Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (791)

Search Parameters:
Keywords = DNA methylation biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1221 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

17 pages, 3095 KiB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

28 pages, 3157 KiB  
Review
Deciphering Medulloblastoma: Epigenetic and Metabolic Changes Driving Tumorigenesis and Treatment Outcomes
by Jenny Bonifacio-Mundaca, Sandro Casavilca-Zambrano, Christophe Desterke, Íñigo Casafont and Jorge Mata-Garrido
Biomedicines 2025, 13(8), 1898; https://doi.org/10.3390/biomedicines13081898 - 4 Aug 2025
Abstract
Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children and comprises four molecular subtypes—WNT, SHH, Group 3, and Group 4—each with distinct genetic, epigenetic, and metabolic features. Increasing evidence highlights the critical role of metabolic reprogramming and epigenetic alterations in driving [...] Read more.
Background/Objectives: Medulloblastoma is the most common malignant brain tumor in children and comprises four molecular subtypes—WNT, SHH, Group 3, and Group 4—each with distinct genetic, epigenetic, and metabolic features. Increasing evidence highlights the critical role of metabolic reprogramming and epigenetic alterations in driving tumor progression, therapy resistance, and clinical outcomes. This review aims to explore the interplay between metabolic and epigenetic mechanisms in medulloblastoma, with a focus on their functional roles and therapeutic implications. Methods: A comprehensive literature review was conducted using PubMed and relevant databases, focusing on recent studies examining metabolic pathways and epigenetic regulation in medulloblastoma subtypes. Particular attention was given to experimental findings from in vitro and in vivo models, as well as emerging preclinical therapeutic strategies targeting these pathways. Results: Medulloblastoma exhibits metabolic adaptations such as increased glycolysis, lipid biosynthesis, and altered amino acid metabolism. These changes support rapid cell proliferation and interact with the tumor microenvironment. Concurrently, epigenetic mechanisms—including DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation—contribute to tumor aggressiveness and treatment resistance. Notably, metabolic intermediates often serve as cofactors for epigenetic enzymes, creating feedback loops that reinforce oncogenic states. Preclinical studies suggest that targeting metabolic vulnerabilities or epigenetic regulators—and particularly their combination—can suppress tumor growth and overcome resistance mechanisms. Conclusions: The metabolic–epigenetic crosstalk in medulloblastoma represents a promising area for therapeutic innovation. Understanding subtype-specific dependencies and integrating biomarkers for patient stratification could facilitate the development of precision medicine approaches that improve outcomes and reduce long-term treatment-related toxicity in pediatric patients. Full article
(This article belongs to the Special Issue Genomic Insights and Translational Opportunities for Human Cancers)
Show Figures

Figure 1

21 pages, 632 KiB  
Review
DNA Methylation in Bladder Cancer: Diagnostic and Therapeutic Perspectives—A Narrative Review
by Dragoş Puia, Marius Ivănuță and Cătălin Pricop
Int. J. Mol. Sci. 2025, 26(15), 7507; https://doi.org/10.3390/ijms26157507 - 3 Aug 2025
Viewed by 220
Abstract
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current [...] Read more.
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current evidence on the role of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and the hypermethylation of key tumour suppressor genes, including A2BP1, NPTX2, SOX11, PENK, NKX6-2, DBC1, MYO3A, and CA10, in bladder cancer. It also evaluates the therapeutic application of DNA-demethylating agents such as 5-azacytidine and highlights the impact of chronic inflammation on epigenetic regulation. Promoter hypermethylation of tumour suppressor genes leads to transcriptional silencing and unchecked cell proliferation. Urine-based DNA methylation assays provide a sensitive and specific method for non-invasive early detection, with single-target approaches offering high diagnostic precision. Animal models are increasingly employed to validate these findings, allowing the study of methylation dynamics and gene–environment interactions in vivo. DNA methylation represents a key epigenetic mechanism in bladder cancer, with significant diagnostic, prognostic, and therapeutic implications. Integration of human and experimental data supports the use of methylation-based biomarkers for early detection and targeted treatment, paving the way for personalized approaches in bladder cancer management. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

