Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,334)

Search Parameters:
Keywords = DUS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Article
Mapping Perfusion and Predicting Success: Infrared Thermography-Guided Perforator Flaps for Lower Limb Defects
by Abdalah Abu-Baker, Andrada-Elena Ţigăran, Teodora Timofan, Daniela-Elena Ion, Daniela-Elena Gheoca-Mutu, Adelaida Avino, Cristina-Nicoleta Marina, Adrian Daniel Tulin, Laura Raducu and Radu-Cristian Jecan
Medicina 2025, 61(8), 1410; https://doi.org/10.3390/medicina61081410 - 3 Aug 2025
Viewed by 49
Abstract
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography [...] Read more.
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography (IRT) in preoperative planning and postoperative monitoring of perforator-based flaps, assessing its accuracy in identifying perforators, predicting complications, and optimizing outcomes. Materials and Methods: A prospective observational study was conducted on 76 patients undergoing lower limb reconstruction with fascio-cutaneous perforator flaps between 2022 and 2024. Perforator mapping was performed concurrently with IRT and Doppler ultrasonography (D-US), with intraoperative confirmation. Flap design variables and systemic parameters were recorded. Postoperative monitoring employed thermal imaging on days 1 and 7. Outcomes were correlated with thermal, anatomical, and systemic factors using statistical analyses, including t-tests and Pearson correlation. Results: IRT showed high sensitivity (97.4%) and positive predictive value (96.8%) for perforator detection. A total of nine minor complications occurred, predominantly in patients with diabetes mellitus and/or elevated glycemia (p = 0.05). Larger flap-to-defect ratios (A/C and B/C) correlated with increased complications in propeller flaps, while smaller ratios posed risks for V-Y and Keystone flaps. Thermal analysis indicated significantly lower flap temperatures and greater temperature gradients in flaps with complications by postoperative day 7 (p < 0.05). CRP levels correlated with glycemia and white blood cell counts, highlighting systemic inflammation’s impact on outcomes. Conclusions: IRT proves to be a reliable, non-invasive method for perforator localization and flap monitoring, enhancing surgical planning and early complication detection. Combined with D-US, it improves perforator selection and perfusion assessment. Thermographic parameters, systemic factors, and flap design metrics collectively predict flap viability. Integration of IRT into surgical workflows offers a cost-effective tool for optimizing reconstructive outcomes in lower limb surgery. Full article
Show Figures

