Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration
Abstract
:1. Introduction
2. Results and Discussions
2.1. Parameter Analysis of Surface Pressure—Mean Molecular Area Isotherm
2.2. Thermodynamic Analysis
2.3. The Modulus of Elasticity
2.4. Relaxation of the DPPC/DPPG Mixed Monolayers at Constant Area
2.5. Morphology and Height Analysis of the AmB/DPPC/DPPG Mixed Films
3. Material and Methods
3.1. Materials
3.2. Langmuir Technique
3.3. Atomic Force Microscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, X.; Mohammad, I.S.; Fan, L.; Zhao, Z.; Nurunnabi, M.; Sallam, M.A.; Wu, J.; Chen, Z.; Yin, L.; He, W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm. Sin. B 2021, 11, 2585–2604. [Google Scholar] [CrossRef] [PubMed]
- Gogia, P. Pulmonary fungal infections. Curr. Med. Res. Pract. 2015, 5, 221–227. [Google Scholar] [CrossRef]
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology 2020, 296, e15–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabanejad, Z.; Darvish, S.; Boroujeni, Z.B.; Asadi, S.S.; Mesri, M.; Raiesi, O.; Getso, M.E.; Zareei, M. Seroepidemiological study of novel coronavirus disease (COVID-19) in Tehran, Iran. Infect. Epidemiol. Microbiol. 2021, 1, 269166. [Google Scholar] [CrossRef]
- Erami, M.; Raiesi, O.; Momen-Heravi, M.; Getso, M.I.; Fakhrehi, M.; Mehri, N.; Yarahmadi, M.; Amiri, S.; Raissi, V.; Hashemi, S.J. Clinical impact of Candida respiratory tract colonization and acute lung infections in critically ill patients with COVID-19 pneumonia. Microb. Pathog. 2022, 166, 105520. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Neu, K.P. Comparing the clinical characteristics and outcomes of COVID-19-associate pulmonary aspergillosis (CAPA): A systematic review and meta-analysis. Infection 2022, 50, 43–56. [Google Scholar] [CrossRef]
- Epelbaum, O.; Chasan, R. Candidemia in the intensive care unit. Clin. Chest Med. 2017, 38, 493–509. [Google Scholar] [CrossRef]
- Wu, H.H.; Chen, Y.T.; Shih, C.J.; Lee, Y.T.; Kuo, S.C.; Chen, T.L. Association between recent use of proton pump inhibitors and nontyphoid salmonellosis: A nested case-control study. Clin. Infect. Dis. 2014, 59, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Nobile, C.J. Antifungal drug-resistance mechanisms in Candida biofilms. Curr. Opin. Microbiol. 2023, 71, 102237. [Google Scholar] [CrossRef]
- Meneses, A.K.S.; Carvalho, A.L.M.; Rocha, M.S.; Nascimento, M.O.; Lima, S.G. Quantification of amphotericin B in semi-solid formulation via ATR-FTIR spectroscopy. Vib. Spectrosc. 2023, 126, 103537. [Google Scholar] [CrossRef]
- Pablo, E.; Connell, P.O.; Fernández-García, R.; Marchand, S.; Chauzy, A.; Tewes, F.; Dea-Ayuela, M.A.; Kumar, D.; Bolás, F.; Ballesteros, M.P.; et al. Targeting lung macrophages for fungal and parasitic pulmonary infections with innovative amphotericin B dry powder inhalers. Int. J. Pharm. 2023, 635, 122788. [Google Scholar] [CrossRef]
- Nakaya, Y.; Nakashima, Y.; Harada, N.; Yamada, K.; Makuuchi, Y.; Kuno, M.; Takakuwa, T.; Okamura, H.; Nanno, S.; Nishimoto, M.; et al. Successful treatment of proven coronavirus disease 2019-associated pulmonary aspergillosis with liposomal amphotericin B in a patient with bronchiolitis obliterans syndrome after allogeneic hematopoietic stem cell transplantation. J. Infect. Chemother. 2023, 29, 223–227. [Google Scholar] [CrossRef]
- Francis, I.; Saha, S.C. Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung. Heliyon 2022, 8, e11026. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, R.; Nag, K.; Orgeig, S.; Possmayer, F. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 1998, 1408, 90–108. [Google Scholar] [CrossRef]
- Wüstneck, R.; Perez-Gil, J.; Wüstneck, N.; Cruz, A.; Fainerman, V.B.; Pison, U. Interfacial properties of pulmonary surfactant layers. Adv. Colloid Interface Sci. 2005, 117, 33–58. [Google Scholar] [CrossRef]