23 pages, 1700 KiB  
Review
Epigenetic Modifications in Osteosarcoma: Mechanisms and Therapeutic Strategies
by Maria A. Katsianou, Dimitrios Andreou, Penelope Korkolopoulou, Eleni-Kyriaki Vetsika and Christina Piperi
Life 2025, 15(8), 1202; https://doi.org/10.3390/life15081202 - 28 Jul 2025
Viewed by 253
Abstract
Osteosarcoma (OS), the most common primary bone cancer of mesenchymal origin in children and young adolescents, remains a challenge due to metastasis and resistance to chemotherapy. It displays severe aneuploidy and a high mutation frequency which drive tumor initiation and progression; however, recent [...] Read more.
Osteosarcoma (OS), the most common primary bone cancer of mesenchymal origin in children and young adolescents, remains a challenge due to metastasis and resistance to chemotherapy. It displays severe aneuploidy and a high mutation frequency which drive tumor initiation and progression; however, recent studies have highlighted the role of epigenetic modifications as a key driver of OS pathogenesis, independent of genetic mutations. DNA and RNA methylation, histone modifications and non-coding RNAs are among the major epigenetic modifications which can modulate the expression of oncogenes. Abnormal activity of these mechanisms contributes to gene dysregulation, metastasis and immune evasion. Therapeutic targeting against these epigenetic mechanisms, including inhibitors of DNA and RNA methylation as well as regulators of RNA modifications, can enhance tumor suppressor gene activity. In this review, we examine recent studies elucidating the role of epigenetic regulation in OS pathogenesis and discuss emerging drugs or interventions with potential clinical utility. Understanding of tumor- specific epigenetic alterations, coupled with innovative therapeutic strategies and AI-driven biomarker discovery, could pave the way for personalized therapies based on the molecular profile of each tumor and improve the management of patients with OS. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

16 pages, 4900 KiB  
Review
Non-Canonical Functions of Adenosine Receptors: Emerging Roles in Metabolism, Immunometabolism, and Epigenetic Regulation
by Giovanni Pallio and Federica Mannino
Int. J. Mol. Sci. 2025, 26(15), 7241; https://doi.org/10.3390/ijms26157241 - 26 Jul 2025
Viewed by 219
Abstract
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and [...] Read more.
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and A2B, modulate glucose and lipid metabolism, mitochondrial activity, and energy homeostasis. In immune cells, AR signaling influences metabolic reprogramming and polarization through key regulators such as mTOR, AMPK, and HIF-1α, contributing to immune tolerance or activation depending on the context. Additionally, ARs have been implicated in epigenetic modulation, affecting DNA methylation, histone acetylation, and non-coding RNA expression via metabolite-sensitive mechanisms. Therapeutically, AR-targeting agents are being explored for cancer and chronic inflammatory diseases. While clinical trials with A2A antagonists in oncology show encouraging results, challenges remain due to receptor redundancy, systemic effects, and the need for tissue-specific selectivity. Future strategies involve biased agonism, allosteric modulators, and combination therapies guided by biomarker-based patient stratification. Overall, ARs are emerging as integrative hubs connecting extracellular signals with cellular metabolic and epigenetic machinery. Understanding these non-canonical roles may unlock novel therapeutic opportunities across diverse disease landscapes. Full article
Show Figures

