Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = DPPG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2198 KB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Viewed by 697
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

20 pages, 4215 KB  
Article
Influence of Membrane Composition on the Passive Membrane Penetration of Industrially Relevant NSO-Heterocycles
by Zsófia Borbála Rózsa, Tamás Horváth, Béla Viskolcz and Milán Szőri
Int. J. Mol. Sci. 2025, 26(15), 7427; https://doi.org/10.3390/ijms26157427 - 1 Aug 2025
Viewed by 746
Abstract
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the [...] Read more.
This study investigates how phospholipid headgroups influence passive membrane penetration and structural impact of four nitrogen-, sulfur-, and oxygen-containing heterocycles (NSO-HETs)—N-methyl-2-pyrrolidone (PIR), 1,4-dioxane (DIOX), oxane (OXA), and phenol (PHE). Using all-atom molecular dynamics simulations combined with Accelerated Weight Histogram free energy calculations, the passive transport of NSO-HETs across DPPC, DPPE, DPPA, and DPPG bilayers was characterized. DPPG showed the highest membrane affinity, increasing permeability (logPmemb/bulk) by 27–64% compared to DPPE, associated with the lowest permeability and tightest lipid packing. Free energy barriers are also decreased in DPPG relative to DPPE; PIR’s central barrier dropped from 19.2 kJ/mol (DPPE) to 16.6 kJ/mol (DPPG), while DIOX’s barrier decreased from 7.2 to 5.2 kJ/mol. OXA exhibited the lowest central barriers (1.2–2.2 kJ/mol) and uniquely accumulated at higher concentrations in the bilayer center than in bulk water, with free energy ranging from −3.4 to −5.9 kJ/mol. PHE and OXA caused significant bilayer thinning (up to 11%) and reduced lipid tail order, especially in DPPE and DPPA. Concentration effects were most pronounced in DPPE, where high solute loading disrupted lipid order and altered free energy profiles. These results highlight the crucial role of headgroup identity in modulating NSO-HET membrane permeability and structural changes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

14 pages, 3408 KB  
Article
Antifungal Effects of the Phloroglucinol Derivative DPPG Against Pathogenic Aspergillus fumigatus
by Liyang Wang, Junying He, Hanzhong Feng, Qian Li, Meirong Song, Haoran Gou, Yongxing He and Kui Zhu
Antibiotics 2025, 14(5), 499; https://doi.org/10.3390/antibiotics14050499 - 13 May 2025
Viewed by 1347
Abstract
Background: Fungal infections pose an increasingly predominant threat to human and animal health. Modified compounds derived from chemo-diverse natural products offer enhanced therapeutic efficacies and promising approaches to combat life-threatening fungal pathogens. Methods: We performed biosynthetic gene clusters analysis of 2,4-diacetylchloroglucoside (DAPG) in [...] Read more.
Background: Fungal infections pose an increasingly predominant threat to human and animal health. Modified compounds derived from chemo-diverse natural products offer enhanced therapeutic efficacies and promising approaches to combat life-threatening fungal pathogens. Methods: We performed biosynthetic gene clusters analysis of 2,4-diacetylchloroglucoside (DAPG) in 4292 shotgun metagenomes samples from the healthy and diseased skin. Then, we assessed the antifungal activity of DAPG and the derivative 2,4-diproylphloroglucinol (DPPG) against pathogenic fungi by minimum inhibitory concentrations. The inhibitory effects of DPPG were measured using hyphal growth assay and spore germination assay. Concurrently, the mechanism of DPPG on Aspergillus fumigatus was investigated in membrane permeability and fluidity. The therapeutic efficacy was evaluated in a Galleria mellonella infection model. Results: We observed a significantly higher abundance of bacteria harboring DAPG biosynthetic clusters on healthy skin compared to diseased skin. Further, we designed and synthesized a series of phloroglucinol derivatives based on DAPG and obtained an antifungal candidate DPPG. DPPG not only exhibited robust antifungal activity against Aspergillus spp. and Candida spp. but also impaired hyphal growth and spore germination of A. fumigatus in vitro. A mechanism study showed that DPPG reduced membrane fluidity and increased the leakage of cellular contents, resulting in membrane perturbation and fungal death. Lastly, the therapeutic efficacy of DPPG was confirmed in a G. mellonella infection model. Conclusions: Our study demonstrates that DPPG is a potent scaffold to combat invasive fungal infections. Full article
(This article belongs to the Special Issue Discovery and Development of Novel Antibacterial Agents—2nd Edition)
Show Figures