Figure 1

14 pages, 879 KiB  
Article
Axially Disubstituted Silicon(IV) Phthalocyanine as a Potent Sensitizer for Antimicrobial and Anticancer Photo and Sonodynamic Therapy
by Marcin Wysocki, Daniel Ziental, Zekeriya Biyiklioglu, Malgorzata Jozkowiak, Jolanta Dlugaszewska, Hanna Piotrowska-Kempisty, Emre Güzel and Lukasz Sobotta
Int. J. Mol. Sci. 2025, 26(15), 7447; https://doi.org/10.3390/ijms26157447 - 1 Aug 2025
Viewed by 159
Abstract
The unique properties of phthalocyanines (Pcs), such as strong absorption, high photostability, effective singlet oxygen generation, low toxicity and biocompatibility, versatile chemical modifications, broad spectrum of antimicrobial activity, and synergistic effects with other treatment modalities, make them a preferred superior sensitizer in the [...] Read more.
The unique properties of phthalocyanines (Pcs), such as strong absorption, high photostability, effective singlet oxygen generation, low toxicity and biocompatibility, versatile chemical modifications, broad spectrum of antimicrobial activity, and synergistic effects with other treatment modalities, make them a preferred superior sensitizer in the field of antimicrobial photodynamic therapy. The photodynamic and sonodynamic activity of 3-(3-(diethylamino)phenoxy)propanoxy substituted silicon(IV) Pc were evaluated against bacteria and cancer cells. Stability and singlet oxygen generation upon light irradiation and ultrasound (1 MHz, 3 W) were assessed with 1,3-diphenylisobenzofuran. The phthalocyanine revealed high photostability in DMF and DMSO, although the singlet oxygen yields under light irradiation were low. On the other hand, the phthalocyanine revealed excellent sonostability and caused a high rate of DPBF degradation upon excitation by ultrasounds at 1 MHz. The silicon phthalocyanine presented significant bacterial reduction growth, up to 5 log against MRSA and S. epidermidis upon light excitation, whereas the sonodynamic effect was negligible. The phthalocyanine revealed high activity in both photodynamic and sonodynamic manner toward hypopharyngeal tumor (FaDu, 95% and 42% reduction, respectively) and squamous cell carcinoma (SCC-25, 96% and 62% reduction, respectively). The sensitizer showed ca. 30% aldehyde dehydrogenase inhibition in various concentrations and up to 85% platelet-activating factor acetylhydrolase for 0.25 μM, while protease-activated protein C was stimulated up to 66% for 0.75 μM. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 4761 KiB  
Article
Enhanced Dynamic Game Method for Offshore Wind Turbine Airfoil Optimization Design
by Rui Meng, Jintao Song, Xueqing Ren and Xuhui Chen
J. Mar. Sci. Eng. 2025, 13(8), 1481; https://doi.org/10.3390/jmse13081481 - 31 Jul 2025
Viewed by 156
Abstract
The novel enhanced dynamic game method (EDGM) is proposed to advance game-based design approaches, with a focus on enhancing solution distribution, precision, and the ability to reveal the dynamic influence sensitivity of design variables on objective functions. An integrated mathematical model is developed [...] Read more.
The novel enhanced dynamic game method (EDGM) is proposed to advance game-based design approaches, with a focus on enhancing solution distribution, precision, and the ability to reveal the dynamic influence sensitivity of design variables on objective functions. An integrated mathematical model is developed by combining EDGM with PARSEC and CST parameterization methods, forming a systematic framework for offshore wind turbine airfoil optimization. Targeting airfoils with approximately 30% and 35% thickness, the study aims to improve annual energy production (AEP) and optimize the polar moment of inertia. Redesigned airfoils using the EDGM-integrated model exhibit significant enhancements in aerodynamic performance and anti-flutter capability compared to baseline airfoils DU97W300 and DU99W350. The methodology’s superiority is validated through analyses of pressure distributions, lift-to-drag ratios, and streamline patterns, as well as comparative evaluations using HV and Spacing metrics, demonstrating EDGM’s potential for broader engineering applications in complex multi-objective optimization scenarios. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 10625 KiB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 264
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

40 pages, 13570 KiB  
Article
DuSAFNet: A Multi-Path Feature Fusion and Spectral–Temporal Attention-Based Model for Bird Audio Classification
by Zhengyang Lu, Huan Li, Min Liu, Yibin Lin, Yao Qin, Xuanyu Wu, Nanbo Xu and Haibo Pu
Animals 2025, 15(15), 2228; https://doi.org/10.3390/ani15152228 - 29 Jul 2025
Viewed by 308
Abstract
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures [...] Read more.
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures both local spectral textures and long-range temporal dependencies in Mel-spectrogram inputs and explicitly enhances inter-class separability across low, mid, and high frequency bands. On a curated dataset of 17,653 three-second recordings spanning 18 species, DuSAFNet achieves 96.88% accuracy and a 96.83% F1 score using only 6.77 M parameters and 2.275 GFLOPs. Cross-dataset evaluation on Birdsdata yields 93.74% accuracy, demonstrating robust generalization to new recording conditions. Its lightweight design and high performance make DuSAFNet well-suited for edge-device deployment and real-time alerts for rare or threatened species. This work lays the foundation for scalable, automated acoustic monitoring to inform biodiversity assessments and conservation planning. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

