Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = Demand Response (DR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 211
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 316
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 474
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

28 pages, 2701 KiB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 - 17 Jul 2025
Viewed by 199
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

26 pages, 2573 KiB  
Article
Two-Layer Robust Optimization Scheduling Strategy for Active Distribution Network Considering Electricity-Carbon Coupling
by Yiteng Xu, Chenxing Yang, Zijie Liu, Yaxian Zheng, Yuechi Liu and Haiteng Han
Electronics 2025, 14(14), 2798; https://doi.org/10.3390/electronics14142798 - 11 Jul 2025
Viewed by 219
Abstract
Under the guidance of carbon peaking and carbon neutrality goals, the power industry is transitioning toward environmentally friendly practices. With the increasing integration of intermittent renewable energy sources (RES) and the enhanced self-regulation capabilities of grids, traditional distribution networks (DNs) are transitioning into [...] Read more.
Under the guidance of carbon peaking and carbon neutrality goals, the power industry is transitioning toward environmentally friendly practices. With the increasing integration of intermittent renewable energy sources (RES) and the enhanced self-regulation capabilities of grids, traditional distribution networks (DNs) are transitioning into active distribution networks (ADNs). To fully exploit the synergistic optimization potential of the “source-grid-load-storage” system in electricity-carbon coupling scenarios, leverage user-side flexibility resources, and facilitate low-carbon DN development, this paper proposes a low-carbon optimal scheduling strategy for ADN incorporating demand response (DR) priority. Building upon a bi-directional feedback mechanism between carbon potential and load, a two-layer distributed robust scheduling model for DN is introduced, which is solved through hierarchical iteration using column and constraint generation (C&CG) algorithm. Case study demonstrates that the model proposed in this paper can effectively measure the priority of demand response for different loads. Under the proposed strategy, the photovoltaic (PV) consumption rate reaches 99.76%. Demand response costs were reduced by 6.57%, and system carbon emissions were further reduced by 8.93%. While accounting for PV uncertainty, it balances the economic efficiency and robustness of DN, thereby effectively improving system operational safety and reliability, and promoting the smooth evolution of DN toward a low-carbon and efficient operational mode. Full article
Show Figures

Figure 1

14 pages, 806 KiB  
Article
A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration
by Weimin Xi, Qian Chen, Haihua Xu and Qingshan Xu
Energies 2025, 18(14), 3652; https://doi.org/10.3390/en18143652 - 10 Jul 2025
Viewed by 266
Abstract
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR [...] Read more.
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR approach grounded in Customer Directrix Load (CDL) and formulated through Stackelberg game theory. A bilevel optimization framework is established, with air conditioning (AC) systems and electric vehicles (EVs) serving as the main DR participants. The problem is addressed using a genetic algorithm. Simulation studies on a modified IEEE 33-bus distribution system reveal that the proposed strategy significantly improves RES accommodation, reduces power curtailment, and yields mutual benefits for both system operators and end users. The findings highlight the potential of the CDL-based DR mechanism in enhancing operational efficiency and encouraging proactive consumer involvement. Full article
Show Figures

Figure 1

24 pages, 2080 KiB  
Article
Techno-Economic Analysis of Non-Wire Alternative (NWA) Portfolios Integrating Energy Storage Systems (ESS) with Photovoltaics (PV) or Demand Response (DR) Resources Across Various Load Profiles
by Juwon Park and Sung-Kwan Joo
Energies 2025, 18(13), 3568; https://doi.org/10.3390/en18133568 - 7 Jul 2025
Viewed by 345
Abstract
The Non-Wire Alternative (NWA) approach has gained attention as a strategy to replace or defer traditional grid infrastructure upgrades by leveraging integrated solutions combining Energy Storage Systems (ESSs) with Distributed Energy Resources (DERs). The overall feasibility and economics of distributed flexibility solutions can [...] Read more.
The Non-Wire Alternative (NWA) approach has gained attention as a strategy to replace or defer traditional grid infrastructure upgrades by leveraging integrated solutions combining Energy Storage Systems (ESSs) with Distributed Energy Resources (DERs). The overall feasibility and economics of distributed flexibility solutions can be enhanced by leveraging the synergies among various DERs for NWA deployment. This study presents the results of a techno-economic analysis of an NWA portfolio that integrates Photovoltaic (PV) generation and Demand Response (DR) resources with ESSs. Three representative load profiles are analyzed under different load growth scenarios: a balanced mix of industrial, commercial, and residential loads; residential-dominant loads; and commercial/industrial-dominant loads. The analysis shows that the combined deployment of PVs and DRs significantly reduces the required ESS capacity. Furthermore, economic analysis based on Benefit–Cost Analysis (BCA) demonstrated that combining ESSs with either PVs or DRs enhances economic efficiency compared with an NWA portfolio that relies on ESSs alone, particularly under low-capacity factor conditions. However, the effectiveness of a DR or PV varies depending on the load profile. DR is less effective when the peak load durations are prolonged, whereas PV offers limited economic benefits under residential loads with the evening peak demand. These techno-economic results highlight the importance of tailoring NWA portfolios to specific load conditions to maximize both technical performance and economic value. Full article
Show Figures

