Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Numerical Simulation Experiments
2.3. Partially Directed Coherence Analysis
3. Results
3.1. Numerical Simulation Experiment Results
3.2. Vertical Interactions among Dust, Zonal Winds, and DW1
3.3. Mechanism Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leovy, C. Weather and climate on Mars. Nature 2001, 412, 245–249. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Forget, F.; Millour, E.; Kleinböhl, A. Solar tides in the middle and upper atmosphere of Mars. J. Geophys. Res. Space Phys. 2020, 125, 8140–8145. [Google Scholar] [CrossRef]
- Wilson, R.J. A general circulation model simulation of the Martian polar warming. Geophys. Res. Lett. 1997, 24, 123–126. [Google Scholar] [CrossRef]
- Banfield, D.; Spiga, A.; Newman, C.; Forget, F.; Lemmon, M.; Lorenz, R.; Murdoch, N.; Viudez-Moreiras, D.; Pla-Garcia, J.; Garcia, R.F.; et al. The atmosphere of Mars as observed by InSight. Nat. Geosci. 2020, 13, 190–198. [Google Scholar] [CrossRef]
- Haberle, R.M.; Pollack, J.B.; Barnes, J.R.; Zurek, R.W.; Leovy, C.B.; Murphy, J.R.; Lee, H.; Schaeffer, J. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J. Geophys. Res. Planets 1993, 98, 3093–3123. [Google Scholar] [CrossRef]
- Wang, H. Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett. 2003, 30, 3–5. [Google Scholar] [CrossRef]
- Haberle, R.M.; Leovy, C.B.; Pollack, J.B. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 1982, 50, 322–367. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Hartogh, P. Winter polar warmings and the meridional transport on Mars simulated with a general circulation model. Icarus 2007, 186, 97–110. [Google Scholar] [CrossRef]
- Barnes, J.R.; Haberle, R.M.; Wilson, R.J.; Lewis, S.R.; Murphy, J.R.; Read, P.L. The Global Circulation; Cambridge University Press: Cambridge, UK, 2017; pp. 229–294. [Google Scholar]
- McCleese, D.; Schofield, J.; Taylor, F.; Abdou, W.; Aharonson, O.; Banfield, D.; Calcutt, S.; Heavens, N.; Irwin, P.; Kass, D.; et al. Intense polar temperature inversion in the middle atmosphere on Mars. Nat. Geosci. 2008, 1, 745–749. [Google Scholar] [CrossRef]
- Forbes, J.M.; Vincent, R.A. Effects of mean winds and dissipation on the diurnal propagating tide: An analytic approach. Planet. Space Sci. 1989, 37, 197–209. [Google Scholar] [CrossRef]
- Schneider, E.K. Martian great dust storms: Interpretive axially symmetric models. Icarus 1983, 55, 302–331. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Yiğit, E.; Hartogh, P. Estimates of gravity wave drag on Mars: Indication of a possible lower thermospheric wind reversal. Icarus 2011, 211, 909–912. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Yiğit, E.; Hartogh, P.; Becker, E. Influence of gravity waves on the Martian atmosphere: General circulation modeling. J. Geophys. Res. Planets 2011, 116, E10004. [Google Scholar] [CrossRef]
- Kuroda, T.; Medvedev, A.S.; Yiğit, E. Gravity Wave Activity in the Atmosphere of Mars during the 2018 Global Dust Storm: Simulations with a High-Resolution Model. J. Geophys. Res. Planets 2020, 125, e2020JE006556. [Google Scholar] [CrossRef]
- Fels, S.B.; Lindzen, R.S. The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 2008, 6, 149–191. [Google Scholar] [CrossRef]
- Hamilton, K.P. Numerical Studies of Wave-Mean Flow Interaction in the Stratosphere, Mesosphere and Lower Thermosphere; Princeton University: Princeton, NJ, USA, 1981. [Google Scholar]
- Miyahara, S. Zonal Mean Winds Induced by Solar Diurnal Tides in the Lower Thermosphere. J. Meteorol. Soc. Japan Ser. II 1981, 59, 303–319. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; Zhang, J.; Zhou, L.; He, M. Statistical Characteristics of Inertial Gravity Waves over a Tropical Station in the Western Pacific Based on High-Resolution GPS Radiosonde Soundings. J. Geophys. Res. Atmos. 2021, 126, e2021JD034719. [Google Scholar] [CrossRef]