26 pages, 15535 KiB  
Article
BCA-MVSNet: Integrating BIFPN and CA for Enhanced Detail Texture in Multi-View Stereo Reconstruction
by Ning Long, Zhengxu Duan, Xiao Hu and Mingju Chen
Electronics 2025, 14(15), 2958; https://doi.org/10.3390/electronics14152958 - 24 Jul 2025
Viewed by 164
Abstract
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is [...] Read more.
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is proposed in this paper. The network integrates the Bidirectional Feature Pyramid Network (BIFPN) into the feature processing of the MVSNet backbone network to accurately extract the features of weak-texture regions. In the feature map fusion stage, the Coordinate Attention (CA) mechanism is introduced into 3DU-Net to obtain the position information on the channel dimension related to the direction, improve the detail feature extraction, optimize the depth map and improve the depth accuracy. The experimental results show that BCA-MVSNet not only improves the accuracy of detail texture reconstruction, but also effectively controls the computational overhead. In the DTU dataset, the Overall and Comp metrics of BCA-MVSNet are reduced by 10.2% and 2.6%, respectively; in the Tanksand Temples dataset, the Mean metrics of the eight scenarios are improved by 6.51%. Three scenes are shot by binocular camera, and the reconstruction quality is excellent in the weak-texture area by combining the camera parameters and the BCA-MVSNet model. Full article
Show Figures

Figure 1

15 pages, 2952 KiB  
Article
Experimental Measurements on the Influence of Inlet Pipe Configuration on Hydrodynamics and Dissolved Oxygen Distribution in Circular Aquaculture Tank
by Yanfei Wu, Jianeng Chen, Fukun Gui, Hongfang Qi, Yang Wang, Ying Luo, Yanhong Wu, Dejun Feng and Qingjing Zhang
Water 2025, 17(15), 2172; https://doi.org/10.3390/w17152172 - 22 Jul 2025
Viewed by 268
Abstract
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), [...] Read more.
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), deployment distance ratio (d/r), deployment angle (θ), inlet pipe structure on hydrodynamics and the dissolved oxygen distribution across various tank layers. The flow field distribution in the tanks was measured using Acoustic Doppler Velocimetry (ADV), and the hydrodynamic characteristics, including average velocity (vavg) and the velocity uniformity coefficient (DU50), were quantitatively analyzed. The dissolved oxygen content at different tank layers was recorded using an Aquameter GPS portable multi-parameter water quality analyzer. The findings indicate that average velocity (vavg) and the velocity uniformity coefficient (DU50) are key determinants of the hydrodynamic characteristic of circular aquaculture tanks. Optimal hydrodynamic performance occurs for the vertical single-pipe porous configuration at Q = 9 L/s, d/r = 1/4, and θ = 45°,the average velocity reached 0.0669 m/s, and the uniformity coefficients attained a maximum value of 40.4282. In a vertical single-pipe porous structure, the tank exhibits higher dissolved oxygen levels compared to a horizontal single-pipe single-hole structure. Under identical water inflow rates and deployment distance ratios, dissolved oxygen levels in the surface layer of the circular aquaculture tank are significantly greater than that in the bottom layer. The results of this study provide valuable insights for optimizing the engineering design of industrial circular aquaculture tanks and addressing the dissolved oxygen distribution across different water layers. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

14 pages, 2694 KiB  
Article
Functional Amyloids in Adhesion of Non-albicans Candida Species
by Melissa C. Garcia-Sherman, Safraz A. Hamid, Desmond N. Jackson, James Thomas and Peter N. Lipke
Pathogens 2025, 14(8), 723; https://doi.org/10.3390/pathogens14080723 - 22 Jul 2025
Viewed by 328
Abstract
Candida fungal species are the most common fungal opportunistic pathogens. Their ability to form antifungal resistant biofilms contributes to their increasing clinical frequency. These fungi express surface-anchored adhesins including members of the Als family. These adhesins mediate epithelial adhesion, aggregation, and biofilm formation. [...] Read more.
Candida fungal species are the most common fungal opportunistic pathogens. Their ability to form antifungal resistant biofilms contributes to their increasing clinical frequency. These fungi express surface-anchored adhesins including members of the Als family. These adhesins mediate epithelial adhesion, aggregation, and biofilm formation. Many of the adhesins contain cross-β core sequences that form amyloid-like protein aggregates on the fungal surface. The aggregates mediate high-avidity bonding that contributes to biofilm establishment and persistence. Accordingly, autopsy sections from individuals with candidiasis and other mycoses have amyloids within abscesses. An amyloid-forming peptide containing a sequence from Candida albicans Als5 bound to C. albicans, C. tropicalis, and C. parapsilosis. C. albicans and C. tropicalis aggregated with beads coated with serum albumin, and the aggregates stained with the amyloid-binding dye thioflavin T. Additionally, an Als5-derived amyloid-inhibiting peptide blocked cell aggregation. The amyloid-inhibiting peptide also blocked C. albicans, C. tropicalis, and C. parapsilosis adhesion to monolayers of FaDu epithelial cells. These results show the involvement of amyloid-like interactions in pathogenesis in several Candida species. Full article
Show Figures

