Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. LbL Films
2.2. E-Tongue
2.3. Information Visualization Methods
2.4. Instrumentation
3. Results and Discussion
3.1. Fabrication and Characterization of the LbL Films
3.2. Application of the LbL Films in Sensing Units
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D.; et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef]
- Suresh, I.; Selvaraj, S.; Nesakumar, N.; Rayappan, J.B.B.; Kulandaiswamy, A.J. Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: A review. Trends Environ. Anal. Chem. 2021, 31, e00137. [Google Scholar] [CrossRef]
- European Food Safety Authority. The 2016 European Union report on pesticide residues in food. EFSA J. 2018, 16, e05348. [Google Scholar]
- Shen, Z.; Fan, Q.; Yu, Q.; Wang, R.; Wang, H.; Kong, X. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2021, 247, 119037. [Google Scholar] [CrossRef]
- Liu, R.; Chang, Y.; Li, F.; Dubovyk, V.; Li, D.; Ran, Q.; Zhao, H. Highly sensitive detection of carbendazim in juices based on mung bean-derived porous carbon@chitosan composite modified electrochemical sensor. Food Chem. 2022, 392, 133301. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Carvalho, J.H.S.; Machado, S.A.S.; Oliveira, O.N.; Janegitz, B.C. Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 2020, 7, 3074–3081. [Google Scholar] [CrossRef]
- Luo, S.; Wu, Y.; Gou, H. A voltammetric sensor based on GO-MWNTs hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics 2013, 19, 673–680. [Google Scholar] [CrossRef]
- Patel, G.M.; Rohit, J.V.; Singhal, R.K.; Kailasa, S.K. Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sens. Actuators B Chem. 2015, 206, 684–691. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. An ultra-sensitive aptasensor based on carbon nanohorns/gold nanoparticles composites for impedimetric detection of carbendazim at picogram levels. J. Colloid Interface Sci. 2019, 546, 92–100. [Google Scholar] [CrossRef]
- Li, H.; Hassan, M.M.; He, Z.; Haruna, S.A.; Chen, Q.; Ding, Z. A sensitive silver nanoflower-based SERS sensor coupled novel chemometric models for simultaneous detection of chlorpyrifos and carbendazim in food. LWT 2022, 167, 113804. [Google Scholar] [CrossRef]
- Riul, A., Jr.; Dantas, C.A.; Miyazaki, C.M.; Oliveira, O.N., Jr. UK. Recent advances in electronic tongues CORE View metadata, citation and similar papers at core. Analyst 2010, 135, 2481–2495. [Google Scholar] [PubMed]
- Vahdatiyekta, P.; Zniber, M.; Bobacka, J.; Huynh, T.P. A review on conjugated polymer-based electronic tongues. Anal. Chim. Acta 2022, 1221, 340114. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sens. Actuators B Chem. 1997, 44, 532–537. [Google Scholar] [CrossRef]
- Riul, A.; Dos Santos, D.S.; Wohnrath, K.; Di Tommazo, R.; Carvalho, A.C.P.L.F.; Fonseca, F.J.; Oliveira, O.N.; Taylor, D.M.; Mattoso, L.H.C. Artificial Taste Sensor: Efficient Combination of Sensors Made from Langmuir-Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-Assembled Films of an Azobenzene-Containing Polymer. Langmuir 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Steinern, C.; Janshoff, A.; Galla, H.J.; Sieber, M. Impedance analysis of ion transport through gramicidin channels incorporated in solid supported lipid bilayers. Bioelectrochem. Bioenerg. 1997, 42, 213–220. [Google Scholar]
- Siqueira, J.R.; Caseli, L.; Crespilho, F.N.; Zucolotto, V.; Oliveira, O.N. Immobilization of biomolecules on nanostructured films for biosensing. Biosens. Bioelectron. 2010, 25, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Perinoto, A.C.; Maki, R.M.; Colhone, M.C.; Santos, F.R.; Migliaccio, V.; Daghastanli, K.R.; Stabeli, R.G.; Ciancaglini, P.; Paulovich, F.V.; De Oliveira, M.C.; et al. Biosensors for Efficient Diagnosis of Leishmaniasis: Innovations in Bioanalytics for a Neglected Disease. Anal. Chem. 2010, 82, 9763–9768. [Google Scholar] [CrossRef]
