The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources and Acquisition of Clinical Isolates
2.2. Isolation and Identification of Bacterial Isolates
2.3. Antimicrobial Susceptibility Testing (AST)
2.4. Phenotypic Detection of Carbapenemases
2.5. DNA Extraction and Whole-Genome Sequencing
2.6. Bioinformatics Analysis of Raw Sequence Data
2.7. Multilocus Sequence Typing
2.8. Genotypic Evaluation of Antimicrobial Resistance Genes, Plasmids, and Virulence Genes
2.9. Detection of Acquired Resistance and Mutations
2.10. Comparative Analysis of Carbapenem Resistance in Pakistan
3. Results
3.1. Antibiotic Susceptibillity
3.2. Assembly of Sequence File
3.3. Multilocus Sequence Typing
3.4. Genotypic Profile of Carbapenem-Resistant K. pneumoniae (CRKP) Isolates
3.5. Virulence Factor Profiling
3.6. Plasmid Profiling
3.7. Mutation-Induced Resistance
3.8. Molecular Epidemiology of Carbapenem-Resistant K. pneumoniae (CRKP) in Pakistan
3.9. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diekema, D.J.; Hsueh, P.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef] [PubMed]
- Sisay, A.; Kumie, G.; Gashaw, Y.; Nigatie, M.; Gebray, H.M.; Reta, M.A. Prevalence of genes encoding carbapenem-resistance in Klebsiella pneumoniae recovered from clinical samples in Africa: Systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 556. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef]
- Chaudhari, V.D.C.; Kumar, M.; Das, N.G.N. AmpC and extended-spectrum beta lactamase producing isolates of E. coli, Klebsiella spp. and P. mirabilis in a tertiary care center and their sensitivity to other antibiotics. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 868–877. [Google Scholar] [CrossRef]
- Casale, R.; Boattini, M.; Comini, S.; Bastos, P.; Corcione, S.; De Rosa, F.G.; Bianco, G.; Costa, C. Clinical and microbiological features of positive blood culture episodes caused by non-fermenting gram-negative bacilli other than Pseudomonas and Acinetobacter species (2020–2023). Infection 2024, 53, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Anes, J.; Devineau, S.; Fanning, S. Klebsiella pneumoniae: Prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: A hitherto unrecognized zoonotic bacterium. Foodborne Pathog. Dis. 2020, 18, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Ablakimova, N.; Smagulova, G.A.; Rachina, S.; Mussina, A.Z.; Zare, A.; Mussin, N.M.; Tamadon, A. Bibliometric analysis of global research output on antimicrobial resistance among pneumonia pathogens (2013–2023). Antibiotics 2023, 12, 1411. [Google Scholar] [CrossRef]
- Bowers, J.R.; Kitchel, B.; Driebe, E.M.; MacCannell, D.R.; Roe, C.; Lemmer, D.; Limbago, B.M. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS ONE 2015, 10, e0133727. [Google Scholar] [CrossRef]
- Rodriguez-Manzano, J.; Miscourides, N.; Malpartida-Cardenas, K.; Pennisi, I.; Moser, N.; Holmes, A.; Georgiou, P. Rapid Detection of Klebsiella pneumoniae Using an Auto-Calibrated ISFET-Array Lab-on-Chip Platform. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- McKenna, M. Antibiotic resistance: The last resort. Nature 2013, 499, 394–396. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Li, Y.; Liu, Y.; Qin, X. Comparison of the performance of phenotypic methods for the detection of carbapenem-resistant Enterobacteriaceae (CRE) in clinical practice. Front. Cell. Infect. Microbiol. 2022, 12, 849564. [Google Scholar] [CrossRef]
- Shen, M.; Chen, X.; He, J.; Xiong, L.; Tian, R.; Yang, G.; Wu, K. Antimicrobial resistance patterns, sequence types, virulence and carbapenemase genes of carbapenem-resistant Klebsiella pneumoniae clinical isolates from a tertiary care teaching hospital in Zunyi, China. Infect. Drug Resist. 2023, 16, 637–649. [Google Scholar] [CrossRef]
- Qin, X.; Wu, S.; Hao, M.; Zhu, J.; Ding, B.; Yang, Y.; Hu, F. The colonization of carbapenem-resistant Klebsiella pneumoniae: Epidemiology, resistance mechanisms, and risk factors in patients admitted to intensive care units in China. J. Infect. Dis. 2019, 221 (Suppl. S2), S206–S214. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Ahmad, S.; Mahsood, H.Y. Antimicrobial resistance (AMR) in Pakistan: A growing crisis. Gomal J. Med. Sci. 2025, 23, 5–6. [Google Scholar] [CrossRef]
- Akande, O.W.; Carter, L.L.; Abubakar, A.; Achilla, R.; Barakat, A.; Gumede, N.; Samaan, G. Strengthening pathogen genomic surveillance for health emergencies: Insights from the World Health Organization’s regional initiatives. Front. Public Health 2023, 11, 1146730. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P.; Lewis, J.S. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, organization, functions, and processes. J. Clin. Microbiol. 2020, 58, e01864-19. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 5 June 2023).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Pevzner, P.A. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Seemann, T. Snippy: Rapid Haploid Variant Calling and Core SNP Phylogeny; GitHub: San Fransico, CA, USA, 2015; Available online: https://github.com/tseemann/snippy (accessed on 15 September 2023).