Figure 1

19 pages, 3238 KiB  
Article
Optimal Location for Electric Vehicle Fast Charging Station as a Dynamic Load for Frequency Control Using Particle Swarm Optimization Method
by Yassir A. Alhazmi and Ibrahim A. Altarjami
World Electr. Veh. J. 2025, 16(7), 354; https://doi.org/10.3390/wevj16070354 - 25 Jun 2025
Viewed by 368
Abstract
There are significant emissions of greenhouse gases into the atmosphere from the transportation industry. As a result, the idea that electric vehicles (EVs) offer a revolutionary way to reduce greenhouse gas emissions and our reliance on rapidly depleting petroleum supplies has been put [...] Read more.
There are significant emissions of greenhouse gases into the atmosphere from the transportation industry. As a result, the idea that electric vehicles (EVs) offer a revolutionary way to reduce greenhouse gas emissions and our reliance on rapidly depleting petroleum supplies has been put forward. EVs are becoming more common in many nations worldwide, and the rapid uptake of this technology is heavily reliant on the growth of charging stations. This is leading to a significant increase in their number on the road. This rise has created an opportunity for EVs to be integrated with the power system as a Demand Response (DR) resource in the form of an EV fast charging station (EVFCS). To allocate electric vehicle fast charging stations as a dynamic load for frequency control and on specific buses, this study included the optimal location for the EVFCS and the best controller selection to obtain the best outcomes as DR for various network disruptions. The optimal location for the EVFCS is determined by applying transient voltage drop and frequency nadir parameters to the Particle Swarm Optimization (PSO) location model as the first stage of this study. The second stage is to explore the optimal regulation of the dynamic EVFCS load using the PSO approach for the PID controller. PID controller settings are acquired to efficiently support power system stability in the event of disruptions. The suggested model addresses various types of system disturbances—generation reduction, load reduction, and line faults—when it comes to the Kundur Power System and the IEEE 39 bus system. The results show that Bus 1 then Bus 4 of the Kundur System and Bus 39 then Bus 1 in the IEEE 39 bus system are the best locations for dynamic EVFCS. Full article
Show Figures

Figure 1

26 pages, 4704 KiB  
Article
Two-Layer Optimal Dispatch of Distribution Grids Considering Resilient Resources and New Energy Consumption During Cold Wave Weather
by Lu Shen, Xing Luo, Wenlu Ji, Jinxi Yuan and Chong Wang
Energies 2025, 18(11), 2973; https://doi.org/10.3390/en18112973 - 4 Jun 2025
Viewed by 353
Abstract
Within the context of global warming, the frequent occurrence of extreme weather may lead to problems, such as a sharp decrease in new energy output, insufficient system backups, and an increase in the amount of energy consumed by users, resulting in large-scale power [...] Read more.
Within the context of global warming, the frequent occurrence of extreme weather may lead to problems, such as a sharp decrease in new energy output, insufficient system backups, and an increase in the amount of energy consumed by users, resulting in large-scale power shortages within the grid for a short period of time. With the increase in the numbers of electric vehicles (EVs) and microgrids (MGs), which are resilient resources, the ability of a system to participate in demand response (DR) is further improved, which may make up for short-term power shortages. In this paper, we first propose a charging and discharging model for EVs during the onset of a cold wave, and then perform load forecasting for EVs during cold wave weather based on user behavioral characteristics. Secondly, in order to accurately portray the flexible regulation capability of microgrids with massively flexible resource access, this paper adopts the convex packet fitting expression based on MGFOR to characterize the flexible regulation capability of MGs. Then, the Conditional Value at Risk (CVaR) is used to quantify the uncertainty of wind and solar power generation, and a two-layer model with the objective of minimizing the operation cost in the upper layer and maximizing the rate of new energy consumption in the lower layer is proposed and solved using Karush–Kuhn–Tucker (KKT) conditions. Finally, the proposed method is verified through examples to ensure the economic operation of the system and improve the new energy consumption rate of the system. Full article
(This article belongs to the Special Issue Impacts of Distributed Energy Resources on Power Systems)
Show Figures

