Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = Doppler frequency migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1567 KiB  
Article
A Deep Learning-Based Method for Detection of Multiple Maneuvering Targets and Parameter Estimation
by Beiming Yan, Yong Li, Qianlan Kou, Ren Chen, Zerong Ren, Wei Cheng, Limeng Dong and Longyuan Luan
Remote Sens. 2025, 17(15), 2574; https://doi.org/10.3390/rs17152574 - 24 Jul 2025
Viewed by 284
Abstract
With the rapid development of drone technology, target detection and estimation of radar parameters for maneuvering targets have become crucial. Drones, with their small radar cross-sections and high maneuverability, cause range migration (RM) and Doppler frequency migration (DFM), which complicate the use of [...] Read more.
With the rapid development of drone technology, target detection and estimation of radar parameters for maneuvering targets have become crucial. Drones, with their small radar cross-sections and high maneuverability, cause range migration (RM) and Doppler frequency migration (DFM), which complicate the use of traditional radar methods and reduce detection accuracy. Furthermore, the detection of multiple targets exacerbates the issue, as target interference complicates detection and impedes parameter estimation. To address this issue, this paper presents a method for high-resolution multi-drone target detection and parameter estimation based on the adjacent cross-correlation function (ACCF), fractional Fourier transform (FrFT), and deep learning techniques. The ACCF operation is first utilized to eliminate RM and reduce the higher-order components of DFM. Subsequently, the FrFT is applied to achieve coherent integration and enhance energy concentration. Additionally, a convolutional neural network (CNN) is employed to address issues of spectral overlap in multi-target FrFT processing, further improving resolution and detection performance. Experimental results demonstrate that the proposed method significantly outperforms existing approaches in probability of detection and accuracy of parameter estimation for multiple maneuvering targets, underscoring its strong potential for practical applications. Full article
Show Figures

Figure 1

26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 347
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

16 pages, 1505 KiB  
Article
KT-SRAF-LVD-Based Signal Coherent Integration Method for High-Speed Target Detecting in Airborne Radar
by Wenwen Xu, Yuhang Wang, Jianyin Cao and Hao Wang
Sensors 2025, 25(7), 2128; https://doi.org/10.3390/s25072128 - 27 Mar 2025
Viewed by 390
Abstract
In the application of an airborne radar platform, the rapid relative motion between target and airborne radar induces range migration (RM) and Doppler frequency migration (DFM). The motion errors caused by airflow, air friction, and navigation inaccuracies will exacerbate the RM and DFM [...] Read more.
In the application of an airborne radar platform, the rapid relative motion between target and airborne radar induces range migration (RM) and Doppler frequency migration (DFM). The motion errors caused by airflow, air friction, and navigation inaccuracies will exacerbate the RM and DFM problems and render traditional coherent integration methods ineffective. Previously reported airborne coherent integration methods are hindered by high computational complexity, limiting their practical application. Therefore, developing motion error compensation and coherent integration methods with reduced computational complexity and a high detection performance is of critical importance. To address these challenges, a novel method based on the keystone transform, sequence-reversing autocorrelation function, and Lv’s distribution (KT-SRAF-LVD) is proposed. Simulation results demonstrate that the proposed method achieves a good balance between computational complexity and detection performance, indicating great potential for practical engineering applications. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