- Zurek, R.W. Atmospheric Tidal Forcing of the Zonal-Mean Circulation: The Martian Dusty Atmosphere. J. Atmos. Sci. 1986, 43, 652–670. [Google Scholar] [CrossRef]
- Medvedev, A.S.; González-Galindo, F.; Yiğit, E.; Feofilov, A.G.; Forget, F.; Hartogh, P. Cooling of the Martian thermosphere by CO2 radiation and gravity waves: An intercomparison study with two general circulation models. J. Geophys. Res. Planets 2015, 120, 913–927. [Google Scholar] [CrossRef]
- Gilli, G.; Forget, F.; Spiga, A.; Navarro, T.; Millour, E.; Montabone, L.; Kleinböhl, A.; Kass, D.M.; McCleese, D.J.; Schofield, J.T. Impact of Gravity Waves on the Middle Atmosphere of Mars: A Non-Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations. J. Geophys. Res. Planets 2020, 125, 1–31. [Google Scholar] [CrossRef]
- Miyamoto, A.; Nakagawa, H.; Kuroda, T.; Takami, K.; Murata, I.; Medvedev, A.S.; Yoshida, N.; Aoki, S.; Sagawa, H.; Kasaba, Y.; et al. Intense zonal wind in the martian mesosphere during the 2018 planet-encircling dust event observed by ground-based infrared heterodyne spectroscopy. Geophys. Res. Lett. 2021, 48, 0094–8276. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Millour, E.; Forget, F.; Spiga, A.; Vals, M.; Zakharov, V.; Montabone, L. Mars climate database. In From Mars Express to ExoMars, 27–28 February 2018, Madrid, Spain; LMD: Paris, France, 2018. [Google Scholar]
- Schelter, B.; Timmer, J.; Eichler, M. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J. Neurosci. Methods 2009, 179, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Baccala, L.A.; Sameshima, K.; Takahashi, D.Y. Generalized Partial Directed Coherence. In Proceedings of the 2007 15th International Conference on Digital Signal Processing, Wales, UK, 1–4 July 2007; pp. 163–166. [Google Scholar]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Lewis, S.R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M.T.; Smith, M.D.; et al. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef]
- Lott, F.; Miller, M.J. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Q. J. R. Meteorol. Soc. 1997, 123, 101–127. [Google Scholar] [CrossRef]
- Baines, P.G.; Palmer, T. Rationale for a New Physically-Based Parameterization of Subgridscale Orographic Effects; ECMWF: Reading, UK, 1990. [Google Scholar]
- Miller, M.J.; Palmer, T.N.; Swinbank, R. Parametrization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteorol. Atmos. Phys. 1989, 40, 84–109. [Google Scholar] [CrossRef]
- Liu, J.; Millour, E.; Forget, F.; Lott, F.; Bierjon, A.; Martinez, A.; Lebonnois, S.; Gilli, G. New Parameterization of Non-Orographic Gravity Wave Scheme for LMD Mars GCM and its Impacts on the Upper Atmosphere. In Proceedings of the Seventh International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France, 1 June 2022; pp. 2105–2110. [Google Scholar]
- Baccalá, L.A.; Sameshima, K. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern. 2001, 84, 463–474. [Google Scholar] [CrossRef]
- Granger, C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Sato, J.R.; Takahashi, D.Y.; Arcuri, S.M.; Sameshima, K.; Baccalá, L. Frequency domain connectivity identification: An application of partial directed coherence in fMRI. Hum. Brain Mapp. 2010, 30, 452–461. [Google Scholar] [CrossRef]