Graphical abstract

19 pages, 3772 KiB  
Article
Phenotypic Diversity Analysis and Integrative Evaluation of Camellia oleifera Germplasm Resources in Ya’an, Sichuan Province
by Shiheng Zheng, Qingbo Kong, Hanrui Yan, Junjie Liu, Renke Tang, Lijun Zhou, Hongyu Yang, Xiaoyu Jiang, Shiling Feng, Chunbang Ding and Tao Chen
Plants 2025, 14(14), 2249; https://doi.org/10.3390/plants14142249 - 21 Jul 2025
Viewed by 374
Abstract
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen [...] Read more.
As a unique woody oil crop in China, Camellia oleifera Abel. germplasm resources show significant genetic diversity in Ya’an City. This study measured 60 phenotypic traits (32 quantitative, 28 qualitative) of 302 accessions to analyze phenotypic variation, establish a classification system, and screen high-yield, high-oil germplasms. The phenotypic diversity index for fruit (H’ = 1.36–1.44) was significantly higher than for leaf (H’ = 1.31) and flower (H’ < 1), indicating genetic diversity concentrated in reproductive traits, suggesting potential genetic variability in these traits. Fruit quantitative traits (e.g., single fruit weight CV = 35.37%, fresh seed weight CV = 38.93%) showed high genetic dispersion. Principal component analysis confirmed the fruit factor and economic factor as main phenotypic differentiation drivers. Quantitative traits were classified morphologically, and correlation analysis integrated them into 13 key indicators classified using LSD and range methods. Finally, TOPSIS evaluation selected 10 excellent germplasms like TQ122 and TQ49, with fruit weight, fresh seed yield, and kernel oil content significantly exceeding the population average. This study provides data for C. oleifera DUS test guidelines and proposes a multi-trait breeding strategy, supporting high-yield variety selection and germplasm resource protection. Full article
(This article belongs to the Special Issue Genetic Diversity and Germplasm Innovation in Woody Oil Crops)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 485
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 308
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

38 pages, 3566 KiB  
Article
Electron-Shuttling and Bioenergy-Stimulating Properties of Mulberry Anthocyanins: A Mechanistic Study Linking Redox Activity to MFC Performance and Receptor Affinity
by Gilbert S. Sobremisana, Po-Wei Tsai, Christine Joyce F. Rejano, Lemmuel L. Tayo, Chung-Chuan Hsueh, Cheng-Yang Hsieh and Bor-Yann Chen
Processes 2025, 13(7), 2290; https://doi.org/10.3390/pr13072290 - 18 Jul 2025
Viewed by 474
Abstract
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by [...] Read more.
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by characterizing mulberry’s electrochemical capabilities via the three defined ES criteria and deciphering its mechanism against oxidative stress-related cancer. Using double-chambered microbial-fuel-cell power metrics, cyclic voltammetry, and compartmental fermentation modeling, we show that anthocyanin shows a significant difference (p < 0.05) in power density at ≥500 µg/mL (maximum of 2.06-fold power-density increase) and reversible redox cycling (ratio = 1.65), retaining >90% activity over four fermentation cycles. Molecular docking implicates meta-dihydroxyl motifs within the core scaffold in receptor binding, overturning the view that only ortho- and para-substituents participate in bioactivity. In vitro, anthocyanins both inhibit nitric oxide release and reduce DU-145 cell viability dose-dependently. Overall, our findings establish mulberry anthocyanins as robust electron shuttles with potential for integration into large-scale bio-electrochemical platforms and targeted redox-based cancer therapies. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