22 pages, 10882 KiB  
Article
The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications
by Nadja Weisshaupt, Bent Harnist and Jarmo Koistinen
Remote Sens. 2025, 17(3), 436; https://doi.org/10.3390/rs17030436 - 27 Jan 2025
Cited by 1 | Viewed by 1312
Abstract
(1) The aliasing of radial velocities from weather radars is a known challenge in meteorology. It may also occur during bird migration if the unambiguous velocity threshold is below the birds’ ground speed. High variability in birds’ radial velocities and high flight speeds [...] Read more.
(1) The aliasing of radial velocities from weather radars is a known challenge in meteorology. It may also occur during bird migration if the unambiguous velocity threshold is below the birds’ ground speed. High variability in birds’ radial velocities and high flight speeds lead to multiple aliasing (folding) and challenge meteorological dealiasing approaches. Unfolded radial velocities are essential for calculating flight directions and speed and derived migration traffic rates for aeroecological applications. (2) We study the occurrence of aliasing in measurements of different pulse repetition frequencies (PRF) in C-band weather radars in bird and insect cases and test the efficiency of a dealiasing algorithm widely used in biological weather radar software. We use dual-PRF measurements as a reference to avoid the folding of radial velocities in quantitative and qualitative bird migration outputs. (3) The dealiasing algorithm performed poorly in single-PRF measurements during bird migration, though not in insect and precipitation cases. In contrast, dual-PRF velocities yielded proper flight speeds, flight directions and migration traffic rates. (4) The study unveils severe biases in aeroecological analyses of C-band weather radars from imperfectly dealiased single-PRF radial velocities. Dual-PRF measurements with appropriate dealiasing postprocessing offer a valid alternative to single PRF and should be preferred whenever available. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

17 pages, 2941 KiB  
Article
Long-Time Coherent Integration Method for Passive Bistatic Radar Using Frequency Hopping Signals
by Gang Chen, Xiaowei Biao, Yi Jin, Changzhi Xu, Yifan Ping and Sujun Wang
Sensors 2024, 24(19), 6236; https://doi.org/10.3390/s24196236 - 26 Sep 2024
Cited by 3 | Viewed by 1300
Abstract
Long-time coherent integration using frequency hopping signals is a challenging problem for passive bistatic radar due to its frequency hopping characteristics. Apart from range walk, range curve, and Doppler frequency migration, Doppler diffusion caused by frequency hopping characteristics occurs within the observation time, [...] Read more.
Long-time coherent integration using frequency hopping signals is a challenging problem for passive bistatic radar due to its frequency hopping characteristics. Apart from range walk, range curve, and Doppler frequency migration, Doppler diffusion caused by frequency hopping characteristics occurs within the observation time, which also lowers the detection performance. To deal with this problem, a novel coherent integration method for frequency hopping signals based on passive bistatic radar is proposed in this paper. In this novel method, range curve and range walk are eliminated by applying generalized Keystone transform. Then, Doppler frequency migration caused by the target’s acceleration is compensated for by a parameter search with a designed search scope. Finally, Doppler frequency migration caused by frequency hopping characteristics is compensated for by designing a new acceleration compensation function and a revised rotation factor for Fourier transform. Since migration effects caused by frequency hopping characteristics are considered and compensated for when using frequency hopping signals, the weak target echo can be better integrated in the observation time compared to when using the existing methods. The simulation results and performance analysis illustrate the effectiveness of the proposed method. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 5746 KiB  
Article
A Novel SAR Imaging Method for GEO Satellite–Ground Bistatic SAR System with Severe Azimuth Spectrum Aliasing and 2-D Spatial Variability
by Jingjing Ti, Zhiyong Suo, Yi Liang, Bingji Zhao and Jiabao Xi
Remote Sens. 2024, 16(15), 2853; https://doi.org/10.3390/rs16152853 - 3 Aug 2024
Cited by 1 | Viewed by 1596
Abstract
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic [...] Read more.
The satellite–ground bistatic configuration, which uses geosynchronous synthetic aperture radar (GEO SAR) for illumination and ground equipment for reception, can achieve wide coverage, high revisit, and continuous illumination of interest areas. Based on the analysis of the signal characteristics of GEO satellite–ground bistatic SAR (GEO SG-BiSAR), it is found that the bistatic echo signal has problems of azimuth spectrum aliasing and 2-D spatial variability. Therefore, to overcome those problems, a novel SAR imaging method for a GEO SG-BiSAR system with severe azimuth spectrum aliasing and 2-D spatial variability is proposed. Firstly, based on the geometric configuration of the GEO SG-BiSAR system, the time-domain and frequency-domain expressions of the signal are derived in detail. Secondly, in order to avoid the increasing cost caused by traditional multi-channel reception technology and the processing burden caused by inter-channel errors, the azimuth deramping is executed to solve the azimuth spectrum aliasing of the signal under the special geometric structure of GEO SG-BiSAR. Thirdly, based on the investigation of azimuth and range spatial variability characteristics of GEO SG-BiSAR in the Range Doppler (RD) domain, the azimuth spatial variability correction strategy is proposed. The signal corrected by the correction strategy has the same migration characteristics as monostatic radar. Therefore, the traditional chirp scaling function (CSF) is also modified to solve the range spatial variability of the signal. Finally, the two-dimensional spectrum of GEO SG-BiSAR with modified chirp scaling processing is derived, followed by the SPECAN operation to obtain the focused SAR image. Furthermore, the completed flowchart is also given to display the main composed parts for GEO SG-BiSAR imaging. Both azimuth spectrum aliasing and 2-D spatial variability are taken into account in the imaging method. The simulated data and the real data obtained by the Beidou navigation satellite are used to verify the effectiveness of the proposed method. Full article
Show Figures