- Hohlfeld, J.M.; Ahlf, K.; Enhorning, G.; Balke, K.; Erpenbeck, V.J.; Petschallies, J.; Hoymann, H.G.; Fabel, H.; Krug, N. Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am. J. Respir. Crit. Care Med. 1999, 159, 1803–1809. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, L.; Al-Saiedy, M.; Green, F.; Pratt, R.; Bjornson, C.; Yang, A.; Schoel, W.M.; Mitchell, I.; Brindle, M.; Montgomery, M.; et al. Pulmonary surfactant dysfunction in pediatric cystic fibrosis: Mechanisms and reversal with a lipid-sequestering drug. J. Cyst. Fibros. 2017, 16, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Sriram, K.; Insel, P.A. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br. J. Pharmacol. 2020, 177, 4825–4844. [Google Scholar] [CrossRef]
- Arick, D.Q.; Choi, Y.H.; Kim, H.C.; Won, Y.Y. Effects of nanoparticles on the mechanical functioning of the lung. Adv. Colloid Interface Sci. 2015, 225, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann. Anat. 2016, 208, 146–150. [Google Scholar] [CrossRef]
- Pérez-Gil, J. Structure of pulmonary surfactant membranes and films: The role of proteins and lipid-protein interactions. Biochim. Biophys. Acta (BBA)—Biomembr. 2008, 1778, 1676–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, E.; Pérez-Gil, J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem. Phys. Lipids 2015, 185, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, E.J.A.; Haagsman, H.P. Role of Pulmonary Surfactant Components in Surface Film Formation and Dynamics. Biochim. Biophys. Acta (BBA)—Biomembr. 2000, 1467, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Hallman, M.; Feldman, B.H.; Kirkpatrick, E.; Gluck, L. Absence of Phosphatidylglycerol (PG) in Respiratory Distress Syndrome in the Newborn. Pediatr. Res. 1977, 11, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Sachan, A.K.; Harishchandra, R.K.; Bantz, C.; Maskos, M.; Reichelt, R.; Galla, H.J. High-Resolution Investigation of Nanoparticle Interaction with a Model Pulmonary Surfactant Monolayer. ACS Nano 2012, 6, 1677–1687. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Li, M.; Shang, Y.; He, Y.; Liu, H. Real-Time Monitoring of the Effect of Carbon Nanoparticles on the Surface Behavior of DPPC/DPPG Langmuir Monolayer. Colloids Surf. B Biointerfaces 2020, 190, 110922. [Google Scholar] [CrossRef]
- Wang, J.; Feng, S.; Liu, J.; Liu, R. Effects of Carboxyl or Amino Group Modified InP/ZnS Nanoparticles toward Simulated Lung Surfactant Membrane. Front. Bioeng. Biotechnol. 2021, 9, 714922. [Google Scholar] [CrossRef]
- Wang, J.; Feng, S.; Sheng, Q.; Liu, R. Influence of InP/ZnS Quantum Dots on Thermodynamic Properties and Morphology of the DPPC/DPPG Monolayers at Different Temperatures. Molecules 2023, 28, 1118. [Google Scholar] [CrossRef]
- Szafran, K.; Jurak, M.; Wiącek, A.E. Effect of chitosan on the interactions between phospholipid DOPC, cyclosporine A and lauryl gallate in the Langmuir monolayers. Colloid. Surf. A Physicochem. Eng. Asp. 2022, 652, 129843. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Y.; Liu, H.; Chen, Y.; Shang, Y.; Liu, H. The Effect of Chitin Nanoparticles on Surface Behavior of DPPC/DPPG Langmuir Monolayers. J. Colloid Interface Sci. 2018, 519, 186–193. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, X.; Wang, S.; Xu, S.; Liu, H.; Ying, H. Cationic Gemini surfactant at the air/water interface. J. Colloid Interface Sci. 2007, 314, 651–658. [Google Scholar]
- Devterova, J.M.; Sokolov, M.E.; BuzKo, V.Y.; Repina, I.N.; Rudnov, P.S.; Panyushkin, V.T. Subphase pH effect on the limiting molecular area of amphiphilic β-diketones in Langmuir monolayers. Mendeleev Commun. 2020, 30, 505–506. [Google Scholar] [CrossRef]
- Kodama, M.; Shibata, O.; Nakamura, S.; Lee, S.; Sugihara, G. A monolayer study on three binary mixed systems of dipalmitoyl phosphatidyl choline with cholesterol, cholestanol and stigmasterol. Colloids Surf. B Biointerfaces 2004, 33, 211–226. [Google Scholar] [CrossRef]
- Botet-Carreras, A.; Montero, T.; Domènech, Ò.; Borrell, J.H. Effect of cholesterol on monolayer structure of different acyl chained phospholipids. Colloids Surf. B Biointerfaces 2019, 174, 374–383. [Google Scholar] [CrossRef]