Figure 1

28 pages, 10092 KB  
Article
Electronic States of Epigallocatechin-3-Gallate in Water and in 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (Sodium Salt) Liposomes
by Filipa Pires, Demeter Tzeli, Nykola C. Jones, Søren V. Hoffmann and Maria Raposo
Int. J. Mol. Sci. 2025, 26(3), 1084; https://doi.org/10.3390/ijms26031084 - 27 Jan 2025
Cited by 2 | Viewed by 1413
Abstract
In this work, the spectroscopy of epigallocatechin-3-gallate (EGCG) and EGCG bonded to 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DPPG) lipid is studied both experimentally by combining high-resolution vacuum ultraviolet (VUV) photo-absorption measurements in the 4.0–9.0 eV energy range and by theoretical calculations using density functional theory [...] Read more.
In this work, the spectroscopy of epigallocatechin-3-gallate (EGCG) and EGCG bonded to 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DPPG) lipid is studied both experimentally by combining high-resolution vacuum ultraviolet (VUV) photo-absorption measurements in the 4.0–9.0 eV energy range and by theoretical calculations using density functional theory (DFT) methodology. There is a good agreement between the experimental and theoretical data, and the inclusion of the solvent both implicitly and explicitly further improves this agreement. For all experimentally measured absorption bands observed in the VUV spectra of EGCG in water, assignments to the calculated electronic transitions are provided. The calculations reveal that the spectrum of DPPG-EGCG has an intense peak around 150 nm, which is in accordance with experimental data, and it is assigned to an electron transfer transition from resorcinol–pyrogallol groups to different smaller groups of the EGCG molecule. Finally, the increase in absorbance observed experimentally in the DPPG-EGCG spectrum can be associated with the interaction between the molecules. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 2879 KB  
Article
Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes
by Priscilla Freddi, Natalia Alvarez, Gianella Facchin and Antonio J. Costa-Filho
Inorganics 2024, 12(12), 307; https://doi.org/10.3390/inorganics12120307 - 26 Nov 2024
Viewed by 1989
Abstract
Medicinal Inorganic Chemistry has provided oncology with metallodrugs for cancer treatment, including several promising candidate drugs. In particular, copper(II) coordination compounds with phenanthroline stand out as potential anticancer agents. In this work, we used Differential Scanning Calorimetry and Electron Spin Resonance to investigate [...] Read more.
Medicinal Inorganic Chemistry has provided oncology with metallodrugs for cancer treatment, including several promising candidate drugs. In particular, copper(II) coordination compounds with phenanthroline stand out as potential anticancer agents. In this work, we used Differential Scanning Calorimetry and Electron Spin Resonance to investigate the interaction of the copper phenanthroline complexes [Cu(phen)]2+ and [Cu(L-dipeptide)(phenanthroline) (L-dipeptide: L-Ala-Gly and L-Ala-Phe)) with model lipid membranes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) sodium salt, DPPG). Our results showed that the complexes interact with the membrane models, fluidizing them. The [Cu(phen)]2+ presented a different localization than the free ligand phen. The dipeptide modulated the localization of the complex in the membrane and the modifications induced in the physicochemical properties of the lipid vesicles. A stronger interaction with DPPG anionic membranes was observed, which mimic membranes with negatively charged surfaces, as found on several tumor cells. Full article
(This article belongs to the Special Issue Evaluation of the Potential Biological Activity of Metallo-Drugs)
Show Figures

Graphical abstract

11 pages, 2377 KB  
Article
Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant
by Sijia Wang, Huifang Xu, Yuanyuan Li, Lingyi Zhang and Shouhong Xu
Molecules 2024, 29(17), 4001; https://doi.org/10.3390/molecules29174001 - 24 Aug 2024
Viewed by 1261
Abstract
Stimulus-responsive materials hold significant promise for antitumor applications due to their variable structures and physical properties. In this paper, a series of peptides with a responsive viologen derivative, Pep-CnV (n = 1, 2, 3) were designed and synthesized. The process [...] Read more.
Stimulus-responsive materials hold significant promise for antitumor applications due to their variable structures and physical properties. In this paper, a series of peptides with a responsive viologen derivative, Pep-CnV (n = 1, 2, 3) were designed and synthesized. The process and mechanism of the interaction were studied and discussed. An ultraviolet–visible (UV) spectrophotometer and fluorescence spectrophotometer were used to study their redox responsiveness. Additionally, their secondary structures were measured by Circular Dichroism (CD) in the presence or absence of the reductant, Na2SO3. DPPC and DPPG liposomes were prepared to mimic normal and tumor cell membranes. The interaction between Pep-CnV and biomembranes was investigated by the measurements of surface tension and cargo leakage. Results proved Pep-CnV was more likely to interact with the DPPG liposome and destroy its biomembrane under the stimulus of the reductant. And the destruction increased with the length of the hydrophobic tail chain. Pep-CnV showed its potential as an intelligent antitumor agent. Full article
Show Figures

