Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes
Abstract
1. Introduction
2. Results and Discussion
2.1. DSC Measurements
2.2. ESR Measurements
2.3. Full Interaction Maps
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sample Preparation
3.2.2. Calorimetric Measurements
3.2.3. Electron Spin Resonance Measurements
3.2.4. Full Interaction Map
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casini, A.; Vessières, A.; Meier-Menches, S.M. Metal-Based Anticancer Agents; Royal Society of Chemistry: London, UK, 2019; Volume 14. [Google Scholar]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Riding the metal wave: A review of the latest developments in metal-based anticancer agents. Coord. Chem. Rev. 2024, 501, 215579. [Google Scholar] [CrossRef]
- Alassadi, S.; Pisani, M.J.; Wheate, N.J. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans. 2022, 51, 10835–10846. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 2231–2244. [Google Scholar] [CrossRef] [PubMed]
- Balsa, L.M.; Baran, E.J.; León, I.E. Copper Complexes as Antitumor Agents: In vitro and In vivo Evidence. Curr. Med. Chem. 2023, 30, 510–557. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef]
- Ji, P.; Wang, P.; Chen, H.; Xu, Y.; Ge, J.; Tian, Z.; Yan, Z. Potential of Copper and Copper Compounds for Anticancer Applications. Pharmaceuticals 2023, 16, 234. [Google Scholar] [CrossRef]
- da Silva, D.A.; De Luca, A.; Squitti, R.; Rongioletti, M.; Rossi, L.; Machado, C.M.L.; Cerchiaro, G. Copper in tumors and the use of copper-based compounds in cancer treatment. J. Inorg. Biochem. 2022, 226, 111634. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Kumar, A.; Singh, H.; Sonawane, P.; Pathak, P.; Grishina, M.; Pal Yadav, J.; Verma, A.; Kumar, P. Metal Complexes in Cancer Treatment: Journey So Far. Chem. Biodivers. 2023, 20, e202300061. [Google Scholar] [CrossRef]
- Kellett, A.; Molphy, Z.; McKee, V.; Slator, C. Recent Advances in Anticancer Copper Compounds. In Metal-Based Anticancer Agents; The Royal Society of Chemistry: London, UK, 2019; pp. 91–119. [Google Scholar]
- Golubeva, Y.A.; Lider, E.V. Copper(ii) Complexes Based on 2,2′-Bipyridine and 1,10-Phenanthroline as Potential Objects for Developing Antitumor Drugs. J. Struct. Chem. 2024, 65, 1159–1209. [Google Scholar] [CrossRef]
- Rani, J.J.; Roy, S. Recent Development of Copper (II) Complexes of Polypyridyl Ligands in Chemotherapy and Photodynamic Therapy. ChemMedChem 2023, 18, e202200652. [Google Scholar] [CrossRef]
- Naletova, I.; Satriano, C.; Curci, A.; Margiotta, N.; Natile, G.; Arena, G.; La Mendola, D.; Nicoletti, V.G.; Rizzarelli, E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018, 9, 36289. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-DePaz, Y.; Pérez-Villanueva, J.; Soria-Arteche, O.; Martínez-Otero, D.; Gómez-Vidales, V.; Ortiz-Frade, L.; Ruiz-Azuara, L. Casiopeinas of Third Generations: Synthesis, Characterization, Cytotoxic Activity and Structure-Activity Relationships of Mixed Chelate Compounds with Bioactive Secondary Ligands. Molecules 2022, 27, 3504. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Jiménez, Z.; Espinoza-Guillén, A.; Resendiz-Acevedo, K.; Fuentes-Noriega, I.; Mejía, C.; Ruiz-Azuara, L. The Importance of Being Casiopeina as Polypharmacologycal Profile (Mixed Chelate–Copper (II) Complexes and Their In Vitro and In Vivo Activities). Inorganics 2023, 11, 394. [Google Scholar] [CrossRef]