- Biazoli, C.; Sturzbecher, M.; White, T.; Onias, H.; Andrade, K.; de Araujo, D.; Sato, J. Application of Partial Directed Coherence to the analysis of Resting-State EEG-fMRI data. Brain Connect. 2013, 3, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Raphaldini, B.; Teruya, A.S.W.; Leite da Silva Dias, P.; Massaroppe, L.; Takahashi, D.Y. Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: A normal-mode perspective. Earth Syst. Dyn. 2021, 12, 83–101. [Google Scholar] [CrossRef]
- Takahashi, D.Y.; Baccalá, L.A.; Sameshima, K. Information theoretic interpretation of frequency domain connectivity measures. Biol. Cybern. 2010, 103, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lawson, W.G.; Richardson, M.I.; Heavens, N.G.; Kleinbohl, A.; Banfield, D.; McCleese, D.J.; Zurek, R.; Kass, D.; Schofield, J.T.; et al. Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 2009, 114, E03005. [Google Scholar] [CrossRef] [PubMed]
- Guzevich, S.D.; Tallat, E.R.; Waugh, D.W. Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder. J. Geophys. Res. Planets 2012, 117, E03010. [Google Scholar]
- Wu, Z.; Li, T.; Dou, X. Seasonal variation of Martian middle atmosphere tides observed by the Mars Climate Sounder. J. Geophys. Res. Planets 2015, 120, 2206–2223. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Wilson, R.J.; McConnochie, T.H.; Toigo, A.D.; Banfield, D.J.; Smith, M.D. Thermal tides during the 2001 Martian global-scale dust storm. J. Geophys. Res. Planets 2014, 119, 506–519. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Zhang, X.; Li, J.; Cui, J. Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nat. Commun. 2020, 11, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, T.; Li, J.; Zhang, X.; Yang, C.; Cui, J. Abnormal Phase Structure of Thermal Tides during Major Dust Storms on Mars: Implications for the Excitation Source of High-altitude Water Ice Clouds. J. Geophys. Res. Planets 2021, 126, e2020JE006758. [Google Scholar] [CrossRef]
- Marshall, J.; Plumb, A. Circulation of the Atmosphere and Ocean. Available online: https://ocw.mit.edu/courses/12-333-atmospheric-and-ocean-circulations-spring-2004/resources/full/ (accessed on 19 May 2024).
- Kuroda, T.; Medvedev, A.S.; Hartogh, P.; Takahashi, M. Semiannual oscillations in the atmosphere of Mars. Geophys. Res. Lett. 2008, 35, L23202. [Google Scholar] [CrossRef]
- Plumb, R.A.; Ferrari, R. Transformed Eulerian-Mean Theory. Part I: Nonquasigeostrophic Theory for Eddies on a Zonal-Mean Flow. J. Phys. Oceanogr. 2005, 35, 165–174. [Google Scholar] [CrossRef]
- Wilson, R.J. Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data. Geophys. Res. Lett. 2000, 27, 3889–3892. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Yiğit, E.; Kuroda, T.; Hartogh, P. General circulation modeling of the Martian upper atmosphere during global dust storms. J. Geophys. Res. Planets 2013, 118, 2234–2246. [Google Scholar] [CrossRef]
Configuration Mode | Exp 1 | Exp 2 | Exp 3 | Exp 4 | Exp 5 | Exp 6 |
---|---|---|---|---|---|---|
Scenario | Cold | Cold | Climatology | Climatology | Warm | Warm |
Gravity Waves | Yes | No | Yes | No | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Sheng, Z.; He, M. Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves. Remote Sens. 2024, 16, 1904. https://doi.org/10.3390/rs16111904
Zhang J, Sheng Z, He M. Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves. Remote Sensing. 2024; 16(11):1904. https://doi.org/10.3390/rs16111904
Chicago/Turabian StyleZhang, Jie, Zheng Sheng, and Mingyuan He. 2024. "Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves" Remote Sensing 16, no. 11: 1904. https://doi.org/10.3390/rs16111904
APA StyleZhang, J., Sheng, Z., & He, M. (2024). Quantitative Analysis of the Vertical Interactions between Dust, Zonal Wind, and Migrating Diurnal Tide on Mars and the Role of Gravity Waves. Remote Sensing, 16(11), 1904. https://doi.org/10.3390/rs16111904