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2018, 47, D687–D692. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019, 10, 549. [Google Scholar] [CrossRef]
- Zhuravleva, M.V.; Rodionov, B.A.; Lysenko, M.A.; Yakovlev, S.V.; Andreev, S.S.; Ilyukhina, N.N.; Prokofiev, A.B. Study of cases of bacteremia with gram-negative pathogens with multiple and extreme antibiotic resistance in real clinical practice. Antibiot. Chemother. 2021, 66, 27–34. [Google Scholar] [CrossRef]
- Rodríguez-Guerrero, E.; Callejas-Rodelas, J.C.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Systematic review of plasmid AmpC type resistances in Escherichia coli and Klebsiella pneumoniae and preliminary proposal of a simplified screening method for ampC. Microorganisms 2022, 10, 611. [Google Scholar] [CrossRef]
- Pattolath, A.; Adhikari, P.; Pai, V. Clinical and molecular profile of carbapenem-resistant Klebsiella pneumoniae infections in a tertiary care hospital—Mangalore. Infect. Drug Resist. 2023, 16, 4335–4348. [Google Scholar] [CrossRef] [PubMed]
- Amare, A.; Eshetie, S.; Kasew, D.; Moges, F. High prevalence of fecal carriage of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae among food handlers at the University of Gondar, Northwest Ethiopia. PLoS ONE 2022, 17, e0264818. [Google Scholar] [CrossRef]
- Bonardi, S.; Cabassi, C.; Fiaccadori, E.; Cavirani, S.; Parisi, A.; Bacci, C.; Lamperti, L.; Rega, M.; Conter, M.; Marra, F.; et al. Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. Int. J. Food Microbiol. 2022, 387, 110049. [Google Scholar] [CrossRef]
- Köse, Ş.; Dal, T.; Çetinkaya, R.A.; Arı, O.; Yenilmez, E.; Temel, E.N.; Çetin, E.S.; Arabacı, Ç.; Büyüktuna, S.A.; Hasbek, M.; et al. Molecular epidemiological investigation of carbapenem-resistant Klebsiella pneumoniae isolated from intensive care unit patients of six geographical regions of Turkey. J. Infect. Dev. Ctries. 2023, 17, 1446–1451. [Google Scholar] [CrossRef]
- Ufuk, S.; Çağlayan, D.; Singil, S.; Ersan, G.; Sabr, A. Risk factors for mortality in intensive care unit-acquired pneumonia due to Klebsiella pneumoniae. SANAMED 2023, 18, 141–148. [Google Scholar] [CrossRef]
- Tsui, C.K.-M.; Ben Abid, F.; Al Ismail, K.; McElheny, C.L.; Al Maslamani, M.; Omrani, A.S.; Doi, Y. Genomic epidemiology of carbapenem-resistant Klebsiella in Qatar: Emergence and dissemination of hypervirulent Klebsiella pneumoniae sequence type 383 strains. Antimicrob. Agents Chemother. 2023, 67, e00030-23. [Google Scholar] [CrossRef] [PubMed]
- Baran, I.; Aksu, N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 20. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mgaya, F.X.; Mshana, S.E.; Karimuribo, E.D.; Matee, M.I.N. Occurrence of extended-spectrum beta-lactamase (ESBL) producers, quinolone and carbapenem-resistant Enterobacteriaceae isolated from environmental samples along Msimbazi River Basin ecosystem in Tanzania. Int. J. Environ. Res. Public Health 2021, 18, 8264. [Google Scholar] [CrossRef]
- Gangathraprabhu, B.; Kannan, S.S.; Santhanam, G.; Suryadevara, N.; Murugan, M. A review on the origin of multi-drug-resistant Salmonella and perspective of tailored phoP gene towards avirulence. Microb. Pathog. 2020, 147, 104352. [Google Scholar] [CrossRef] [PubMed]
- Oo, K.M.; Myat, T.O.; Htike, W.W.; Biswas, A.; Hannaway, R.F.; Murdoch, D.R.; A Crump, J.; E Ussher, J. Molecular mechanisms of antimicrobial resistance and phylogenetic relationships of Salmonella enterica isolates from febrile patients in Yangon, Myanmar. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 641–648. [Google Scholar] [CrossRef]
- van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, X.; Yan, M.; Chang, H.; Li, Y.; Kan, B.; Zeng, M. Salmonella typhimurium and Salmonella enteritidis infections in sporadic diarrhea in children: Source tracing and resistance to third-generation cephalosporins and ciprofloxacin. Foodborne Pathog. Dis. 2019, 16, 244–255. [Google Scholar] [CrossRef]