Figure 1

14 pages, 1572 KB  
Article
Modifying Membranotropic Action of Antimicrobial Peptide Gramicidin S by Star-like Polyacrylamide and Lipid Composition of Nanocontainers
by Olga V. Vashchenko, Volodymyr P. Berest, Liliia V. Sviechnikova, Nataliya V. Kutsevol, Natalia A. Kasian, Dmitry S. Sofronov and Oleksii Skorokhod
Int. J. Mol. Sci. 2024, 25(16), 8691; https://doi.org/10.3390/ijms25168691 - 9 Aug 2024
Cited by 4 | Viewed by 2049
Abstract
Gramicidin S (GS), one of the first discovered antimicrobial peptides, still shows strong antibiotic activity after decades of clinical use, with no evidence of resistance. The relatively high hemolytic activity and narrow therapeutic window of GS limit its use in topical applications. Encapsulation [...] Read more.
Gramicidin S (GS), one of the first discovered antimicrobial peptides, still shows strong antibiotic activity after decades of clinical use, with no evidence of resistance. The relatively high hemolytic activity and narrow therapeutic window of GS limit its use in topical applications. Encapsulation and targeted delivery may be the way to develop the internal administration of this drug. The lipid composition of membranes and non-covalent interactions affect GS’s affinity for and partitioning into lipid bilayers as monomers or oligomers, which are crucial for GS activity. Using both differential scanning calorimetry (DSC) and FTIR methods, the impact of GS on dipalmitoylphosphatidylcholine (DPPC) membranes was tested. Additionally, the combined effect of GS and cholesterol on membrane characteristics was observed; while dipalmitoylphosphatydylglycerol (DPPG) and cerebrosides did not affect GS binding to DPPC membranes, cholesterol significantly altered the membrane, with 30% mol concentration being most effective in enhancing GS binding. The effect of star-like dextran-polyacrylamide D-g-PAA(PE) on GS binding to the membrane was tested, revealing that it interacted with GS in the membrane and significantly increased the proportion of GS oligomers. Instead, calcium ions affected GS binding to the membrane differently, with independent binding of calcium and GS and no interaction between them. This study shows how GS interactions with lipid membranes can be effectively modulated, potentially leading to new formulations for internal GS administration. Modified liposomes or polymer nanocarriers for targeted GS delivery could be used to treat protein misfolding disorders and inflammatory conditions associated with free-radical processes in cell membranes. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 1288 KB  
Article
Interactions of Galloylated Polyphenols with a Simple Gram-Negative Bacterial Membrane Lipid Model
by Ryan T. Coones, Maarit Karonen, Rebecca J. Green and Richard Frazier
Membranes 2024, 14(2), 47; https://doi.org/10.3390/membranes14020047 - 8 Feb 2024
Cited by 2 | Viewed by 2829
Abstract
Differential scanning calorimetry (DSC) was used to explore the interactions of isolated polyphenolic compounds, including (-)-epigallocatechin gallate ((-)-EGCg), tellimagrandins I and II (Tel-I and Tel-II), and 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), with a model Gram-negative bacterial membrane with a view to investigating [...] Read more.
Differential scanning calorimetry (DSC) was used to explore the interactions of isolated polyphenolic compounds, including (-)-epigallocatechin gallate ((-)-EGCg), tellimagrandins I and II (Tel-I and Tel-II), and 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), with a model Gram-negative bacterial membrane with a view to investigating their antimicrobial properties. The model membranes comprised 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DPPG), fabricated to mimic the domain formation observed in natural membranes, as well as ideally mixed lipid vesicles for the interaction with (-)-EGCg. Polyphenols induced changes in lipid mixing/de-mixing depending on the method of vesicle preparation, as was clearly evidenced by alterations in the lipid transition temperatures. There was a distinct affinity of the polyphenols for the DPPG lipid component, which was attributed to the electrostatic interactions between the polyphenolic galloyl moieties and the lipid headgroups. These interactions were found to operate through either the stabilization of the lipid headgroups by the polyphenols or the insertion of the polyphenols into the membrane itself. Structural attributes of the polyphenols, including the number of galloyl groups, the hydrophobicity quantified by partition coefficients (logP), and structural flexibility, exhibited a correlation with the temperature transitions observed in the DSC measurements. This study furthers our understanding of the intricate interplay between the structural features of polyphenolic compounds and their interactions with model bacterial membrane vesicles towards the exploitation of polyphenols as antimicrobials. Full article
Show Figures

