Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant
Abstract
:1. Introduction
2. Results and Discussions
2.1. Properties of Pep-CnV
2.1.1. Fundamental Structures
2.1.2. Secondary Structures
2.2. Redox Responsiveness of Pep-CnV
2.3. Interaction between Pep-CnV and Biomembranes
2.3.1. Surface Tension
2.3.2. Cargo Leakage
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of Pep-CnV
3.3. Secondary Structure Studies
3.4. Responsiveness Studies
3.5. Construction of Cell Models
3.6. Surface Tension Studies
3.7. Cargo Leakage Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zuo, S.Y.; Wang, B.; Zhang, K.Y.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, E216–E230. [Google Scholar] [CrossRef]
- Bhopale, G.M. Antimicrobial Peptides: A Promising Avenue for Human Healthcare. Curr. Pharm. Biotechnol. 2020, 21, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Chen, C.H.; Hu, D.; Ulmschneider, M.B.; Ulmschneider, J.P. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Nat. Commun. 2016, 7, 13535. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, L.; Wan, M.W.; Song, J.J.; Gao, L.H.; Fang, W.H. Peripheral Antimicrobial Peptide Gomesin Induces Membrane Protrusion, Folding, and Laceration. Langmuir 2019, 35, 13233–13242. [Google Scholar] [CrossRef]
- Boparai, J.K.; Sharma, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Maisetta, G.; Batoni, G.; Tavanti, A. Insights into the Antimicrobial Properties of Hepcidins: Advantages and Drawbacks as Potential Therapeutic Agents. Molecules 2015, 20, 6319–6341. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Rinaldi, A.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 2011, 68, 2255–2266. [Google Scholar] [CrossRef]
- Zhang, M.H.; Ouyang, J.H.; Fu, L.; Xu, C.; Ge, Y.K.; Sun, S.Q.; Li, X.Y.; Lai, S.; Ke, H.T.; Yuan, B.; et al. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development. J. Med. Chem. 2022, 65, 14701–14720. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.N.; Zhang, J.; Hu, X.Z.; Li, Z.Y.; Fa, K.; Liu, H.Y.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2019, 11, 34609–34620. [Google Scholar] [CrossRef]
- Ye, Z.; Aparicio, C. Modulation of supramolecular self-assembly of an antimicrobial designer peptide by single amino acid substitution: Implications on peptide activity. Nanoscale Adv. 2019, 1, 4679–4682. [Google Scholar] [CrossRef]
- Haney, E.F.; Barbosa, S.C.; Baquir, B.; Hancock, R.E.W. Influence of Non-natural Cationic Amino Acids on the Biological Activity Profile of Innate Defense Regulator Peptides. J. Med. Chem. 2019, 62, 10294–10304. [Google Scholar] [CrossRef] [PubMed]
- Cirioni, O.; Simonetti, O.; Pierpaoli, E.; Barucca, A.; Ghiselli, R.; Orlando, F.; Pelloni, M.; Minardi, D.; Trombettoni, M.M.C.; Guerrieri, M.; et al. Enhanced Efficacy of Combinations of Pexiganan with Colistin Versus Acinetobacter Baumannii in Experimental Sepsis. Shock 2016, 46, 219–225. [Google Scholar] [CrossRef]
- Li, J.; Yap, S.Q.; Chin, C.F.; Tian, Q.; Yoong, S.L.; Pastorin, G.; Ang, W.H. Platinum(IV) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal. Chem. Sci. 2012, 3, 2083–2087. [Google Scholar] [CrossRef]
- Dorn, S.B.; Degen, G.H.; Bolt, H.M.; van der Louw, J.; van Acker, F.A.A.; van den Dobbelsteen, D.J.; Lommerse, J.P.M. Some molecular descriptors for non-specific chromosomal genotoxicity based on hydrophobic interactions. Arch. Toxicol. 2008, 82, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, B.L.; Jiang, J.; Wu, Y.; Song, A.N.; Wang, X.Y.; Yao, C.L.; Dai, H.X.; Xu, J.L.; Zhang, Y.; et al. SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy. Molecules 2022, 27, 8552. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Deng, J.; Sun, J.H.; Ma, Y.L. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front. Immunol. 2020, 11, 595207. [Google Scholar] [CrossRef] [PubMed]
- Milotti, E.; Stella, S.; Chignola, R. Pulsation-limited oxygen diffusion in the tumour microenvironment. Sci. Rep. 2017, 7, 39762. [Google Scholar] [CrossRef]
- Yu, Q.L.; Wei, Z.Y.; Qin, X.; Qin, L.M.; Li, Y.S.; Shi, J.L.; Niu, D.C. Reductant-Free Synthesis of MnO2 Nanosheet-Decorated Hybrid Nanoplatform for Magnetic Resonance Imaging-Monitored Tumor Microenvironment-Responsive Chemodynamic Therapy and Near-Infrared-Mediated Photodynamic Therapy. Small Struct. 2021, 2, 2100116. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, B.R.; Liu, X.H.; Ye, J.J.; Cheng, H.; Zhong, Z.L.; Zhang, X.Z. A H2O2-responsive theranostic platform for chemiluminescence detection and synergistic therapy of tumors. J. Mater. Chem. B 2022, 10, 1634–1640. [Google Scholar] [CrossRef]