Graphical abstract

22 pages, 19485 KiB  
Article
A Hybrid Integration Method Based on SMC-PHD-TBD for Multiple High-Speed and Highly Maneuverable Targets in Ubiquitous Radar
by Zebin Chen, Xiangyu Peng, Junyao Yang, Zhanming Zhong, Qiang Song and Yue Zhang
Remote Sens. 2024, 16(14), 2618; https://doi.org/10.3390/rs16142618 - 17 Jul 2024
Viewed by 1194
Abstract
Based on the characteristic of ubiquitous radar emitting low-gain wide beam, a method of long-time coherent integration (LTCI) is required to enhance target detection capability. However, high-speed and highly maneuverable targets can cause Doppler frequency migration (DFM), range migration (RM), and velocity ambiguity [...] Read more.
Based on the characteristic of ubiquitous radar emitting low-gain wide beam, a method of long-time coherent integration (LTCI) is required to enhance target detection capability. However, high-speed and highly maneuverable targets can cause Doppler frequency migration (DFM), range migration (RM), and velocity ambiguity (VA), severely degrading the performance of LTCI. Additionally, the number of targets is unknown and variable, and the presence of clutter further complicates the target tracking problem. To address these challenges, we propose a hybrid integration method to achieve joint detection and estimation of multiple high-speed, and highly maneuverable targets. Firstly, we compensate for first-order RM using the keystone transform (KT) and generate corresponding sub-range-Doppler (SRD) planes with different folding factors to achieve VA compensation. These SRD planes are then stitched together to form an extended range-Doppler (ERD) plane, which covers a broader velocity range. Secondly, during the track-before-detect (TBD) process, tracking is performed directly on the ERD plane. We use the sequential Monte Carlo (SMC) approximation of the probability hypothesis density (PHD) to propagate multi-target states. Additionally, we propose an amplitude-based adaptive prior distribution method and a line spread model (LSM) observation model to compensate for DFM. Since the acceleration of the target is included in the particle state, using particles to search for DFM does not increase the computational load. To address the issue of misclassifying mirror targets as real targets in the SRD plane, we propose a particle space projection method. By stacking the SRD planes to create a folding range-Doppler (FRD) space, particles are projected along the folding factor dimension, and then, the particles are clustered to eliminate the influence of the mirror targets. Finally, through simulation experiments, the superiority of the LSM for targets with acceleration was demonstrated. In comparative experiments, the proposed method showed superior performance and robustness compared to traditional methods, achieving a balance between performance and computational efficiency. Furthermore, the proposed method’s capability to detect and track multiple high-speed and highly maneuverable targets was validated using actual data from a ubiquitous radar system. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Figure 1