Figure 1

20 pages, 5937 KiB  
Article
Development of a Serum Proteomic-Based Diagnostic Model for Lung Cancer Using Machine Learning Algorithms and Unveiling the Role of SLC16A4 in Tumor Progression and Immune Response
by Hanqin Hu, Jiaxin Zhang, Lisha Zhang, Tiancan Li, Miaomiao Li, Jianxiang Li and Jin Wang
Biomolecules 2025, 15(8), 1081; https://doi.org/10.3390/biom15081081 - 26 Jul 2025
Viewed by 338
Abstract
Early diagnosis of lung cancer is crucial for improving patient prognosis. In this study, we developed a diagnostic model for lung cancer based on serum proteomic data from the GSE168198 dataset using four machine learning algorithms (nnet, glmnet, svm, and XGBoost). The model’s [...] Read more.
Early diagnosis of lung cancer is crucial for improving patient prognosis. In this study, we developed a diagnostic model for lung cancer based on serum proteomic data from the GSE168198 dataset using four machine learning algorithms (nnet, glmnet, svm, and XGBoost). The model’s performance was validated on datasets that included normal controls, disease controls, and lung cancer data containing both. Furthermore, the model’s diagnostic capability was further validated on an independent external dataset. Our analysis identified SLC16A4 as a key protein in the model, which was significantly downregulated in lung cancer serum samples compared to normal controls. The expression of SLC16A4 was closely associated with clinical pathological features such as gender, tumor stage, lymph node metastasis, and smoking history. Functional assays revealed that overexpression of SLC16A4 significantly inhibited lung cancer cell proliferation and induced cellular senescence, suggesting its potential role in lung cancer development. Additionally, correlation analyses showed that SLC16A4 expression was linked to immune cell infiltration and the expression of immune checkpoint genes, indicating its potential involvement in immune escape mechanisms. Based on multi-omics data from the TCGA database, we further discovered that the low expression of SLC16A4 in lung cancer may be regulated by DNA copy number variations and DNA methylation. In conclusion, this study not only established an efficient diagnostic model for lung cancer but also identified SLC16A4 as a promising biomarker with potential applications in early diagnosis and immunotherapy. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

37 pages, 8221 KiB  
Review
Epigenetic Profiling of Cell-Free DNA in Cerebrospinal Fluid: A Novel Biomarker Approach for Metabolic Brain Diseases
by Kyle Sporn, Rahul Kumar, Kiran Marla, Puja Ravi, Swapna Vaja, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Life 2025, 15(8), 1181; https://doi.org/10.3390/life15081181 - 25 Jul 2025
Viewed by 506
Abstract
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free [...] Read more.
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free DNA (cfDNA) derived from cerebrospinal fluid (CSF) epigenetic profiling as a dynamic, cell-type-specific, minimally invasive biomarker approach for MBD diagnosis and monitoring. We review important technological platforms and their use in identifying CNS-specific DNA methylation patterns indicative of neuronal injury, neuroinflammation, and metabolic reprogramming, including cfMeDIP-seq, enzymatic methyl sequencing (EM-seq), and targeted bisulfite sequencing. By synthesizing current findings across disorders such as MELAS, Niemann–Pick disease, Gaucher disease, GLUT1 deficiency syndrome, and diabetes-associated cognitive decline, we highlight the superior diagnostic and prognostic resolution offered by CSF cfDNA methylation signatures relative to conventional CSF markers or neuroimaging. We also address technical limitations, interpretive challenges, and translational barriers to clinical implementation. Ultimately, this review explores CSF cfDNA epigenetic analysis as a liquid biopsy modality. The central objective is to assess whether epigenetic profiling of CSF-derived cfDNA can serve as a reliable and clinically actionable biomarker for improving the diagnosis and longitudinal monitoring of metabolic brain diseases. Full article
(This article belongs to the Special Issue Cell-Free DNA as a Biomarker in Metabolic Diseases)
Show Figures