Figure 1

21 pages, 14687 KB  
Article
Preparation and Degradation Performance Study of P(AM/GG/PEGDA) Nanocomposite Self-Degradation Gel Plugging Material
by Dan Bao, Siyuan Liu, Xianli Zhang, Feng Li, Jiaqin Wang, Huan Jia, Shanghao Liu and Peng Zhang
Gels 2023, 9(9), 735; https://doi.org/10.3390/gels9090735 - 9 Sep 2023
Cited by 4 | Viewed by 2121
Abstract
Lost circulation is a world-class problem, and the contradiction between plugging and unplugging in reservoirs is a problem that needs to be solved urgently. The traditional LCM is not suitable for reservoirs and the complex subsequent operations. Currently, a self-degrading plugging material is [...] Read more.
Lost circulation is a world-class problem, and the contradiction between plugging and unplugging in reservoirs is a problem that needs to be solved urgently. The traditional LCM is not suitable for reservoirs and the complex subsequent operations. Currently, a self-degrading plugging material is proposed. In this paper, a new self-degradation plugging material, CKS-DPPG, was prepared by AM, GG, nano silica, and PEGDA. The effects of reactant concentration, pH, mineralization, etc., on the swelling and degradation performance of CKS-DPPG were investigated. The plugging capacity was tested by fracture plugging equipment, and the mechanism of self-degradation was revealed. The results show that the CKS-DPPG reached a 50% degradation rate in 54 h and complete degradation in 106 h at 80 °C and pH = 8. Low temperatures, high mineralization, and weak alkaline conditions prolong the complete degradation time of CKS-DPPG, which facilitates subsequent operations. The simulation of the 3 mm opening fracture plugging experiment showed that the pressure-bearing capacity reached 6.85 MPa and that a 0.16 MPa pressure difference could unplug after degradation. The ester bond of PEGDA is hydrolyzed under high-temperature conditions, and the spatial three-dimensional structure of CKS-DPPG becomes linear. The CKS-DPPG can effectively reduce subsequent unplugging operations and lower production costs. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery)
Show Figures

Graphical abstract

12 pages, 2886 KB  
Article
Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration
by Juan Wang, Jia Wang, Xinzhong Wang and Zhen Wang
Molecules 2023, 28(12), 4840; https://doi.org/10.3390/molecules28124840 - 18 Jun 2023
Cited by 4 | Viewed by 2096
Abstract
During the COVID-19 pandemic, the treatment of pulmonary fungal infection faced noteworthy challenges. Amphotericin B has shown promising therapeutic effects as an inhalation treatment for pulmonary fungal infections, especially those associated with the COVID-19 virus, due to its rare resistance. However, because the [...] Read more.
During the COVID-19 pandemic, the treatment of pulmonary fungal infection faced noteworthy challenges. Amphotericin B has shown promising therapeutic effects as an inhalation treatment for pulmonary fungal infections, especially those associated with the COVID-19 virus, due to its rare resistance. However, because the drug frequently produces renal toxicity, its effective dose is limited in clinical use. In this work, the DPPC/DPPG mixed monolayer was used as the pulmonary surfactant monolayer to study the interaction between amphotericin B and the pulmonary surfactant monolayer during inhalation therapy using the Langmuir technique and atomic force microscopy. The effects of different molar ratios of AmB on the thermodynamic properties and surface morphology of the pulmonary surfactant monolayer at different surface pressures was evaluated. The results showed that when the molar ratio of AmB to lipids in the pulmonary surfactant was less than 1:1, the main intermolecular force was attractive at a surface pressure greater than 10 mN/m. This drug had little effect on the phase transition point of the DPPC/DPPG monolayer, but decreased the height of the monolayer at 15 mN/m and 25 mN/m. When the molar ratio of AmB to lipids was greater than 1:1, the intermolecular force was mainly repulsive at a surface pressure greater than 15 mN/m, and AmB increased the height of the DPPC/DPPG monolayer at both 15 mN/m and 25 mN/m. These results are helpful in understanding the interaction between the pulmonary surfactant model monolayer and different doses of drugs at various surface tensions during respiration. Full article
(This article belongs to the Special Issue Biophysical Chemistry)
Show Figures