- Chang, S.S.; Weng, Z.Z.; Zhang, C.M.; Jiang, S.H.; Duan, G.G. Cellulose-Based Intelligent Responsive Materials: A Review. Polymers 2023, 15, 3905. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, L.B.; Wang, P. Intelligent environmental nanomaterials. Environ. Sci. Nano 2018, 5, 811–836. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Li, J.; Shang, L.; Li, J.; Chou, S.; Lyu, Y.; Shan, A. pH-Responsive Antimicrobial Peptide with Selective Killing Activity for Bacterial Abscess Therapy. J. Med. Chem. 2022, 65, 5355–5373. [Google Scholar] [CrossRef]
- Li, L.; He, J.; Eckert, R.; Yarbrough, D.; Lux, R.; Anderson, M.; Shi, W. Design and characterization of an acid-activated antimicrobial peptide. Chem. Biol. Drug Des. 2010, 75, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, H.; Qi, F.L.; Xia, T.; Xia, Y.; Xu, J.F.; Zhang, X. An Activatable Host–Guest Conjugate as a Nanocarrier for Effective Drug Release through Self-Inclusion. ACS Appl. Mater. Interfaces 2021, 13, 33962–33968. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Cosnier, S.; Almeida, M.G.; Moura, J. An efficient poly(pyrrole–viologen)-nitrite reductase biosensor for the mediated detection of nitrite. Electrochem. Commun. 2004, 6, 404–408. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Kanagaraj, M.; Kathiresan, M.; Suryanarayanan, V.; Velayutham, D. Ethyl viologen dibromide as a novel dual redox shuttle for supercapacitors. J. Mater. Chem. A 2016, 4, 4562–4569. [Google Scholar] [CrossRef]
- Ohira, A.; Funaki, T.; Ishida, E.; Kim, J.D.; Sato, Y. Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly. ACS Appl. Energy Mater. 2020, 3, 4377–4383. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Liu, D.; Li, M.; Xu, S.; Liu, H. Melting Behavior of Zipper-Structured Lipopeptides in Lipid Bilayer. Langmuir 2017, 33, 1478–1485. [Google Scholar] [CrossRef]
- Shen, W.; Lammertink, R.G.H.; Sakata, J.K.; Kornfield, J.A.; Tirrell, D.A. Assembly of an artificial protein hydrogel through leucine zipper aggregation and disulfide bond formation. Macromolecules 2005, 38, 3909–3916. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, W.Q.; Yi, H.; Zhao, Y.L.; Song, S.X. Molecular dynamics simulations study for the effect of cations hydration on the surface tension of the electrolyte solutions. Colloids Surf. A 2018, 539, 80–84. [Google Scholar] [CrossRef]
- Wang, C.Y.; Morgner, H. The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counter-ions therein. Phys. Chem. Chem. Phys. 2014, 16, 23386–23393. [Google Scholar] [CrossRef]
- Ortiz, A.; Teruel, J.A.; Eapuny, A.J.; Marqués, A.; Manresa, Á.; Aranda, F.J. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem. Phys. Lipids 2009, 158, 46–53. [Google Scholar] [CrossRef]
- Aranda, E.; Teruel, J.A.; Ortiz, A.; Pérez-Cárceles, M.D.; Rodríguez-López, J.N.; Aranda, F.J. 3,4,5-Trimethoxybenzoate of Catechin, an Anticarcinogenic Semisynthetic Catechin, Modulates the Physical Properties of Anionic Phospholipid Membranes. Molecules 2022, 27, 2910. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.M.; Li, S.H.; Cui, Y.L.; Yu, J.; Liu, Y. Tunable Nanosupramolecular Aggregates Mediated by Host–Guest Complexation. Angew. Chem. Int. Ed. 2016, 55, 11452–11456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, H.; Li, Y.; Zhang, L.; Xu, S. Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Molecules 2024, 29, 4001. https://doi.org/10.3390/molecules29174001
Wang S, Xu H, Li Y, Zhang L, Xu S. Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Molecules. 2024; 29(17):4001. https://doi.org/10.3390/molecules29174001
Chicago/Turabian StyleWang, Sijia, Huifang Xu, Yuanyuan Li, Lingyi Zhang, and Shouhong Xu. 2024. "Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant" Molecules 29, no. 17: 4001. https://doi.org/10.3390/molecules29174001
APA StyleWang, S., Xu, H., Li, Y., Zhang, L., & Xu, S. (2024). Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Molecules, 29(17), 4001. https://doi.org/10.3390/molecules29174001