22 pages, 13490 KiB  
Article
Combined Coherent and Non-Coherent Long-Time Integration Method for High-Speed Target Detection Using High-Frequency Radar
by Gan Liu, Yingwei Tian, Biyang Wen and Chen Liu
Remote Sens. 2024, 16(12), 2139; https://doi.org/10.3390/rs16122139 - 13 Jun 2024
Cited by 2 | Viewed by 2430
Abstract
High-frequency (HF) radar plays a crucial role in the detection of far-range, stealth, and high-speed targets. Nevertheless, the echo signal of such targets typically exhibits a low signal-to-noise ratio (SNR) and significant amplitude fluctuations because their radar cross-section (RCS) accounting for the HF [...] Read more.
High-frequency (HF) radar plays a crucial role in the detection of far-range, stealth, and high-speed targets. Nevertheless, the echo signal of such targets typically exhibits a low signal-to-noise ratio (SNR) and significant amplitude fluctuations because their radar cross-section (RCS) accounting for the HF band is in the resonance region. While enhancing detection performance often requires long-time integration, existing algorithms inadequately consider the impact of amplitude fluctuation. In response to this challenge, this article introduces an improved approach based on coherent and non-coherent integration. Initially, coherent integration, employing the generalized Radon Fourier transform (GRFT), is utilized to derive a candidate detection set of targets’ range–time trajectories. This involves a joint solution for range migration (RM) and Doppler frequency migration (DFM) through a multi-parameter motion model search. Subsequently, the removal of low SNR pulses, followed by non-coherent integration, is implemented to mitigate amplitude fluctuation, referred to as Amplitude Fluctuation Suppression (AFS), and refine the detection outcomes. Both simulation and experiment results are provided to prove the effectiveness of the proposed AFS-GRFT algorithm. Full article
Show Figures

Figure 1

21 pages, 7622 KiB  
Article
Variable Doppler Starting Point Keystone Transform for Radar Maneuvering Target Detection
by Wei Jia, Yuan Feng, Xingshuai Qiao, Tianrun Wang and Tao Shan
Remote Sens. 2024, 16(12), 2129; https://doi.org/10.3390/rs16122129 - 12 Jun 2024
Cited by 1 | Viewed by 1383
Abstract
The Doppler band compensated by the keystone transform (KT) is limited. Therefore, it needs to be used in conjunction with the Doppler ambiguity compensation function to correct the range migration (RM) caused by maneuvering targets with Doppler ambiguity. However, the KT implemented by [...] Read more.
The Doppler band compensated by the keystone transform (KT) is limited. Therefore, it needs to be used in conjunction with the Doppler ambiguity compensation function to correct the range migration (RM) caused by maneuvering targets with Doppler ambiguity. However, the KT implemented by sinc interpolation suffers from significant performance loss at boundaries of compensation Doppler bands. Additionally, in a multi-target scenario, KT implementation methods occupy high complexity when the Doppler range of targets spans over two compensation Doppler bands. To address the aforementioned issues, this study presents a variable Doppler starting point keystone transform (VDSPKT) method, where a new form of ambiguity compensation function is constructed, turning the Doppler starting point of the compensation band in KT variable. Firstly, the position of the compensation Doppler band is changed from fixed to adjustable as needed, enhancing the flexibility of KT. Crucially, the connection points of the compensation Doppler bands in sinc interpolation are reset, avoiding performance loss at their boundaries. Also, the compensation band is adjusted to cover the narrow Doppler frequency range caused by targets, significantly improving computational efficiency. Finally, the simulation and real data experiments demonstrate that the proposed approach effectively addresses the performance degradation and high computational complexity of KT in the aforementioned scenarios, resulting in a computational load reduced by approximately 50% compared to traditional methods. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