- Dalhoff, A. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 976273. [Google Scholar] [CrossRef]
- Romyasamit, C.; Sornsenee, P.; Chimplee, S.; Yuwalaksanakun, S.; Wongprot, D.; Saengsuwan, P. Prevalence and characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from raw vegetables retailed in Southern Thailand. PeerJ 2021, 9, e11787. [Google Scholar] [CrossRef]
- Wareth, G.; Linde, J.; Hammer, P.; Pletz, M.W.; Neubauer, H.; Sprague, L.D. WGS-based phenotyping and molecular characterization of the resistome, virulome and plasmid replicons in Klebsiella pneumoniae isolates from powdered milk produced in Germany. Microorganisms 2022, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.; Caneiras, C.; Elias, R.; Modesto, A.; Spadar, A.; Phelan, J.; Campino, S.; Clark, T.G.; Costa, E.; Saavedra, M.J.; et al. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae strains at a Northern Portuguese hospital enables the detection of a misidentified Klebsiella variicola KPC-3 producing strain. Microorganisms 2020, 8, 1986. [Google Scholar] [CrossRef]
- Markovska, R.; Stoeva, T.; Schneider, I.; Boyanova, L.; Popova, V.; Dacheva, D.; Kaneva, R.; Bauernfeind, A.; Mitev, V.; Mitov, I. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. APMIS 2015, 123, 887–894. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Davies, S.C.; Marcelin, J.R. Confronting antimicrobial resistance beyond the COVID-19 pandemic and the 2020 US election. Lancet 2020, 396, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Younas, S.; Abosalif, K.O.A.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S.M.; et al. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase-producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef]
- Sakarikou, C.; Ciotti, M.; Dolfa, C.; Angeletti, S.; Favalli, C. Rapid detection of carbapenemase-producing Klebsiella pneumoniae strains derived from blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). BMC Microbiol. 2017, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Paveenkittiporn, W.; Kamjumphol, W.; Ungcharoen, R.; Kerdsin, A. Whole-genome sequencing of clinically isolated carbapenem-resistant Enterobacterales harboring mcr genes in Thailand, 2016–2019. Front. Microbiol. 2021, 11, 586368. [Google Scholar] [CrossRef]
- Odewale, G.; Jibola-Shittu, M.Y.; Ojurongbe, O.; Olowe, R.A.; Olowe, O.A. Genotypic determination of extended spectrum β-lactamases and carbapenemase production in clinical isolates of Klebsiella pneumoniae in Southwest Nigeria. Infect. Dis. Rep. 2023, 15, 339–353. [Google Scholar] [CrossRef]
- Liu, C.; Yang, P.; Zheng, J.; Yi, J.; Lu, M.; Shen, N. Convergence of two serotypes within the epidemic ST11 KPC-producing Klebsiella pneumoniae creates the “perfect storm” in a teaching hospital. BMC Genom. 2022, 23, 693. [Google Scholar] [CrossRef]
- Hassuna, N.A.; AbdelAziz, R.A.; Zakaria, A.; Abdelhakeem, M. Extensively-drug resistant Klebsiella pneumoniae recovered from neonatal sepsis cases from a major NICU in Egypt. Front. Microbiol. 2020, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Almusallam, A.; Li, M.; Mahmood, M.S.; Mushtaq, M.A.; Eltai, N.O.; Toleman, M.A.; Mohsin, M. Whole genome-based genetic insights of bla NDM producing clinical E. coli isolates in hospital settings of Pakistan. Microbiol. Spectr. 2023, 11, e0058423. [Google Scholar] [CrossRef] [PubMed]
- Khan, E.; Irfan, S.; Sultan, B.A.; Nasir, A.; Hasan, R. Dissemination and spread of New Delhi Metallo-beta-lactamase-1 superbugs in hospital settings. J. Pak. Med. Assoc. 2016, 66, 999–1004. [Google Scholar]
- Millan, A.S.; Escudero, J.A.; Gifford, D.R.; Mazel, D.; MacLean, R.C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 2016, 1, 0010. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Farzand, R.; Rajakumar, K.; Barer, M.R.; Freestone, P.P.E.; Mukamolova, G.V.; Oggioni, M.R.; O’Hare, H.M. A virulence associated siderophore importer reduces antimicrobial susceptibility of Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 607512. [Google Scholar] [CrossRef]