Graphical abstract

20 pages, 4362 KB  
Article
Mucoadhesive Rifampicin-Liposomes for the Treatment of Pulmonary Infection by Mycobacterium abscessus: Chitosan or ε-Poly-L-Lysine Decoration
by Jacopo Forte, Patrizia Nadia Hanieh, Noemi Poerio, Tommaso Olimpieri, Maria Grazia Ammendolia, Maurizio Fraziano, Maria Gioia Fabiano, Carlotta Marianecci, Maria Carafa, Federico Bordi, Simona Sennato and Federica Rinaldi
Biomolecules 2023, 13(6), 924; https://doi.org/10.3390/biom13060924 - 31 May 2023
Cited by 12 | Viewed by 3363
Abstract
Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy [...] Read more.
Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

28 pages, 5349 KB  
Article
Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization
by Carlota J. F. Conceição, Elin Moe, Paulo A. Ribeiro and Maria Raposo
Nanomaterials 2023, 13(10), 1613; https://doi.org/10.3390/nano13101613 - 11 May 2023
Cited by 6 | Viewed by 3848
Abstract
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1′-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film [...] Read more.
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1′-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below −30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors’ protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode. Full article
(This article belongs to the Special Issue Application of Lipid Nanoparticles in Drug and Gene Delivery)
Show Figures

Figure 1

17 pages, 3817 KB  
Article
Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films
by Leonardo Negri Furini, José Diego Fernandes, Douglas Henrique Vieira, Luis Fernando do Carmo Morato, Neri Alves and Carlos José Leopoldo Constantino
Chemosensors 2023, 11(4), 213; https://doi.org/10.3390/chemosensors11040213 - 29 Mar 2023
Cited by 2 | Viewed by 2032
Abstract
Usually, electronic tongues (e-tongue) do not require specific interactions to discriminate aqueous solutions. Among the several factors which determine the electrical properties of sensing units, the interactions between liquids and interfaces have a crucial role. Here, we explore the interaction between dioctadecyldimethylammonium bromide [...] Read more.
Usually, electronic tongues (e-tongue) do not require specific interactions to discriminate aqueous solutions. Among the several factors which determine the electrical properties of sensing units, the interactions between liquids and interfaces have a crucial role. Here, we explore the interaction between dioctadecyldimethylammonium bromide (DODAB) lipid and carbendazim (MBC) pesticide in an e-tongue to discriminate different MBC concentrations in aqueous solutions. The sensing units were fabricated of gold interdigitated electrodes (IDEs) coated with layer-by-layer (LbL) films of DODAB and nickel tetrasulfonated phthalocyanine (NiTsPc), perylene and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DPPG), namely (DODAB/NiTsPc)5 and (Perylene/DPPG)5, respectively. Besides, a bare electrode also constituted the e-tongue to distinguish MBC concentrations from 1.0 × 10−7 up to 1.0 × 10−10 mol L−1, by impedance spectroscopy. In addition, the experiment was optimized using two IDE geometries. The LbL films were manually fabricated obtaining linear growth monitored via UV-Vis absorption spectroscopy. Optical images associated with chemical mapping reveals the presence of small aggregates in the DODAB/NiTsPc LbL film surface. Although the e-tongue was able to discriminate all MBC concentrations by means of the interactive document map (IDMAP), only the sensing unit covered with DODAB/NiTsPc LbL film presented a satisfactory response. According to the equivalent circuit, the main contribution arises from the bulk and film surface due to the interaction between DODAB and MBC, indicating THE sensitivity of the sensing unit. Finally, the adsorption of MBC molecules onto the film surface induced an irreversible process, although there are some frequencies at which the sensing unit response seems to be reversible, as shown by parallel coordinates. Full article
(This article belongs to the Special Issue Developments on Supramolecular Thin Films to Sensing Applications)
Show Figures