- Figueroa-DePaz, Y.; Resendiz-Acevedo, K.; Davila-Manzanilla, S.G.; Garcia-Ramos, J.C.; Ortiz-Frade, L.; Serment-Guerrero, J.; Ruiz-Azuara, L. DNA, a target of mixed chelate copper(II) compounds (Casiopeinas(R)) studied by electrophoresis, UV-vis and circular dichroism techniques. J. Inorg. Biochem. 2022, 231, 111772. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Perelmulter, K.; Levín, P.; Romo, A.I.B.; Lemus, L.; Fogolín, M.B.; León, I.E.; Di Virgilio, A.L. Antiproliferative activity of two copper (II) complexes on colorectal cancer cell models: Impact on ROS production, apoptosis induction and NF-κB inhibition. Eur. J. Pharm. Sci. 2022, 169, 106092. [Google Scholar] [CrossRef]
- Shobha Devi, C.; Thulasiram, B.; Aerva, R.R.; Nagababu, P. Recent Advances in Copper Intercalators as Anticancer Agents. J. Fluoresc. 2018, 28, 1195–1205. [Google Scholar] [CrossRef]
- Lopes, D.; Jakobtorweihen, S.; Nunes, C.; Sarmento, B.; Reis, S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog. Lipid Res. 2017, 65, 24–44. [Google Scholar] [CrossRef]
- Peetla, C.; Bhave, R.; Vijayaraghavalu, S.; Stine, A.; Kooijman, E.; Labhasetwar, V. Drug resistance in breast cancer cells: Biophysical characterization of and doxorubicin interactions with membrane lipids. Mol. Pharm. 2010, 7, 2334–2348. [Google Scholar] [CrossRef]
- Wang, K.; Lu, J.; Li, R. The events that occur when cisplatin encounters cells. Coord. Chem. Rev. 1996, 151, 53–88. [Google Scholar] [CrossRef]
- Róg, T.; Girych, M.; Bunker, A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14, 1062. [Google Scholar] [CrossRef]
- Martinho, N.; Marquês, J.M.T.; Todoriko, I.; Prieto, M.; de Almeida, R.F.M.; Silva, L.C. Effect of Cisplatin and Its Cationic Analogues in the Phase Behavior and Permeability of Model Lipid Bilayers. Mol. Pharm. 2023, 20, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Martinho, N.; Santos, T.C.B.; Florindo, H.F.; Silva, L.C. Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Front. Physiol. 2019, 9, 01898. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qu, Y.; Van Antwerpen, R.; Farrell, N. Mechanism of the Membrane Interaction of Polynuclear Platinum Anticancer Agents. Implications for Cellular Uptake. Biochemistry 2006, 45, 4248–4256. [Google Scholar] [CrossRef]
- Marques, F.; Matos, A.P.; Matos, C.P.; Correia, I.; Pessoa, J.C.; Campello, M.P. Ultrastructural features of cells following incubation with metal complexes using Phenantroline-based ligands: The influence of the metal center. Ultrastruct. Pathol. 2017, 41, 128–129. [Google Scholar] [CrossRef]
- García-Ramos, J.C.; Vértiz-Serrano, G.; Macías-Rosales, L.; Galindo-Murillo, R.; Toledano-Magaña, Y.; Bernal, J.P.; Cortés-Guzmán, F.; Ruiz-Azuara, L. Isomeric Effect on the Pharmacokinetic Behavior of Anticancer CuII Mixed Chelate Complexes: Experimental and Theoretical Approach. Eur. J. Inorg. Chem. 2017, 2017, 1728–1736. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers. Langmuir 2011, 27, 13374–13382. [Google Scholar] [CrossRef]
- Bal, W.; Kozlowski, H.; Lisowski, M.; Pettit, L.; Robbins, R.; Safavi, A. A dramatic change in the interaction of Cu (II) with bio-peptides promoted by SDS—A model for complex formation on a membrane surface. J. Inorg. Biochem. 1994, 55, 41–52. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Pasenkiewicz-Gierula, M.; Antholine, W.E.; Hyde, J.S. Oriented self-association of copper (II) tetraphenylporphine in liquid-crystalline lipid bilayer membranes: An EPR study. J. Am. Chem. Soc. 1999, 121, 4054–4059. [Google Scholar] [CrossRef]