Figure 1

29 pages, 5334 KiB  
Article
Optimal Multi-Area Demand–Thermal Coordination Dispatch
by Yu-Shan Cheng, Yi-Yan Chen, Cheng-Ta Tsai and Chun-Lung Chen
Energies 2025, 18(11), 2690; https://doi.org/10.3390/en18112690 - 22 May 2025
Viewed by 427
Abstract
With the soaring demand for electric power and the limited spinning reserve in the power system in Taiwan, the comprehensive management of both thermal power generation and load demand turns out to be a key to achieving the robustness and sustainability of the [...] Read more.
With the soaring demand for electric power and the limited spinning reserve in the power system in Taiwan, the comprehensive management of both thermal power generation and load demand turns out to be a key to achieving the robustness and sustainability of the power system. This paper aims to design a demand bidding (DB) mechanism to collaborate between customers and suppliers on demand response (DR) to prevent the risks of energy shortage and realize energy conservation. The concurrent integration of the energy, transmission, and reserve capacity markets necessitates a new formulation for determining schedules and marginal prices, which is expected to enhance economic efficiency and reduce transaction costs. To dispatch energy and reserve markets concurrently, a hybrid approach of combining dynamic queuing dispatch (DQD) with direct search method (DSM) is developed to solve the extended economic dispatch (ED) problem. The effectiveness of the proposed approach is validated through three case studies of varying system scales. The impacts of tie-line congestion and area spinning reserve are fully reflected in the area marginal price, thereby facilitating the determination of optimal load reduction and spinning reserve allocation for demand-side management units. The results demonstrated that the multi-area bidding platform proposed in this paper can be used to address issues of congestion between areas, thus improving the economic efficiency and reliability of the day-ahead market system operation. Consequently, this research can serve as a valuable reference for the design of the demand bidding mechanism. Full article
Show Figures

Figure 1

19 pages, 2792 KiB  
Article
A Load Restoration Approach Based on Symmetrical Demand Response Incentive Mechanism
by Xuntao Shi, Jian Sun, Xiaobing Xiao, Yongjun Zhang, Yiyong Lei, Hao Yang and Zhuangzhuang Li
Energies 2025, 18(11), 2677; https://doi.org/10.3390/en18112677 - 22 May 2025
Viewed by 245
Abstract
Demand response (DR) has high regulation potential, which can reduce the power supply–demand imbalance caused by extreme disasters. However, its actual effectiveness still needs to be improved because of low user willingness and incomplete compensation mechanisms. To address this issue, a symmetrical incentive [...] Read more.
Demand response (DR) has high regulation potential, which can reduce the power supply–demand imbalance caused by extreme disasters. However, its actual effectiveness still needs to be improved because of low user willingness and incomplete compensation mechanisms. To address this issue, a symmetrical incentive mechanism for DR is proposed. Building upon this mechanism, a bi-level load restoration optimization model under extreme events is proposed. The upper-level model minimizes grid-side costs during load restoration, determining load restoration ratios and incentive coefficients transmitted to the lower level. The lower-level model maximizes user profits while considering comfort-level losses from DR participation, solving for actual response quantities that are fed back to the upper level. To efficiently solve the proposed load restoration model, an iterative mixed-integer load restoration solver is proposed. Case studies demonstrate that the proposed symmetrical mechanism achieved an 89.6% participation rate, showing a 2.46% improvement over fixed incentive schemes. Grid payment costs were reduced by CNY 365,400, achieving incentive compatibility that facilitates rapid load restoration post extreme disasters. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