Figure 1

23 pages, 3633 KiB  
Article
Characterization of DNA Methylation Episignatures for Radon-Induced Lung Cancer
by Ziyan Yan, Huixi Chen, Yuhao Liu, Lin Zhou, Jiaojiao Zhu, Yifan Hou, Xinyu Zhang, Zhongmin Chen, Yilong Wang, Ping-Kun Zhou and Yongqing Gu
Int. J. Mol. Sci. 2025, 26(14), 6873; https://doi.org/10.3390/ijms26146873 - 17 Jul 2025
Viewed by 232
Abstract
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using [...] Read more.
Radon (Rn) exposure has a strong association with lung cancer risk and is influenced by epigenetic modifications. To investigate the characterization of DNA methylation (DNAm) episignatures for radon-induced lung cancer, we detected the specific changes in DNAm in blood and lung tissues using reduced representation bisulfite sequencing (RRBS). We identified the differentially methylated regions (DMRs) induced by radon exposure. The bioinformatics analysis of the DMR-mapped genes revealed that pathways in cancer were affected by radon exposure. Among them, the DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 were repeated between lung tissue and blood, and validated by the MassArray. In addition, radon exposure promoted lung cancer development in the genetic engineering mouse model (GEMM), accompanied by decreased MAPK10 and increased PLCG1, PLCβ3, and PIK3R2 with mRNA and protein levels. Conclusively, radon exposure significantly changes the genomic DNAm patterns in lung tissue and blood. The DNAm episignatures of MAPK10, PLCG1, PLCβ3 and PIK3R2 have a significant influence on radon-induced lung cancer. This brings a new perspective to understanding the pathways involved in radon-induced lung cancer and offers potential targets for developing blood-based biomarkers and epigenetic therapeutics. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2238 KiB  
Review
Cell-Free DNA as a Prognostic Biomarker in Oral Carcinogenesis and Oral Squamous Cell Carcinoma: A Translational Perspective
by Pietro Rigotti, Alessandro Polizzi, Vincenzo Quinzi, Andrea Blasi, Teresa Lombardi, Eleonora Lo Muzio and Gaetano Isola
Cancers 2025, 17(14), 2366; https://doi.org/10.3390/cancers17142366 - 16 Jul 2025
Viewed by 432
Abstract
Oral squamous cell carcinoma (OSCC) remains one of the most common malignancies in the head and neck region, often preceded by a spectrum of oral potentially malignant disorders (OPMDs). Despite advances in diagnostic methods, reliable and non-invasive biomarkers for early detection and prognostic [...] Read more.
Oral squamous cell carcinoma (OSCC) remains one of the most common malignancies in the head and neck region, often preceded by a spectrum of oral potentially malignant disorders (OPMDs). Despite advances in diagnostic methods, reliable and non-invasive biomarkers for early detection and prognostic stratification are still lacking. In recent years, circulating cell-free DNA (cfDNA) has emerged as a promising liquid biopsy tool in several solid tumors, offering insights into tumor burden, heterogeneity, and molecular dynamics. However, its application in oral oncology remains underexplored. This study aims to review and discuss the current evidence on cfDNA quantification and mutation analysis (including TP53, NOTCH1, and EGFR) in patients with OPMDs and OSCC. Particular attention is given to cfDNA fragmentation patterns, methylation signatures, and tumor-specific mutations as prognostic and predictive biomarkers. Moreover, we highlight the challenges in standardizing pre-analytical and analytical workflows in oral cancer patients and explore the potential role of cfDNA in monitoring oral carcinogenesis. Understanding cfDNA dynamics in the oral cavity might offer a novel, minimally invasive strategy to improve early diagnosis, risk assessment, and treatment decision-making in oral oncology. Full article
Show Figures