Figure 1

15 pages, 3280 KB  
Article
Influence of InP/ZnS Quantum Dots on Thermodynamic Properties and Morphology of the DPPC/DPPG Monolayers at Different Temperatures
by Juan Wang, Shun Feng, Qingqing Sheng and Ruilin Liu
Molecules 2023, 28(3), 1118; https://doi.org/10.3390/molecules28031118 - 22 Jan 2023
Cited by 4 | Viewed by 2562
Abstract
In this work, the effects of InP/ZnS quantum dots modified with amino or carboxyl group on the characteristic parameters in phase behavior, elastic modulus, relaxation time of the DPPC/DPPG mixed monolayers are studied by the Langmuir technology at the temperature of 37, 40 [...] Read more.
In this work, the effects of InP/ZnS quantum dots modified with amino or carboxyl group on the characteristic parameters in phase behavior, elastic modulus, relaxation time of the DPPC/DPPG mixed monolayers are studied by the Langmuir technology at the temperature of 37, 40 and 45 °C. Additionally, the information on the morphology and height of monolayers are obtained by the Langmuir–Bloggett technique and atomic force microscope technique. The results suggest that the modification of the groups can reduce the compressibility of monolayers at a higher temperature, and the most significant effect is the role of the amino group. At a high temperature of 45 °C, the penetration ability of InP/ZnS-NH2 quantum dots in the LC phase of the mixed monolayer is stronger. At 37 °C and 40 °C, there is no clear difference between the penetration ability of InP/ZnS-NH2 quantum dots and InP/ZnS-COOH quantum dots. The InP/ZnS-NH2 quantum dots can prolong the recombination of monolayers at 45 °C and accelerate it at 37 °C and 40 °C either in the LE phase or in the LC phase. However, the InP/ZnS-COOH quantum dots can accelerate it in the LE phase at all temperatures involved but only prolong it at 45 °C in the LC phase. This work provides support for understanding the effects of InP/ZnS nanoparticles on the structure and properties of cell membranes, which is useful for understanding the behavior about the ingestion of nanoparticles by cells and the cause of toxicity. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 2821 KB  
Article
Ginseng, Tribulus Extracts and Pollen Grains Supplementation Improves Sexual State, Testes Redox Status, and Testicular Histology in Nile Tilapia Males
by Abdallah Tageldein Mansour, Ahmed Saud Alsaqufi, Eglal Ali Omar, Hossam S. El-Beltagi, Tarek Mohamed Srour and Mokhtar Ibrahim Yousef
Antioxidants 2022, 11(5), 875; https://doi.org/10.3390/antiox11050875 - 29 Apr 2022
Cited by 12 | Viewed by 4527
Abstract
This study aimed to investigate the effect of dietary supplementation of three natural antioxidants on sex hormone levels, enzymatic and non-enzymatic antioxidant systems, and histological changes in the testes of male Nile tilapia, Oreochromis niloticus. A total of 210 male Nile tilapia [...] Read more.
This study aimed to investigate the effect of dietary supplementation of three natural antioxidants on sex hormone levels, enzymatic and non-enzymatic antioxidant systems, and histological changes in the testes of male Nile tilapia, Oreochromis niloticus. A total of 210 male Nile tilapia were distributed into seven treatments (three replicates for each) with an initial weight of 3.67 g fish−1. The fish were fed experimental diets (32% crude protein) without supplementation as control or supplemented with ginseng extract (GE; 0.2 and 0.4 g GE kg−1 diet), Tribulus terrestris extract (TT; 0.6 and 1.2 g TT kg−1 diet), and date palm pollen grains (DPPG; 3 and 6 g DPPG kg−1 diet) for 84 days. The results revealed a significant increase in the luteinizing hormone level with TT, DPPG, and GE supplementation increased the levels by 22.9%, 18.5%, and 17.6%, respectively. The testosterone level also increased significantly with TT1.2, GE0.4, TT0.6, and DPPG6 by 86.23%, 64.49%, 57.40%, and 24.62%, respectively. The antioxidant status in the testis homogenate showed a significant decrease in the level of thiobarbituric acid-reactive substances when using different dietary substances. In addition, glutathione reduced contents, glutathione S-transferases, glutathione peroxidase, catalase, and superoxide dismutase activities significantly increased with different dietary supplementation in a dose-dependent manner. The histological evaluation revealed normal histological features of the testes in all treatments with increasing active seminiferous tubules (%) in GE, TT, and DPPG supplemented groups, especially with the highest levels. In conclusion, the dietary supplementation of GE, TT, and DPPG enhanced sex hormones level, redox status, and testis structure and could improve the male reproductive performance of Nile tilapia. Full article
Show Figures

Figure 1

Back to TopTop