revealed its monomeric nature under in vitro conditions, with approximately a 40 kDa molecular mass and a melting temperature of 50 °C. In silico prediction indicated that LafB is an αβ-type protein with two domains conforming to the GT-4 family glycosyltransferases. These results are further supported by the highly conserved amino acids (E257, D91, R184, and K185), likely involved in UDP-Glc binding. The studied lafB gene mutation resulted in a significant decrease in bacterial growth and virulence in the invertebrate model. Full article
(This article belongs to the Special Issue Antibacterial Activity against Drug-Resistant Strains, 2nd Edition)
Show Figures

Figure 1

27 pages, 4059 KiB  
Article
3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib
by David Cabezas, Thalía Delgado, Guisselle Sepúlveda, Petra Krňávková, Veronika Vojáčková, Vladimír Kryštof, Miroslav Strnad, Nicolás Ignacio Silva, Javier Echeverría, Christian Espinosa-Bustos, Guido Mellado, Jiao Luo, Jaime Mella and Cristian O. Salas
Pharmaceuticals 2025, 18(6), 925; https://doi.org/10.3390/ph18060925 - 19 Jun 2025
Viewed by 636
Abstract
Background/Objectives: Bcr-Abl inhibitors such as imatinib have been used to treat chronic myeloid leukemia (CML). However, the efficacy of these drugs has diminished due to mutations in the kinase domain, notably the T315I mutation. Therefore, in this study, new purine derivatives were designed [...] Read more.
Background/Objectives: Bcr-Abl inhibitors such as imatinib have been used to treat chronic myeloid leukemia (CML). However, the efficacy of these drugs has diminished due to mutations in the kinase domain, notably the T315I mutation. Therefore, in this study, new purine derivatives were designed as Bcr-Abl inhibitors based on 3D-QSAR studies. Methods: A database of 58 purines that inhibit Bcr-Abl was used to construct 3D-QSAR models. Using chemical information from these models, a small group of new purines was designed, synthesized, and evaluated in Bcr-Abl. Viability assays were conducted on imatinib-sensitive CML cells (K562 and KCL22) and imatinib-resistant cells (KCL22-B8). In silico analyses were performed to confirm the results. Results: Seven purines were easily synthesized (7ag). Compounds 7a and 7c demonstrated the highest inhibition activity on Bcr-Abl (IC50 = 0.13 and 0.19 μM), surpassing the potency of imatinib (IC50 = 0.33 μM). 7c exhibited the highest potency, with GI50 = 0.30 μM on K562 cells and 1.54 μM on KCL22 cells. The GI50 values obtained for non-neoplastic HEK293T cells indicated that 7c was less toxic than imatinib. Interestingly, KCL22-B8 cells (expressing Bcr-AblT315I) showed greater sensitivity to 7e and 7f than to imatinib (GI50 = 13.80 and 15.43 vs. >20 μM, respectively). In silico analyses, including docking and molecular dynamics studies of Bcr-AblT315I, were conducted to elucidate the enhanced potency of 7e and 7f. Thus, this study provides in silico models to identify novel inhibitors that target a kinase of significance in CML. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Figure 1

23 pages, 8539 KiB  
Article
Allosteric Coupling in Full-Length Lyn Kinase Revealed by Molecular Dynamics and Network Analysis
by Mina Rabipour, Floyd Hassenrück, Elena Pallaske, Fernanda Röhrig, Michael Hallek, Juan Raul Alvarez-Idaboy, Oliver Kramer and Rocio Rebollido-Rios
Int. J. Mol. Sci. 2025, 26(12), 5835; https://doi.org/10.3390/ijms26125835 - 18 Jun 2025
Viewed by 402
Abstract
Lyn is a multifunctional Src-family kinase (SFK) that regulates immune signaling and has been implicated in diverse types of cancer. Unlike other SFKs, its full-length structure and regulatory dynamics remain poorly characterized. In this study, we present the first long-timescale molecular dynamics analysis [...] Read more.
Lyn is a multifunctional Src-family kinase (SFK) that regulates immune signaling and has been implicated in diverse types of cancer. Unlike other SFKs, its full-length structure and regulatory dynamics remain poorly characterized. In this study, we present the first long-timescale molecular dynamics analysis of full-length Lyn, including the SH3, SH2, and SH1 domains, across wildtype, ligand-bound, and cancer-associated mutant states. Using principal component analysis, dynamic cross-correlation matrices, and network-based methods, we show that ATP binding stabilizes the kinase core and promotes interdomain coordination, while the ATP-competitive inhibitor dasatinib and specific mutations (e.g., E290K, I364N) induce conformational decoupling and weaken long-range communication. We identify integration modules and develop an interface-weighted scoring scheme to rank dynamically central residues. This analysis reveals 44 allosteric hubs spanning SH3, SH2, SH1, and interdomain regions. Finally, a random forest classifier trained on 16 MD-derived features highlights key interdomain descriptors, distinguishing functional states with an AUC of 0.98. Our results offer a dynamic and network-level framework for understanding Lyn regulation and identify potential regulatory hotspots for structure-based drug design. More broadly, our approach demonstrates the value of integrating full-length MD simulations with network and machine learning techniques to probe allosteric control in multidomain kinases. Full article
Show Figures

Graphical abstract

11 pages, 1621 KiB  
Article
Genomic Characterization of Linezolid-Resistant Clostridioides difficile Harboring cfr Variants
by Aikaterini Panou, Andigoni Malousi and Melina Kachrimanidou
BioTech 2025, 14(2), 42; https://doi.org/10.3390/biotech14020042 - 31 May 2025
Viewed by 721
Abstract
The emergence of antimicrobial resistance (AMR) in Clostridium difficile (C. difficile), particularly to last-line antibiotics such as linezolid, represents a critical challenge in clinical settings. This study investigates the genomic epidemiology of linezolid-resistant C. difficile, focusing on the distribution and [...] Read more.
The emergence of antimicrobial resistance (AMR) in Clostridium difficile (C. difficile), particularly to last-line antibiotics such as linezolid, represents a critical challenge in clinical settings. This study investigates the genomic epidemiology of linezolid-resistant C. difficile, focusing on the distribution and mutational patterns of the chloramphenicol–florfenicol resistance (cfr) gene and its association with multidrug resistance. We analyzed 514 clinical isolates (354 from NCBI Pathogen Detection, 160 from EnteroBase), revealing distinct prevalence patterns among cfr subtypes: cfr(C) was dominant (156/354 NCBI strains; 101/160 EnteroBase strains), whereas cfr(B) frequently harbored missense mutations (p.R247K, p.V294I, and less commonly p.A334T). The cfr(E) subtype was exclusively identified in ribotype 027 (RT027) strains. Notably, cfr(C) exhibited a strong association with RT017, correlating with a conserved 99 bp genomic deletion. Phylogenetic analysis linked cfr-carriage to predominant sequence types (ST1 in NCBI strains, ST37 in EnteroBase isolates). Furthermore, the co-occurrence of cfr with additional AMR genes conferred resistance to macrolides (erythromycin, azithromycin) and tetracyclines, indicating a convergent evolution toward multidrug resistance. These findings underscore the interplay between cfr mutations, hypervirulent ribotypes, and AMR dissemination, necessitating enhanced surveillance to mitigate the spread of resistant C. difficile lineages. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

Back to TopTop