Figure 1

31 pages, 25018 KiB  
Article
VPS26A as a Prognostic Biomarker and Therapeutic Target in Liver Hepatocellular Carcinoma: Insights from Comprehensive Bioinformatics Analysis
by Hye-Ran Kim and Jongwan Kim
Medicina 2025, 61(7), 1283; https://doi.org/10.3390/medicina61071283 - 16 Jul 2025
Viewed by 240
Abstract
Background and Objectives: VPS26A, a core component of the retromer complex, is pivotal to endosomal trafficking and membrane protein recycling. However, its expression profile, prognostic significance, and clinical relevance in liver hepatocellular carcinoma (LIHC) remain unexplored. This study investigates the prognostic potential of [...] Read more.
Background and Objectives: VPS26A, a core component of the retromer complex, is pivotal to endosomal trafficking and membrane protein recycling. However, its expression profile, prognostic significance, and clinical relevance in liver hepatocellular carcinoma (LIHC) remain unexplored. This study investigates the prognostic potential of VPS26A by extensively analyzing publicly available LIHC-related databases. Materials and Methods: Multiple databases, including TIMER, UALCAN, HPA, GSCA, KM Plotter, OSlihc, MethSurv, miRNet, OncomiR, LinkedOmics, GeneMANIA, and STRING, were used to evaluate VPS26A expression patterns, prognostic implications, correlations with tumor-infiltrating immune cells (TIICs), epigenetic modifications, drug sensitivity, co-expression networks, and protein–protein interactions in LIHC. Results: VPS26A was significantly overexpressed at both the mRNA and protein levels in LIHC tissues compared to that in normal tissues. This upregulation was strongly associated with a poor prognosis. Furthermore, VPS26A expression was both positively and negatively correlated with various TIICs. Epigenetic analysis indicated that VPS26A is regulated by promoter and regional DNA methylation. Additionally, VPS26A influences the sensitivity of LIHC cells to a broad range of anticancer agents. Functional enrichment and co-expression analyses revealed that VPS26A serves as a central regulator of the LIHC transcriptomic landscape, with positively correlated gene sets linked to poor prognosis. Additionally, VPS26A contributes to the molecular architecture governing vesicular trafficking, with potential relevance to diseases involving defects in endosomal transport and autophagy. Notably, miRNAs targeting VPS26A-associated gene networks have emerged as potential prognostic biomarkers for LIHC. VPS26A was found to be integrated into a highly interconnected signaling network comprising proteins in cancer progression, immune regulation, and cellular metabolism. Conclusions: Overall, VPS26A may serve as a potential prognostic biomarker and therapeutic target in LIHC. This study provides novel insights into the molecular mechanisms underlying LIHC progression, and highlights the multifaceted role of VPS26A in tumor biology. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

18 pages, 389 KiB  
Article
Global DNA Methylation in Poorly Controlled Type 2 Diabetes Mellitus: Association with Redox and Inflammatory Biomarkers
by Sanja Vujcic, Jelena Kotur-Stevuljevic, Zoran Vujcic, Sanja Stojanovic, Teodora Beljic Zivkovic, Miljanka Vuksanovic, Milica Marjanovic Petkovic, Iva Perovic Blagojevic, Branka Koprivica-Uzelac, Sanja Ilic-Mijailovic, Manfredi Rizzo, Aleksandra Zeljkovic, Tatjana Stefanovic, Srecko Bosic and Jelena Vekic
Int. J. Mol. Sci. 2025, 26(14), 6716; https://doi.org/10.3390/ijms26146716 - 13 Jul 2025
Viewed by 408
Abstract
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly [...] Read more.
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly controlled T2DM and to identify diabetes-related factors associated with DNA methylation levels. The study included 107 patients and 50 healthy controls. Global DNA methylation (5mC) was measured by UHPLC-DAD method. Pro-oxidant and antioxidant biomarkers, advanced glycation end-products, high-sensitivity C-reactive protein (hsCRP) and complete blood count were determined and leukocyte indices calculated. Patients had a significantly lower 5mC than controls (3.56 ± 0.31% vs. 4.00 ± 0.68%; p < 0.001), with further reductions observed in those with longer disease duration and diabetic foot ulcers. Oxidative stress and inflammatory biomarkers were higher in the patient group. DNA hypomethylation was associated with a higher monocyte-to-lymphocyte ratio and hsCRP, pro-oxidant–antioxidant balance, ischemia-modified albumin, and advanced oxidation protein products levels. Conversely, 5mC levels showed positive correlations with total antioxidant status and total sulfhydryl groups. Principal component analysis identified five key factors: proinflammatory, pro-oxidant, aging, hyperglycemic, and antioxidant. The pro-oxidant factor emerged as the sole independent predictor of global DNA hypomethylation in T2DM (OR = 2.294; p = 0.027). Our results indicate that global DNA hypomethylation could be a biomarker of T2DM progression, reflecting the complex interactions between oxidative stress, inflammation, and epigenetic modifications in T2DM. Full article
Show Figures