- Facure, M.H.M.; Mercante, L.A.; Mattoso, L.H.C.; Correa, D.S. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 2017, 167, 59–66. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Feng, L. Specific detection and discrimination of dithiocarbamates using CTAB-encapsulated fluorescent copper nanoclusters. Talanta 2020, 210, 120627. [Google Scholar] [CrossRef]
- Steinem, C.; Janshoff, A.; Wegener, J.; Ulrich, W.P.; Willenbrink, W.; Sieber, M.; Galla, H.J. Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens. Bioelectron. 1997, 12, 787–808. [Google Scholar] [CrossRef]
- Brumlev, T.R.; Buck, R.P. Transmission line equivalent circuit models for electrochemical impedances. J. Electroanal. Chem. 1981, 126, 73–104. [Google Scholar] [CrossRef]
- Janshoff, A.; Steinem, C. Transport across artificial membranes-an analytical perspective. Anal. Bioanal. Chem. 2006, 385, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Deffo, G.; Temgoua, R.C.T.; Tajeu, K.Y.; Njanja, E.; Doungmo, G.; Tonle, I.K.; Ngameni, E. Signal amplification by electropolymerization of alizarin red S for improved diuron detection at organosmectite modified glassy carbon electrode. J. Chin. Chem. Soc. 2022, 69, 349–358. [Google Scholar] [CrossRef]
- Volpati, D.; Aoki, P.H.; Dantas, C.A.; Paulovich, F.V.; De Oliveira, M.C.F.; Oliveira, O.N., Jr.; Riul, A., Jr.; Aroca, R.F.; Constantino, C.J. Toward the Optimization of an e-Tongue System Using Information Visualization: A Case Study with Perylene Tetracarboxylic Derivative Films in the Sensing Units. Langmuir. 2012, 28, 1029–1040. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Aberdeen, UK, 2002. [Google Scholar]
- Oliveira, O.N.; Pavinatto, F.J.; Constantino, C.J.L.; Paulovich, F.V.; de Oliveira, M.C.F. Information visualization to enhance sensitivity and selectivity in biosensing. Biointerphases 2012, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, M.L.; Maki, R.M.; Paulovich, F.V.; Rodrigues Filho, U.P.; De Oliveira, M.C.F.; Riul, A., Jr.; De Souza, N.C.; Ferreira, M.; Gomes, H.L.; Oliveira, O.N., Jr. Strategies to Optimize Biosensors Based on Impedance Spectroscopy to Detect Phytic Acid Using Layer-by-Layer Films. Anal. Chem. 2010, 82, 3239–3246. [Google Scholar] [CrossRef]
- Rocha Neto, J.B.M.; Soares, A.C.; Bataglioli, R.A.; Carr, O.; Costa, C.A.R.; Oliveira, O.N., Jr.; Beppu, M.M.; Carvalho, H.F. Polysaccharide Multilayer Films in Sensors for Detecting Prostate Tumor Cells Based on Hyaluronan-CD44 Interactions. Cells 2020, 9, 1563. [Google Scholar] [CrossRef]
- Paulovich, F.V.; Oliveira, M.C.F.; Minghim, R. The Projection Explorer: A Flexible Tool for Projection-based Multidimensional Visualization. In Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007), Minas Gerais, Brazil, 7–10 October 2007; pp. 27–36. [Google Scholar]
- Furini, L.N.; Martin, C.S.; Camacho, S.A.; Rubira, R.J.; Fernandes, J.D.; Silva, E.A.; Gomes, T.C.; Stunges, G.M.; Constantino, C.J.; Alessio, P. Electrochemical properties of nickel phthalocyanine: The effect of thin film morphology tuned by deposition techniques. Thin Solid Film. 2020, 699, 137897. [Google Scholar] [CrossRef]
- Ferreira, M.; Riul, A.; Wohnrath, K.; Fonseca, F.J.; Oliveira, O.N.; Mattoso, L.H.C. High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex. Anal. Chem. 2003, 75, 953–955. [Google Scholar] [CrossRef]
- Aoki, P.H.B.; Volpati, D.; Riul, A.; Caetano, W.; Constantino, C.J.L. Layer-by-layer technique as a new approach to produce nanostructured films containing phospholipids as transducers in sensing applications. Langmuir 2009, 25, 2331–2338. [Google Scholar] [CrossRef] [PubMed]