24 pages, 6459 KiB  
Article
An Efficient Ground Moving Target Imaging Method for Synthetic Aperture Radar Based on Scaled Fourier Transform and Scaled Inverse Fourier Transform
by Xin Zhang, Haoyu Zhu, Ruixin Liu, Jun Wan and Zhanye Chen
Remote Sens. 2024, 16(11), 2039; https://doi.org/10.3390/rs16112039 - 6 Jun 2024
Cited by 1 | Viewed by 1138
Abstract
The unknown relative motions between synthetic aperture radar (SAR) and a ground moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS). The energy of the moving target will defocus, given the effect of the RCM and DFS. [...] Read more.
The unknown relative motions between synthetic aperture radar (SAR) and a ground moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS). The energy of the moving target will defocus, given the effect of the RCM and DFS. The moving target will easily produce Doppler ambiguity, due to the low pulse repetition frequency of radar, and the Doppler ambiguity complicates the corrections of the RCM and DFS. In order to address these issues, an efficient ground moving target focusing method for SAR based on scaled Fourier transform and scaled inverse Fourier transform is presented. Firstly, the operations based on the scaled Fourier transform and scaled inverse Fourier transforms are presented to focus the moving targets in consideration of Doppler ambiguity. Subsequently, in accordance with the detailed analysis of multiple target focusing, the spurious peak related to the cross term is removed. The proposed method can accurately eliminate the DFS and RCM, and the well-focused result of the moving target can be achieved under the complex Doppler ambiguity. Then, the blind speed sidelobe can be further avoided. The presented method has high computational efficiency without the step of parameter search. The simulated and measured SAR data are provided to demonstrate the effectiveness of the developed method. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Graphical abstract

17 pages, 17537 KiB  
Article
Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves
by Jie Zhang, Zheng Sheng and Mingyuan He
Remote Sens. 2024, 16(11), 1904; https://doi.org/10.3390/rs16111904 - 25 May 2024
Viewed by 1076
Abstract
In the atmospheric system of Mars, vertical interactions are crucial, yet quantitative studies addressing this issue remain scarce. Based on simulations using the Mars PCM-LMDZ, we present the first frequency-domain quantitative analysis of the vertical interactions among Martian atmospheric dust, zonal circulation, and [...] Read more.
In the atmospheric system of Mars, vertical interactions are crucial, yet quantitative studies addressing this issue remain scarce. Based on simulations using the Mars PCM-LMDZ, we present the first frequency-domain quantitative analysis of the vertical interactions among Martian atmospheric dust, zonal circulation, and the migrating diurnal tide (DW1), employing Partial Directed Coherence (PDC) techniques to quantify the strength of associations between different variables. Our findings reveal a chain of influence where sub-seasonal-scale dust signals in the troposphere, through the Doppler effect of middle atmospheric zonal winds, transmit modulated energy to the DW1 in the upper mesosphere, thereby facilitating interlayer atmospheric interactions. The radiative heating from dust activities enhances the residual mean meridional circulation, which, under the influence of the Coriolis force, further accelerates the westerlies. Although gravity wave activity also contributes to the acceleration of the westerlies, its forcing generally remains below 5 m/s, which is relatively weak compared to the impact of intense dust activities in the warm scenario experiments (approximately 20 m/s). Overall, this study quantifies the interactions among atmospheric layers by means of PDC technology and analytically demonstrates how dust energy is transferred to mesospheric tides by shaping the zonal winds in between. Full article
(This article belongs to the Special Issue Exploring Planetary Environments with Remote Sensing Techniques)
Show Figures

Figure 1

22 pages, 1843 KiB  
Article
Long-Time Coherent Integration for the Spatial-Based Bistatic Radar Based on Dual-Scale Decomposition and Conditioned CPF
by Suqi Li, Yihan Wang, Yanfeng Liang and Bailu Wang
Remote Sens. 2024, 16(10), 1798; https://doi.org/10.3390/rs16101798 - 18 May 2024
Viewed by 1571
Abstract
This paper addresses the problem of weak maneuvering target detection in the space-based bistatic radar system through long-time coherent integration (LTCI). The space-based bistatic radar is vulnerable to the high-order range migration (RM) and Doppler frequency migration (DFM), since the target, the receiver [...] Read more.
This paper addresses the problem of weak maneuvering target detection in the space-based bistatic radar system through long-time coherent integration (LTCI). The space-based bistatic radar is vulnerable to the high-order range migration (RM) and Doppler frequency migration (DFM), since the target, the receiver and the transmitter all can play fast movement independently. To correct high- order RM and DFM, this usually involves joint high-dimensional parameter searching, incurring a large computational burden. In our previous work, a dual-scale (DS) decomposition of motion parameters was proposed, in which the optimal GRFT is conditionally decoupled into two cascade procedures called the modified generalized inverse Fourier transform (GIFT) and generalized Fourier transform (GFT), resulting in the DS-GRFT detector. However, even if the DS-GRFT detector preserves the superior performance and dramatically decreases the complexity, high-dimensional searching is still required. In this paper, by analyzing the structure of the DS-GRFT detector, we further designed a conditioned cubic phase function (CCPF) tailored to the range–slow-time signal after GIFT, breaking the joint high-dimensional searching into independent one-dimensional searching. Then, by connecting the proposed CCPF with the GIFT, we achieved a new LTCI detector called the DS-GIFT-CCPF detector, which obtained a significant computational cost reduction with acceptable performance loss, as demonstrated in numerical experiments. Full article
Show Figures