Figure 1

7 pages, 732 KiB  
Article
Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa
by Inga Kildusiene, Ryte Rynkeviciene, Auguste Kaceniene, Rima Miknaite, Kestutis Suziedelis and Giedre Smailyte
Medicina 2025, 61(7), 1243; https://doi.org/10.3390/medicina61071243 - 10 Jul 2025
Viewed by 309
Abstract
Background and Objectives: Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Genetic and epigenetic changes, especially DNA methylation alterations, are key in CRC development. LINE-1 hypomethylation marks global DNA methylation loss and genomic instability, making it a [...] Read more.
Background and Objectives: Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Genetic and epigenetic changes, especially DNA methylation alterations, are key in CRC development. LINE-1 hypomethylation marks global DNA methylation loss and genomic instability, making it a potential early CRC biomarker. This study investigates the methylation status of LINE-1 in colorectal adenocarcinoma, precancerous lesions (tubular and serrated adenomas), and the surrounding normal mucosa, aiming to elucidate its role as an epigenetic marker in early colorectal tumorigenesis. Materials and Methods: Paired lesion and normal tissue samples from 66 patients were analyzed for LINE-1 methylation at three CpG sites using bisulfite pyrosequencing. Results: Adenocarcinomas and tubular adenomas showed significant hypomethylation, especially at loci A and B, while serrated adenomas exhibited no significant differences. Conclusions: LINE-1 hypomethylation is associated with colorectal tumorigenesis, with distinct patterns observed between tubular and serrated adenomas, indicating distinct pathways forming and progressing specific adenomas. These findings support the potential of LINE-1 methylation as an early epigenetic biomarker for CRC risk stratification and highlight the need for further research into its clinical utility. Full article
Show Figures

Figure 1

32 pages, 4717 KiB  
Article
MOGAD: Integrated Multi-Omics and Graph Attention for the Discovery of Alzheimer’s Disease’s Biomarkers
by Zhizhong Zhang, Yuqi Chen, Changliang Wang, Maoni Guo, Lu Cai, Jian He, Yanchun Liang, Garry Wong and Liang Chen
Informatics 2025, 12(3), 68; https://doi.org/10.3390/informatics12030068 - 9 Jul 2025
Viewed by 550
Abstract
The selection of appropriate biomarkers in clinical practice aids in the early detection, treatment, and prevention of disease while also assisting in the development of targeted therapeutics. Recently, multi-omics data generated from advanced technology platforms has become available for disease studies. Therefore, the [...] Read more.
The selection of appropriate biomarkers in clinical practice aids in the early detection, treatment, and prevention of disease while also assisting in the development of targeted therapeutics. Recently, multi-omics data generated from advanced technology platforms has become available for disease studies. Therefore, the integration of this data with associated clinical data provides a unique opportunity to gain a deeper understanding of disease. However, the effective integration of large-scale multi-omics data remains a major challenge. To address this, we propose a novel deep learning model—the Multi-Omics Graph Attention biomarker Discovery network (MOGAD). MOGAD aims to efficiently classify diseases and discover biomarkers by integrating various omics data such as DNA methylation, gene expression, and miRNA expression. The model consists of three main modules: Multi-head GAT network (MGAT), Multi-Graph Attention Fusion (MGAF), and Attention Fusion (AF), which work together to dynamically model the complex relationships among different omics layers. We incorporate clinical data (e.g., APOE genotype) which enables a systematic investigation of the influence of non-omics factors on disease classification. The experimental results demonstrate that MOGAD achieves a superior performance compared to existing single-omics and multi-omics integration methods in classification tasks for Alzheimer’s disease (AD). In the comparative experiment on the ROSMAP dataset, our model achieved the highest ACC (0.773), F1-score (0.787), and MCC (0.551). The biomarkers identified by MOGAD show strong associations with the underlying pathogenesis of AD. We also apply a Hi-C dataset to validate the biological rationality of the identified biomarkers. Furthermore, the incorporation of clinical data enhances the model’s robustness and uncovers synergistic interactions between omics and non-omics features. Thus, our deep learning model is able to successfully integrate multi-omics data to efficiently classify disease and discover novel biomarkers. Full article
Show Figures

Figure 1

Back to TopTop