- Davies, J.T.; Rideal, E.K. Interfacial Phenomena, 2nd ed.; Academic Press: New York, NY, USA, 1963; pp. 265–266. [Google Scholar]
- Krajewska, B.; Wydro, P.; Kyziol, A. Chitosan as a subphase disturbant of membrane lipid monolayers. The effect of temperature at varying pH: I. DPPG. Colloids Surf. A Physicochem. Eng. Asp. 2013, 434, 349–358. [Google Scholar] [CrossRef]
- Machado, A.C.; Caseli, L. Interaction of nitrofurantoin with lipid langmuir monolayers as cellular membrane models distinguished with tensiometry and infrared spectroscopy. Colloids Surf. B Biointerfaces 2020, 188, 110794. [Google Scholar] [CrossRef]
- Gopal, A.; Lee, K.Y.C. Headgroup percolation and collapse of condensed Langmuir monolayers. J. Phys. Chem. B 2006, 110, 22079–22089. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R.K. Gemini Surfactant/DNA Complex Monolayers at the Air-Water Interface: Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers. Langmuir 2002, 18, 6222. [Google Scholar] [CrossRef]
- Kamiński, D.M.; Arczewska, M.; Pociecha, D.; Górecka, E.; Stępniewski, A.; Gagoś, M. Antibiotic amphotericin B–DPPC lipid complex: X-ray diffraction and FTIR studies. J. Mol. Struct. 2015, 1080, 57–62. [Google Scholar] [CrossRef]
- Rosi, N.L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O.M. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1518. [Google Scholar] [CrossRef]
- Hirano, M.; Takeuchi, Y.; Matsumori, N.; Murata, M.; Ide, T. Channels Formed by Amphotericin B Covalent Dimers Exhibit Rectification. J. Membr. Biol. 2011, 240, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Arczewska, M.; Gagoś, M. Molecular organization of antibiotic amphotericin B in dipalmitoylphosphatidylcholine monolayers induced by K+ and Na+ ions: The Langmuir technique study. Biochim. Biophys. Acta (BBA)—Biomembr. 2011, 1808, 2706–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Monolayer | ||||
---|---|---|---|---|
DPPC/DPPG | 136.76 0.24 | 61.87 0.34 | 54.01 0.30 | 44.29 0.27 |
0.1 AmB | 142.23 0.14 | 61.63 0.21 | 54.08 0.20 | 39.76 0.44 |
0.3 AmB | 151.62 0.15 | 56.55 0.20 | 54.15 0.20 | 33.93 0.23 |
0.5 AmB | 138.55 0.42 | 50.98 0.55 | 53.93 0.52 | 24.85 0.47 |
0.7 AmB | 153.52 0.41 | 40.79 0.38 | 50.04 0.29 | 16.9 0.40 |
0.9 AmB | 146.14 0.54 | 36.55 0.40 | 48.61 0.46 | 6.85 0.52 |
AmB | 175.18 0.25 | 32.99 0.33 | 42.29 0.32 | 2.69 0.22 |
Monolayer | Surface Pressure of the Monolayer | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 mN/m | 15 mN/m | 25 mN/m | ||||||||||
DPPC/DPPG | 0.57 | 0.35 | 890.98 | 0.99 | 0.68 | 0.26 | 820.27 | 0.99 | 0.77 | 0.19 | 811.31 | 0.98 |
0.1 AmB | 0.12 | 0.87 | 1273.35 | 0.98 | 0.77 | 0.18 | 910.27 | 0.99 | 0.45 | 0.47 | 902.89 | 0.99 |
0.3 AmB | 0.38 | 0.52 | 1322.71 | 0.99 | 0.53 | 0.38 | 963.31 | 0.99 | 0.11 | 0.87 | 964.05 | 0.99 |
0.5 AmB | 0.64 | 0.29 | 1121.28 | 0.98 | 0.57 | 0.36 | 1057.92 | 0.99 | 0.47 | 0.43 | 1005.76 | 0.98 |
0.7 AmB | 0.25 | 0.64 | 1057.31 | 0.99 | 0.69 | 0.23 | 599.06 | 0.98 | 0.74 | 0.21 | 1314.97 | 0.99 |
0.9 AmB | 0.52 | 0.41 | 1538.51 | 0.98 | 0.80 | 0.10 | 301.74 | 0.98 | 0.62 | 0.32 | 1388.21 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, J.; Wang, X.; Wang, Z. Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration. Molecules 2023, 28, 4840. https://doi.org/10.3390/molecules28124840
Wang J, Wang J, Wang X, Wang Z. Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration. Molecules. 2023; 28(12):4840. https://doi.org/10.3390/molecules28124840
Chicago/Turabian StyleWang, Juan, Jia Wang, Xinzhong Wang, and Zhen Wang. 2023. "Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration" Molecules 28, no. 12: 4840. https://doi.org/10.3390/molecules28124840
APA StyleWang, J., Wang, J., Wang, X., & Wang, Z. (2023). Effect of Amphotericin B on the Thermodynamic Properties and Surface Morphology of the Pulmonary Surfactant Model Monolayer during Respiration. Molecules, 28(12), 4840. https://doi.org/10.3390/molecules28124840