- Pasenkiewicz-Gierula, M.; Subczynski, W.K.; Antholine, W.E. Rotational motion of square planar copper complexes in solution and phospholipid bilayer membranes. J. Phys. Chem. B 1997, 101, 5596–5606. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Antholine, W.E.; Hyde, J.S.; Petering, D.H. Orientation and mobility of a copper square-planar complex in a lipid bilayer. J. Am. Chem. Soc. 1987, 109, 46–52. [Google Scholar] [CrossRef]
- Castillo, I.; Suwalsky, M.; Gallardo, M.J.; Troncoso, V.; Sánchez-Eguía, B.N.; Santiago-Osorio, E.; Aguiñiga, I.; González-Ugarte, A.K. Structural and functional effects of benzimidazole/thioether–copper complexes with antitumor activity on cell membranes and molecular models. J. Inorg. Biochem. 2016, 156, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Garzón, K.S.; Álvarez, N.; Facchin, G.; Soria, B.D.; Di Virgilio, A.L. Actividad antitumoral de complejos de cobre(II) con fenantrolina y dipéptidos en células de cáncer de mama. Rev. Colomb. Hematol. Y Oncol. 2024, 11, 14–30. [Google Scholar] [CrossRef]
- Facchin, G.; Veiga, N.; Kramer, M.G.; Batista, A.A.; Várnagy, K.; Farkas, E.; Moreno, V.; Torre, M.H. Experimental and theoretical studies of copper complexes with isomeric dipeptides as novel candidates against breast cancer. J. Inorg. Biochem. 2016, 162, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, S.; Alvarez, N.; Torre, M.H.; Kremer, E.; Ellena, J.; Ribeiro, R.R.; Barroso, R.P.; Costa-Filho, A.J.; Kramer, M.G.; Facchin, G. Synthesis, structural characterization and cytotoxic activity of ternary copper (II)–dipeptide–phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer. J. Inorg. Biochem. 2014, 139, 117–123. [Google Scholar] [CrossRef]
- Hachey, A.C.; Havrylyuk, D.; Glazer, E.C. Biological activities of polypyridyl-type ligands: Implications for bioinorganic chemistry and light-activated metal complexes. Curr. Opin. Chem. Biol. 2021, 61, 191–202. [Google Scholar] [CrossRef]
- Szlasa, W.; Zendran, I.; Zalesińska, A.; Tarek, M.; Kulbacka, J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020, 52, 321–342. [Google Scholar] [CrossRef]
- Jain, M.K.; Wu, N.M. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer. J. Membr. Biol. 1977, 34, 157–201. [Google Scholar] [CrossRef]
- McElhaney, R.N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem. Phys. Lipids 1982, 30, 229–259. [Google Scholar] [CrossRef]
- Basso, L.G.M.; Rodrigues, R.Z.; Naal, R.M.Z.G.; Costa-Filho, A.J. Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2011, 1808, 55–64. [Google Scholar] [CrossRef]
- Perkins, R.; Vaida, V. Phenylalanine Increases Membrane Permeability. J. Am. Chem. Soc. 2017, 139, 14388–14391. [Google Scholar] [CrossRef]
- Janiak, M.J.; Small, D.M.; Shipley, G.G. Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and dipalmitoyllecithin. Biochemistry 1976, 15, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim. Biophys. Acta (BBA)-Biomembr. 1991, 1062, 59–69. [Google Scholar] [CrossRef]
- Mlakar, M.; Cuculić, V.; Frka, S.; Gašparović, B. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces. Bioelectrochemistry 2018, 120, 10–17. [Google Scholar] [CrossRef]