- Wu, C.; Huang, Y.; Zhou, P.; Gao, H.; Wang, B.; Zhao, H.; Zhang, J.; Wang, L.; Zhou, Y.; Yu, F. Emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae from 2014–2021 in Central and Eastern China: A molecular, biological, and epidemiological study. BMC Microbiol. 2024, 24, 465. [Google Scholar] [CrossRef]
- Liu, P.; Yang, A.; Tang, B.; Wang, Z.; Jian, Z.; Liu, Y.; Wang, J.; Zhong, B.; Yan, Q.; Liu, W. Molecular epidemiology and clinical characteristics of the type VI secretion system in Klebsiella pneumoniae causing abscesses. Front. Microbiol. 2023, 14, 1181701. [Google Scholar] [CrossRef]
S. No | Isolate ID | MIC of ANTIBIOTICS (μg/mL) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AK | CN | TOB | IMP | MEM | CAZ | FEP | PIP | TIC | TZP | TIM | LEV | CIP | SXT | ATM | CT | ||
1 | KP-22 | 2 S | 1 S | 1 S | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
2 | KP-30 | 64 R | 16 R | 16 R | 2 I | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
3 | KP-41 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
4 | KP-45 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
5 | KP-50 | 64 R | 16 R | 16 R | 2 I | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
6 | KP-58 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 20 S | 64 R | 2 I |
7 | KP-56 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
8 | KP-62 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 16 I | 128 R | 128 R | 128 R | 128 R | 1 S | 1 S | 320 R | 64 R | 4 R |
9 | KP-77 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 20 S | 64 R | 2 I |
10 | KP-21 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
11 | KP-11 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
12 | KP-99 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 20 S | 64 R | 2 I |
13 | KP-350 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
14 | KP-61 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
15 | KP-67 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
16 | KP-68 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
17 | KP-72 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
18 | KP-75 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
19 | KP-144 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
20 | KP-275 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
21 | KP-289 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
22 | KP-340 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
23 | KP-345 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
24 | KP-346 | 64 R | 16 R | 16 R | 16 R | 16 R | 64 R | 64 R | 128 R | 128 R | 128 R | 128 R | 8 R | 4 R | 320 R | 64 R | 2 I |
Isolate | Mutations Change Membrane Permeability (Phenotypic Effect Against Carbapenem) | Mutations Change Membrane Permeability (Phenotypic Effect Against Cephalosporin) | Mutations Alter the Function of Efflux Pump (Phenotypic Effect Against Fluoroquinolones) | Transcriptional Repressor of Efflux Pump (Phenotypic Effect Against Fluoroquinolone and Tigecycline |
---|---|---|---|---|
KP-11 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | acrR p.P161R acrR p.G164A acrR p.F172S acrR p.R173G acrR p.L195V acrR p.F197I acrR p.K201M | ||
KP-21 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-22 | ompK37 p.I70M, ompK37 p.I128M | |||
KP-30 | ompK36 p.A217S, ompK37 p.I70M, ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-41 | ompK36 p.A217S, ompK37 p.I70M, ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-45 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-50 | ompK36 p.A217S ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S | ramR p.L156V ramR p.E175D ramR p.F181*—Premature stop codon | |