18 pages, 3297 KiB  
Article
Evaluation of Apoptosis and Cytotoxicity Induction Using a Recombinant Newcastle Disease Virus Expressing Human IFN-γ in Human Prostate Cancer Cells In Vitro
by Aldo Rojas-Neyra, Katherine Calderón, Brigith Carbajal-Lévano, Gloria Guerrero-Fonseca, Gisela Isasi-Rivas, Ana Chumbe, Ray W. Izquierdo-Lara, Astrid Poma-Acevedo, Freddy Ygnacio, Dora Rios-Matos, Manolo Fernández-Sánchez and Manolo Fernández-Díaz
Biomedicines 2025, 13(7), 1710; https://doi.org/10.3390/biomedicines13071710 - 14 Jul 2025
Viewed by 1665
Abstract
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment [...] Read more.
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment alternatives. One promising approach is virotherapy, which involves using oncolytic viruses (OVs), such as the recombinant Newcastle disease virus (rNDV). Methods: We used the lentogenic rNDV rLS1 strain (the control virus) as our backbone to develop two highly fusogenic rNDVs: rFLCF5nt (the parental virus) and rFLCF5nt-IFN-γ (rFLCF5nt expressing human interferon-gamma (IFN-γ)). We evaluated their oncolytic properties in a prostate cancer cell line (DU145). Results: The results showed the expression and stability of the IFN-γ protein, as confirmed using Western blotting after ten passages in specific pathogen-free chicken embryo eggs using the IFN-γ-expressing virus. Additionally, we detected a significantly high oncolytic activity in DU145 cells infected with the parental virus or the IFN-γ-expressing virus using MTS (a cell viability assay) and Annexin V-PE assays compared with the control virus (p < 0.0001 for both). Conclusions: In conclusion, our data show that IFN-γ-expressing virus can decrease cell viability and induce apoptosis in human prostate cancer in vitro. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

22 pages, 4817 KiB  
Article
LightSpot Fluorescent Conjugates as Highly Efficient Tools for Lysosomal P-gp Quantification in Olaparib-Treated Triple-Negative Breast Cancer Cells
by Antoine Goisnard, Pierre Daumar, Maxime Dubois, Elodie Gay, Manon Roux, Marie Depresle, Frédérique Penault-Llorca, Emmanuelle Mounetou and Mahchid Bamdad
Int. J. Mol. Sci. 2025, 26(14), 6675; https://doi.org/10.3390/ijms26146675 - 11 Jul 2025
Viewed by 351
Abstract
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor [...] Read more.
P-glycoprotein (P-gp) is a key element of cancer treatment resistance, actively extruding cytotoxic drugs from cells and diminishing their efficacy. While its role at the plasma membrane is well established, its intracellular localization, particularly on lysosomes, is increasingly recognized as a critical contributor to drug resistance. This study investigates four innovative LightSpot fluorescent compounds to detect and quantify both membrane and lysosomal P-gp in Triple-Negative Breast Cancer (TNBC) SUM1315 and DU4475 cell lines. Results highlighted lysosomal P-gp staining by the LightSpot-FL-1, LightSpot-BrX-1, and LightSpot-BdO-1 fluorescent compounds (Mander’s coefficients > 0.8 overlapping with LAMP2 immunostaining). After both cell lines were exposed to Olaparib, a significant increase in P-gp expression level and lysosomal distribution of P-gp was detected. Indeed, after 100 µM Olaparib exposure, LightSpot-FL-1 allowed us to quantify an increase in P-gp-positive lysosome number of 1293 and 334% for SUM1315 and DU4475 cells, respectively, compared to the control. Findings suggest that P-gp may relocate to lysosomes upon drug exposure, highlighting a dual resistance mechanism involving both membrane and lysosomal P-gp. This study demonstrated the potential of LightSpot fluorescent compounds to evaluate P-gp-mediated cell resistance to treatment and emphasized the need to assess global cell P-gp expression to improve cancer diagnosis. Full article
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 616
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

Back to TopTop