- Aoki, P.H.; Alessio, P.; Furini, L.N.; Constantino, C.J.; Neves, T.T.; Paulovich, F.V.; De Oliveira, M.C.F.; Oliveira, O.N., Jr. Molecularly designed layer-by-layer (LbL) films to detect catechol using information visualization methods. Langmuir 2013, 29, 7542–7550. [Google Scholar] [CrossRef] [PubMed]
- Furini, L.N.; Feitosa, E.; Alessio, P.; Shimabukuro, M.H.; Riul, A.; Constantino, C.J.L. Tuning the nanostructure of DODAB/nickel tetrasulfonated phthalocyanine bilayers in LbL films. Mater. Sci. Eng. C 2013, 33, 2937–2946. [Google Scholar] [CrossRef] [PubMed]
- Camp, P.J.; Jones, A.C.; Neely, R.K.; Speirs, N.M. Aggregation of Copper (II) Tetrasulfonated Phthalocyanine in Aqueous Salt Solutions. J. Phys. Chem. A 2002, 106, 10725–10732. [Google Scholar] [CrossRef]
- Dreher, M.; Kang, D.; Breuer, T.; Witte, G. Growth of extended DNTT fibers on metal substrates by suppression of step-induced nucleation. Nanoscale Horiz. 2019, 4, 1353–1360. [Google Scholar] [CrossRef]
- Rubira, R.J.; Camacho, S.A.; Aoki, P.H.; Maximino, M.D.; Alessio, P.; Martin, C.S.; Oliveira, O.N.; Fatore, F.M.; Paulovich, F.V.; Constantino, C.J. Detection of trace levels of atrazine using surface-enhanced Raman scattering and information visualization. Colloid Polym. Sci. 2014, 292, 2811–2820. [Google Scholar] [CrossRef] [Green Version]
- Mamishev, V.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital Sensors and Transducers. Proc. IEEE 2004, 92, 808–845. [Google Scholar] [CrossRef] [Green Version]
- Rivadeneyra, A.; Fernández-Salmerón, J.; Banqueri, J.; López-Villanueva, J.A.; Capitan-Vallvey, L.F.; Palma, A.J. A novel electrode structure compared with interdigitated electrodes as capacitive sensor. Sens. Actuators B Chem. 2014, 204, 552–560. [Google Scholar] [CrossRef]
- Furini, L.N.; Morato, L.F.C.; Olivier, D.S.; Lemos, M.; Feitosa, E.; Constantino, C.J.L. Interactions of Lipid Polar Headgroups with Carbendazim Fungicide. J. Nanosci. Nanotechnol. 2019, 19, 3734–3743. [Google Scholar] [CrossRef]
- Klem, M.D.S.; Morais, R.M.; Rubira, R.J.G.; Alves, N. Paper-based supercapacitor with screen-printed poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate)/multiwall carbon nanotube films actuating both as electrodes and current collectors. Thin Solid Film. 2019, 669, 96–102. [Google Scholar] [CrossRef]
- Steinem, C.; Janshoff, A.; Von Dem Bruch, K.; Reihs, K.; Goossens, J.; Galla, H.J. Valinomycin-mediated transport of alkali cations through solid supported membranes. Bioelectrochem. Bioenerg. 1998, 45, 17–26. [Google Scholar] [CrossRef]
- Navrátil, T.; Šestáková, I.; Štulík, K.; Mareček, V. Electrochemical measurements on supported phospholipid bilayers: Preparation, properties and ion transport using incorporated ionophores. Electroanalysis 2010, 22, 2043–2050. [Google Scholar] [CrossRef]
- Navrátil, T.; Šestáková, I.; Mareček, V. Supported phospholipid membranes formation at a gel electrode and transport of divalent cations across them. Int. J. Electrochem. Sci. 2011, 6, 6032–6046. [Google Scholar]
- Stelzle, M.; Weissmüller, G.; Sackmann, E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem. 1993, 97, 2974–2981. [Google Scholar] [CrossRef]
- Navrátil, T.; Šestáková, I.; Dytrtová, J.J.; Jakl, M.; Marěek, V. Study of charged particles transport across model and real phospholipid bilayers. WSEAS Trans. Environ. Dev. 2010, 6, 208–219. [Google Scholar]
- Behpour, M.; Mohammadi, N. Investigation of inhibition properties of aromatic thiol self-assembled monolayer for corrosion protection. Corros. Sci. 2012, 65, 331–339. [Google Scholar] [CrossRef]