KP-56 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-58 | ompK36 p.A217S ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-61 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-62 | ompK36 p.A217S ompK36 p.N218H ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.T86V ompK36 p.S89T ompK36 p.D91K ompK36 p.A93S ompK36 p.L191Q ompK36 p.F207W ompK36 p.Q227N ompK36 p.L229V ompK36 p.E232R ompK36 p.H235D ompK36 p.T254S | ||
KP-67 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-68 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-75 | ompK37 p.I70M ompK37 p.I128M | |||
KP-77 | ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | |||
KP-99 | ompK36 p.A217S ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-144 | ompK36 p.A217S ompK36 p.N218H ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.T86V ompK36 p.S89T ompK36 p.D91K ompK36 p.A93S ompK36 p.L191Q ompK36 p.F207W ompK36 p.Q227N ompK36 p.L229V ompK36 p.E232R ompK36 p.H235D ompK36 p.T254S | ||
KP-275 | ompK36 p.A217S ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-289 | ompK36 p.A217S ompK37 p.I70M ompK37 p.I128M ompK37 p.N230G | ompK36 p.N49S ompK36 p.L59V ompK36 p.G189T ompK36 p.F198Y ompK36 p.F207Y ompK36 p.T222L ompK36 p.D223G ompK36 p.E232R ompK36 p.N304E | ||
KP-340 | ompK36 p.A217S ompK36 p.N218H ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.L191S ompK36 p.F207W ompK36 p.D224E ompK36 p.L228V ompK36 p.E232R ompK36 p.T254S | ||
KP-345 | ompK37 p.I70M ompK37 p.I128M | |||
KP-346 | ompK36 p.A217S ompK36 p.N218H ompK37 p.I70M ompK37 p.I128M | ompK36 p.N49S ompK36 p.L59V ompK36 p.L191S ompK36 p.F207W ompK36 p.D224E ompK36 p.L228V ompK36 p.E232R ompK36 p.T254S |
Genes | ST-147 (n = 31) | ST-231 (n = 19) | ST-29 (n = 11) | ST-11 (n = 21) | Total (n) | Percentage (%) |
---|---|---|---|---|---|---|
blaCTX-M-15 | 30 | 16 | 8 | 18 | 72 | 87.8 |
blaCTX-M-88 | 1 | 0 | 0 | 0 | 1 | 1.22 |
blaCTX-M-194 | 0 | 3 | 0 | 0 | 3 | 3.65 |
blaCTX-M-216 | 0 | 0 | 1 | 0 | 1 | 1.22 |
blaDHA-1 | 0 | 0 | 0 | 1 | 1 | 1.22 |
blaDHA-7 | 0 | 0 | 0 | 1 | 1 | 1.22 |
blaNDM-1 | 1 | 0 | 5 | 9 | 15 | 18.3 |
blaNDM-5 | 12 | 4 | 0 | 0 | 16 | 19.5 |
blaNDM-7 | 2 | 0 | 0 | 2 | 4 | 4.88 |
blaNDM-6 | 0 | 0 | 0 | 1 | 1 | 1.22 |
blaNDM-3 | 0 | 0 | 0 | 1 | 1 | 1.22 |
blaOXA-1 | 3 | 1 | 5 | 13 | 22 | 26.8 |
blaOXA-10 | 1 | 0 | 4 | 2 | 7 | 8.5 |
blaOXA-181 | 14 | 0 | 0 | 1 | 15 | 18.3 |
blaOXA-232 | 6 | 17 | 0 | 1 | 24 | 29.2 |
blaOXA-48 | 10 | 0 | 0 | 3 | 13 | 15.8 |
blaOXA-505 | 3 | 0 | 0 | 0 | 3 | 3.65 |
blaOXA-9 | 0 | 0 | 1 | 0 | 1 | 1.22 |
blaSHV-100 | 1 | 16 | 0 | 0 | 17 | 20.7 |
blaSHV-67 | 30 | 0 | 0 | 0 | 30 | 36.5 |
blaSHV-12 | 0 | 1 | 0 | 1 | 2 | 2.4 |
blaSHV-155 | 0 | 1 | 0 | 0 | 1 | 1.22 |
blaSHV-66 | 0 | 1 | 1 | 0 | 2 | 2.4 |
blaSHV-182 | 0 | 0 | 0 | 20 | 20 | 24.3 |
blaSHV-187 | 0 | 0 | 10 | 0 | 10 | 12.2 |
blaTEM-1B | 27 | 16 | 9 | 5 | 57 | 69.5 |
blaTEM-234 | 0 | 0 | 1 | 0 | 1 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, M.; Khan, N.; Fatima, A.; Bushra, R.; Zehra, A.; Saeed, F.; Gul, K. The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples. Microorganisms 2025, 13, 1577. https://doi.org/10.3390/microorganisms13071577
Rizvi M, Khan N, Fatima A, Bushra R, Zehra A, Saeed F, Gul K. The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples. Microorganisms. 2025; 13(7):1577. https://doi.org/10.3390/microorganisms13071577
Chicago/Turabian StyleRizvi, Mehwish, Noman Khan, Ambreen Fatima, Rabia Bushra, Ale Zehra, Farah Saeed, and Khitab Gul. 2025. "The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples" Microorganisms 13, no. 7: 1577. https://doi.org/10.3390/microorganisms13071577
APA StyleRizvi, M., Khan, N., Fatima, A., Bushra, R., Zehra, A., Saeed, F., & Gul, K. (2025). The Microbiological Characteristics and Genomic Surveillance of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Clinical Samples. Microorganisms, 13(7), 1577. https://doi.org/10.3390/microorganisms13071577