16 pages, 1744 KiB  
Article
The Optimal Operation of Ice-Storage Air-Conditioning Systems by Considering Thermal Comfort and Demand Response
by Chia-Sheng Tu, Yon-Hon Tsai, Ming-Tang Tsai and Chih-Liang Chen
Energies 2025, 18(10), 2427; https://doi.org/10.3390/en18102427 - 8 May 2025
Viewed by 473
Abstract
The purpose of this paper is to discuss the optimal operation of ice-storage air-conditioning systems by considering thermal comfort and demand response (DR) in order to obtain the maximum benefit. This paper first collects the indoor environment parameters and human body parameters to [...] Read more.
The purpose of this paper is to discuss the optimal operation of ice-storage air-conditioning systems by considering thermal comfort and demand response (DR) in order to obtain the maximum benefit. This paper first collects the indoor environment parameters and human body parameters to calculate the Predicted Mean Vote (PMV). By considering the DR strategy, the cooling load requirements, thermal comfort, and the various operation constraints, the dispatch model of the ice-storage air-conditioning systems is formulated to minimize the total bill. This paper takes an office building as a case study to analyze the cooling capacity in ice-melting mode and ice-storage mode. A dynamic programming model is used to solve the dispatch model of ice-storage air-conditioning systems, and analyzes the optimal operation cost of ice-storage air-conditioning systems under a two-section and three-section Time-of-Use (TOU) price. The ice-storage mode and ice-melting mode of the ice-storage air-conditioning system are used as the analysis benchmark, and then the energy-saving strategy, thermal comfort, and the demand response (DR) strategy are added for analysis and comparison. It is shown that the total electricity cost of the two-section TOU and three-section TOU was reduced by 18.67% and 333%, respectively, if the DR is considered in our study. This study analyzes the optimal operation of the ice-storage air-conditioning system from an overall perspective under various conditions such as different seasons, time schedules, ice storage and melting, etc. Through the implementation of this paper, the ability for enterprise operation and management control is improved for the participants to reduce peak demand, save on an electricity bill, and raise the ability of the market’s competition. Full article
Show Figures

Figure 1

22 pages, 3776 KiB  
Article
Multi-Timescale Dispatching Method for Industrial Microgrid Considering Electrolytic Aluminum Load Characteristics
by Ruiping Liu, Xubin Liu, Jianling Tang, Hua Han, Mei Su and Yongbo Huang
Processes 2025, 13(5), 1411; https://doi.org/10.3390/pr13051411 - 6 May 2025
Cited by 1 | Viewed by 374
Abstract
In response to the challenges posed by the high proportion of photovoltaic (PV) in electrolytic aluminum (EA) industrial isolated microgrids, such as the low carbon economy problem and the dynamic dispatchability of EA and its combined heat and power (CHP) unit, a multi-timescale [...] Read more.
In response to the challenges posed by the high proportion of photovoltaic (PV) in electrolytic aluminum (EA) industrial isolated microgrids, such as the low carbon economy problem and the dynamic dispatchability of EA and its combined heat and power (CHP) unit, a multi-timescale optimal dispatching method considering the dynamic temperature characteristics of an aluminum electrolytic cell is proposed for an EA isolated microgrid. Firstly, based on an electrothermal coupling model, the electrolyte dynamic temperature expression of aluminum electrolytic is derived, and the optimal dispatching method of an EA load considering the dynamic temperature characteristics of EA is proposed. Secondly, based on the carbon emission models of CHP units and EA loads, and with the optimization objective of maximizing the operating revenue of industrial isolated microgrids, a day-ahead-intraday multi-timescale optimal dispatching model considering the participation of EA loads in the demand response (DR) for isolated microgrids was established. Finally, numerical results for an industrial isolated microgrid have verified the effectiveness of the proposed method in improving the PV consumption rate and realizing low-carbon and economic operation of industrial islanded microgrids. Full article
Show Figures