Figure 1

35 pages, 62938 KiB  
Article
A Modified Frequency Nonlinear Chirp Scaling Algorithm for High-Speed High-Squint Synthetic Aperture Radar with Curved Trajectory
by Kun Deng, Yan Huang, Zhanye Chen, Dongning Fu, Weidong Li, Xinran Tian and Wei Hong
Remote Sens. 2024, 16(9), 1588; https://doi.org/10.3390/rs16091588 - 29 Apr 2024
Cited by 2 | Viewed by 1907
Abstract
The imaging of high-speed high-squint synthetic aperture radar (HSHS-SAR), which is mounted on maneuvering platforms with curved trajectory, is a challenging task due to the existence of 3-D acceleration and the azimuth spatial variability of range migration and Doppler parameters. Although existing imaging [...] Read more.
The imaging of high-speed high-squint synthetic aperture radar (HSHS-SAR), which is mounted on maneuvering platforms with curved trajectory, is a challenging task due to the existence of 3-D acceleration and the azimuth spatial variability of range migration and Doppler parameters. Although existing imaging algorithms based on linear range walk correction (LRWC) and nonlinear chirp scaling (NCS) can reduce the range–azimuth coupling of the frequency spectrum (FS) and the spatial variability of the Doppler parameter to some extent, they become invalid as the squint angle, speed, and resolution increase. Additionally, most of them ignore the effect of acceleration phase calibration (APC) on NCS, which should not be neglected as resolution increases. For these issues, a modified frequency nonlinear chirp scaling (MFNCS) algorithm is proposed in this paper. The proposed MFNCS algorithm mainly includes the following aspects. First, a more accurate approximation of range model (MAARM) is established to improve the accuracy of the instantaneous slant range history. Second, a preprocessing of the proposed algorithm based on the first range compression, LRWC, and a spatial-invariant APC (SIVAPC) is implemented to eliminate most of the effects of high-squint angle and 3-D acceleration on the FS. Third, a spatial-variant APC (SVAPC) is performed to remove azimuth spatial variability introduced by 3-D acceleration, and the range focusing is accomplished by the bulk range cell migration correction (BRCMC) and extended secondary range compression (ESRC). Fourth, the azimuth-dependent characteristics evaluation based on LRWC, SIVAPC, and SVAPC is completed to derive the MFNCS algorithm with fifth-order chirp scaling function for azimuth compression. Consequently, the final image is focused on the range time and azimuth frequency domain. The experimental simulation results verify the effectiveness of the proposed algorithm. With a curved trajectory, HSHS-SAR imaging is carried out at a 50° geometric squint angle and 500 m × 500 m imaging width. The integrated sidelobe ratio and peak sidelobe ratio of the point targets at the scenario edges approach the theoretical values, and the range-azimuth resolution is 1.5 m × 3.0 m. Full article
Show Figures