- Speelmans, G.; Sips, W.H.; Grisel, R.J.; Staffhorst, R.W.; Fichtinger-Schepman, A.M.J.; Reedijk, J.; de Kruijff, B. The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration. Biochim. Biophys. Acta (BBA)-Biomembr. 1996, 1283, 60–66. [Google Scholar] [CrossRef]
- Alvarez, N.; Freddi, P.; Castellani, S.; Veiga, N.; Facchin, G.; Costa-Filho, A.J. New Insights into the Biophysical Behavior of an Old Molecule: Experimental and Theoretical Studies of the Interaction Between 1,10-Phenanthroline and Model Phospholipid Membranes. Braz. J. Phys. 2022, 52, 111. [Google Scholar] [CrossRef]
- Basso, L.G.M.; Zeraik, A.E.; Felizatti, A.P.; Costa-Filho, A.J. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain. Biochim. Biophys. Acta (BBA)-Biomembr. 2021, 1863, 183697. [Google Scholar] [CrossRef]
- Nunes, P.; Yildizhan, Y.; Adiguzel, Z.; Marques, F.; Costa Pessoa, J.; Acilan, C.; Correia, I. Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. JBIC J. Biol. Inorg. Chem. 2022, 27, 89–109. [Google Scholar] [CrossRef]
- Veiga, N.; Alvarez, N.; Castellano, E.E.; Ellena, J.; Facchin, G.; Torre, M.H. Comparative Study of Antioxidant and Pro-Oxidant Properties of Homoleptic and Heteroleptic Copper Complexes with Amino Acids, Dipeptides and 1,10-Phenanthroline: The Quest for Antitumor Compounds. Molecules 2021, 26, 6520. [Google Scholar] [CrossRef]
- Viossat, B.; Gaucher, J.F.; Mazurier, A.; Selkti, M.; Tomas, A. Crystals tructure of bis(μ-chloro)bis[chloro-(o-phenanthroline-N,N′)-copper(II)], Cu2(C12H8N2)2(Cl2)2. Z. Für Krist.-New Cryst. Struct. 1998, 213, 343–344. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Wood, P.A.; Olsson, T.S.G.; Cole, J.C.; Cottrell, S.J.; Feeder, N.; Galek, P.T.A.; Groom, C.R.; Pidcock, E. Evaluation of molecular crystal structures using Full Interaction Maps. CrystEngComm 2013, 15, 65–72. [Google Scholar] [CrossRef]
TP (°C) | ΔT1/2P (°C) | ΔHP (kcal/mol) | TM (°C) | ΔHM (kcal/mol) | ΔT1/2 M (°C) | ΔSM (cal/mol.K) | |
---|---|---|---|---|---|---|---|
(a) DPPC | 35.0 | 1.2 | 1.21 | 41.0 | 7.99 | 0.10 | 25.4 |
+[Cu(phen)]2+ | 33.5 | 2.0 | 0.89 | 41.0 | 8.66 | 0.15 | 27.6 |
+[Cu(Ala-Gly)(phen)] | 34.1 | 1.9 | 0.83 | 41.1 | 8.64 | 0.19 | 27.5 |
+[Cu(Ala-Phe)(phen)] | 33.7 | 2.1 | 0.73 | 41.0 | 9.02 | 0.19 | 28.7 |
(b) DPPG | - | - | - | 39.6 | 5.76 | 0.640 | 18.4 |
+[Cu(phen)]2+ | - | - | - | 38.4 | 9.44 | 0.879 | 30.3 |
+[Cu(Ala-Gly)(phen)] | - | - | - | 38.3 | 8.98 | 0.616 | 28.8 |
+[Cu(Ala-Phe)(phen)] | - | - | - | 38.5 | 9.57 | 0.773 | 30.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freddi, P.; Alvarez, N.; Facchin, G.; Costa-Filho, A.J. Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes. Inorganics 2024, 12, 307. https://doi.org/10.3390/inorganics12120307
Freddi P, Alvarez N, Facchin G, Costa-Filho AJ. Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes. Inorganics. 2024; 12(12):307. https://doi.org/10.3390/inorganics12120307
Chicago/Turabian StyleFreddi, Priscilla, Natalia Alvarez, Gianella Facchin, and Antonio J. Costa-Filho. 2024. "Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes" Inorganics 12, no. 12: 307. https://doi.org/10.3390/inorganics12120307
APA StyleFreddi, P., Alvarez, N., Facchin, G., & Costa-Filho, A. J. (2024). Interaction of Phenanthroline-Containing Copper Complexes with Model Phospholipid Membranes. Inorganics, 12(12), 307. https://doi.org/10.3390/inorganics12120307