Figure 1

19 pages, 4317 KiB  
Article
Stochastic Programming-Based Annual Peak-Regulation Potential Assessing Method for Virtual Power Plants
by Yayun Qu, Chang Liu, Xiangrui Tong and Yiheng Xie
Symmetry 2025, 17(5), 683; https://doi.org/10.3390/sym17050683 - 29 Apr 2025
Viewed by 414
Abstract
The intervention of distributed loads, propelled by the swift advancement of distributed energy sources and the escalating demand for diverse load types encompassing electricity and cooling within virtual power plants (VPPs), has exerted an influence on the symmetry of the grid. Consequently, a [...] Read more.
The intervention of distributed loads, propelled by the swift advancement of distributed energy sources and the escalating demand for diverse load types encompassing electricity and cooling within virtual power plants (VPPs), has exerted an influence on the symmetry of the grid. Consequently, a quantitative assessment of the annual peak-shaving capability of a VPP is instrumental in mitigating the peak-to-valley difference in the grid, enhancing the operational safety of the grid, and reducing grid asymmetry. This paper presents a peak-shaving optimization method for VPPs, which takes into account renewable energy uncertainty and flexible load demand response. Firstly, wind power (WP), photovoltaic (PV) generation, and demand-side response (DR) are integrated into the VPP framework. Uncertainties related to WP and PV generation are incorporated through the scenario method within deterministic constraints. Secondly, a stochastic programming (SP) model is established for the VPP, with the objective of maximizing the peak-regulation effect and minimizing electricity loss for demand-side users. The case study results indicate that the proposed model effectively tackles peak-regulation optimization across diverse new energy output scenarios and accurately assesses the peak-regulation potential of the power system. Specifically, the proportion of load decrease during peak hours is 18.61%, while the proportion of load increase during off-peak hours is 17.92%. The electricity loss degrees for users are merely 0.209 in summer and 0.167 in winter, respectively. Full article
(This article belongs to the Special Issue Symmetry in Digitalisation of Distribution Power System)
Show Figures

Figure 1

30 pages, 5733 KiB  
Article
Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads
by Keyong Hu, Qingqing Yang, Lei Lu, Yu Zhang, Shuifa Sun and Ben Wang
Mathematics 2025, 13(9), 1439; https://doi.org/10.3390/math13091439 - 28 Apr 2025
Viewed by 552
Abstract
To effectively account for the impact of fluctuations in the power generation efficiency of renewable energy sources such as photovoltaics (PVs) and wind turbines (WTs), as well as the uncertainties in load demand within an integrated energy system (IES), this article develops an [...] Read more.
To effectively account for the impact of fluctuations in the power generation efficiency of renewable energy sources such as photovoltaics (PVs) and wind turbines (WTs), as well as the uncertainties in load demand within an integrated energy system (IES), this article develops an IES model incorporating power generation units such as PV, WT, microturbines (MTs), Electrolyzer (EL), and Hydrogen Fuel Cell (HFC), along with energy storage components including batteries and heating storage systems. Furthermore, a demand response (DR) mechanism is introduced to dynamically regulate the energy supply–demand balance. In modeling uncertainties, this article utilizes historical data on PV, WT, and loads, combined with the adjustability of decision variables, to generate a large set of initial scenarios through the Monte Carlo (MC) sampling algorithm. These scenarios are subsequently reduced using a combination of the K-means clustering algorithm and the Simultaneous Backward Reduction (SBR) technique to obtain representative scenarios. To further manage uncertainties, a distributionally robust optimization (DRO) approach is introduced. This method uses 1-norm and ∞-norm constraints to define an ambiguity set of probability distributions, thereby restricting the fluctuation range of probability distributions, mitigating the impact of deviations on optimization results, and achieving a balance between robustness and economic efficiency in the optimization process. Finally, the model is solved using the column and constraint generation algorithm, and its robustness and effectiveness are validated through case studies. The MC sampling method adopted in this article, compared to Latin hypercube sampling followed by clustering-based scenario reduction, achieves a maximum reduction of approximately 17.81% in total system cost. Additionally, the results confirm that as the number of generated scenarios increases, the optimized cost decreases, with a maximum reduction of 1.14%. Furthermore, a comprehensive cost analysis of different uncertainties modeling approaches is conducted, demonstrating that the optimization results lie between those obtained from stochastic optimization (SO) and robust optimization (RO), effectively balancing conservatism and economic efficiency. Full article
Show Figures

Figure 1

Back to TopTop