Graphical abstract

24 pages, 13737 KiB  
Article
Frequency Domain Imaging Algorithms for Short-Range Synthetic Aperture Radar
by Fatong Zhang, Chenyang Luo, Yaowen Fu, Wenpeng Zhang, Wei Yang, Ruofeng Yu and Shangqu Yan
Remote Sens. 2023, 15(24), 5684; https://doi.org/10.3390/rs15245684 - 11 Dec 2023
Cited by 5 | Viewed by 2323
Abstract
In order to achieve miniaturization, short-range radar (SRR) generally adopts millimeter-wave (MMW) radar with a frequency-modulated continuous-wave (FMCW) system, which may make the stop–go–stop assumption in traditional synthetic aperture radar (SAR) imaging algorithms invalid. In addition, in order to observe a large enough [...] Read more.
In order to achieve miniaturization, short-range radar (SRR) generally adopts millimeter-wave (MMW) radar with a frequency-modulated continuous-wave (FMCW) system, which may make the stop–go–stop assumption in traditional synthetic aperture radar (SAR) imaging algorithms invalid. In addition, in order to observe a large enough area, SRR often needs a wide radar beam, which may cause serious range–azimuth coupling when using SRR for SAR imaging. The above two problems may make the traditional SAR imaging algorithm invalid in SRR SAR imaging. Taking the SRR SAR imaging application into account, traditional frequency domain SAR imaging algorithms are analyzed and improved in this paper. Firstly, the intra-pulse motion (IPM) caused by the FMCW system and the two-dimensional coupling (TDC) in the case of a wide beam are analyzed. Subsequently, the applicability of the range Doppler algorithm (RDA), the frequency scaling algorithm (FSA) and the range migration algorithm (RMA) for SRR SAR is analyzed. Then, improvement measures are put forward to address the aliasing and folding phenomena caused by the wide-beam problem in the FSA and RMA, respectively. Finally, the effectiveness of the proposed algorithm is verified using simulation data and real measured data collected using an MMW radar fixed on a slide rail. Full article
(This article belongs to the Special Issue State-of-the-Art and Future Developments: Short-Range Radar)
Show Figures

Graphical abstract

30 pages, 11538 KiB  
Article
Integration and Detection of a Moving Target with Multiple Beams Based on Multi-Scale Sliding Windowed Phase Difference and Spatial Projection
by Rensu Hu, Dong Li, Jun Wan, Xiaohua Kang, Qinghua Liu, Zhanye Chen and Xiaopeng Yang
Remote Sens. 2023, 15(18), 4429; https://doi.org/10.3390/rs15184429 - 8 Sep 2023
Cited by 1 | Viewed by 1745
Abstract
Due to the fast scanning speed of the current phased-array radar and the moving characteristics of the target, the moving target usually spans multiple beams during coherent integration time, which results in severe performance loss for target focusing and parameter estimation because of [...] Read more.
Due to the fast scanning speed of the current phased-array radar and the moving characteristics of the target, the moving target usually spans multiple beams during coherent integration time, which results in severe performance loss for target focusing and parameter estimation because of the unknown entry/departure beam time within the coherent period. To solve this issue, a novel focusing and detection method based on the multi-beam phase compensation function (MBPCF), multi-scale sliding windowed phase difference (MSWPD), and spatial projection are proposed in this paper. The proposed method mainly includes the following three steps. First, the geometric and signal models of multiple beam integration with observed moving targets are accurately established where the range migration (RM), Doppler frequency migration (DFM), and beam migration (BM) are analyzed. Based on that, the BM is eliminated by the MBPCF, the second-order keystone transform (SOKT) is utilized to mitigate the RM, and then, a new MSWPD operation is developed to estimate the target’s entry/departure beam time, which realizes well-focusing output within the beam. After that, by dividing the radar detection area, the spatial projection (SP) method is adopted to obtain multiple-beams joint integration, and thus, improved detection performance can be obtained. Numerical experiments are carried out to evaluate the performance of the proposed method. The results show that the proposed method could achieve superior focusing and detection performances. Full article
(This article belongs to the Special Issue Advances in Radar Systems for Target Detection and Tracking)
Show Figures

Graphical abstract

Back to TopTop