- Klem, M.D.S.; Nogueira, G.L.; Alves, N. High-performance symmetric supercapacitor based on molybdenum disulfide/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composite electrodes deposited by spray-coating. Int. J. Energy Res. 2021, 45, 9021–9038. [Google Scholar] [CrossRef]
- Behpour, M.; Ghoreishi, S.M.; Mohammadi, N.; Salavati-Niasari, M. Investigation of the inhibiting effect of N-[(Z)-1-phenylemethyleidene]-N-{2-[(2-{[(Z)-1phenylmethylidene]amino}phenyl)disulfanyl]phenyl} amine and its derivatives on the corrosion of stainless steel 304 in acid media. Corros. Sci. 2011, 53, 3380–3387. [Google Scholar] [CrossRef]
- Buehler, M.; Cobos, D.; Dunne, K. Dielectric Constant and Osmotic Potential from Ion-Dipole Polarization Measurements of KCl- And NaCl-doped Aqueous Solutions. ISEMA Conf. Proc. 2011, 70–78. [Google Scholar]
- Ozório, M.S.; Vieira, D.H.; Nogueira, G.L.; Martin, C.S.; Alves, N.; Constantino, C.J.L. Effect of the gate electrodes/water interface on the performance of ZnO-based water gate field-effect transistors. Mater. Sci. Semicond. Process. 2022, 151, 107045. [Google Scholar] [CrossRef]
- Vieira, D.H.; da Silva Ozório, M.; Nogueira, G.L.; Alves, N. Impedance spectroscopy analysis of poly(3-hexylthiophene):TIPS-pentacene blends in different ratios. Phys. B Phys. Condens. Matter 2021, 623, 413346. [Google Scholar] [CrossRef]
- Olthuis, W.; Streekstra, W.; Bergveld, P. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators B Chem. 1995, 24, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Karaman, B.; Çevik, E.; Bozkurt, A. Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics 2019, 25, 1773–1781. [Google Scholar] [CrossRef]
- Sedlak, P.; Gajdos, A.; Macku, R.; Majzner, J.; Holcman, V.; Sedlakova, V.; Kubersky, P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020, 10, 21140. [Google Scholar] [CrossRef]
- Padhee, R.; Das, P.R.; Parida, B.N.; Choudhary, R.N.P. Electrical and Pyroelectric Properties of K2Pb2Gd2W2Ti4Nb4O30 Ferroelectrics. J. Electron. Mater. 2013, 42, 426–437. [Google Scholar] [CrossRef]
- Aoki, P.H.; Alessio, P.; Volpati, D.; Paulovich, F.V.; Riul, A., Jr.; Oliveira, O.N., Jr.; Constantino, C.J. On the distinct molecular architectures of dipping- and spray-LbL films containing lipid vesicles. Mater. Sci. Eng. C 2014, 41, 363–371. [Google Scholar] [CrossRef]
- Paulovich, F.V.; Moraes, M.L.; Maki, R.M.; Ferreira, M.; Oliveira, O.N.; De Oliveira, M.C.F. Information visualization techniques for sensing and biosensing. Analyst 2011, 136, 1344–1350. [Google Scholar] [CrossRef]
- Andre, R.S.; Facure, M.H.M.; Mercante, L.A.; Correa, D.S. Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sens. Actuators B Chem. 2022, 353, 131114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furini, L.N.; Fernandes, J.D.; Vieira, D.H.; Morato, L.F.d.C.; Alves, N.; Constantino, C.J.L. Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films. Chemosensors 2023, 11, 213. https://doi.org/10.3390/chemosensors11040213
Furini LN, Fernandes JD, Vieira DH, Morato LFdC, Alves N, Constantino CJL. Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films. Chemosensors. 2023; 11(4):213. https://doi.org/10.3390/chemosensors11040213
Chicago/Turabian StyleFurini, Leonardo Negri, José Diego Fernandes, Douglas Henrique Vieira, Luis Fernando do Carmo Morato, Neri Alves, and Carlos José Leopoldo Constantino. 2023. "Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films" Chemosensors 11, no. 4: 213. https://doi.org/10.3390/chemosensors11040213
APA StyleFurini, L. N., Fernandes, J. D., Vieira, D. H., Morato, L. F. d. C., Alves, N., & Constantino, C. J. L. (2023). Combining Impedance Spectroscopy and Information Visualization Methods to Optimize the Detection of Carbendazim Using Layer-by-Layer Films. Chemosensors, 11(4), 213. https://doi.org/10.3390/chemosensors11040213