Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tissue Collection and Classification
2.3. LINE-1 Methylation Analysis
2.4. Statistical Analysis
3. Results
3.1. LINE-1 Methylation in Pathological and Adjacent Tissues
- TA: LINE-1 methylation was lower in adenoma (72.53 ± 1.48) than normal mucosa (81.63 ± 0.71; p < 0.05).
- SA: No significant difference between lesion (78.67 ± 1.11) and normal tissue (79.6 ± 0.58).
- Adenocarcinoma: Tumor tissue showed reduced methylation (66.33 ± 2.24) vs. mucosa (83.76 ± 0.76; p < 0.05).
- TA: Lower methylation in lesion (67.53 ± 1.26) than normal tissue (70.97 ± 0.91; p < 0.05).
- SA: No significant difference.
- Adenocarcinoma: Tumor tissue (64.43 ± 2.61) showed significantly less methylation than normal mucosa (73.24 ± 0.72; p < 0.05).
- TA: Lesion methylation (67.07 ± 1.53) was lower than normal tissue (72.27 ± 1.15; p < 0.05).
- SA: No significant difference.
- Adenocarcinoma: Tumor tissue (65.05 ± 1.70) had significantly reduced methylation compared to normal mucosa (72.76 ± 0.90; p < 0.05).
3.2. Comparative Analysis
- Adenocarcinoma tissues consistently exhibited the lowest LINE-1 methylation across all loci, with the greatest difference at locus B.
- Tubular adenomas showed intermediate hypomethylation, with the most pronounced difference at locus A.
- Serrated adenomas did not display significant methylation differences between pathological and normal tissues at any locus.
3.3. Summary of Findings
- LINE-1 hypomethylation is most pronounced in adenocarcinoma, less so in tubular adenoma, and minimally in serrated adenoma.
- The largest methylation differences were observed at locus A, suggesting its potential as a focal point for future biomarker studies (Table 2).
- No significant methylation changes were detected in serrated adenomas, indicating possible differences in their tumorigenic pathways compared to tubular adenomas and adenocarcinomas (Table 2).
4. Discussion
4.1. The Role of DNA Methylation and LINE-1 in Colorectal Carcinogenesis
4.2. Distinct Pathways in Serrated Versus Tubular Adenomas
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogino, S.; Nosho, K.; Kirkner, G.J.; Kawasaki, T.; Chan, A.T.; Schernhammer, E.S.; Giovannucci, E.L.; Fuchs, C.S. A Cohort Study of Tumoral LINE-1 Hypomethylation and Prognosis in Colon Cancer. J. Natl. Cancer Inst. 2008, 100, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Thiebault, Q.; Defossez, G.; Karayan-Tapon, L.; Ingrand, P.; Silvain, C. Analysis of factors influencing molecular testing at diagnostic of colorectal cancer. BMC Cancer 2008, 17, 765. [Google Scholar] [CrossRef] [PubMed]
- Sugai, T.; Yoshida, M.; Eizuka, M.; Uesugii, N.; Habano, W.; Otsuka, K.; Sasaki, A.; Yamamoto, E.; Matsumoto, T. Analysis of the DNA methylation level of cancer-related genes in colorectal cancer and the surrounding normal mucosa. Clin. Epigenet. 2017, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Jeltsch, A.; Broche, J.; Bashtrykov, P. Molecular Processes Connecting DNA Methylation Patterns with DNA Methyltransferases and Histone Modifications in Mammalian Genomes. Genes 2018, 9, 566. [Google Scholar] [CrossRef]
- Peschansky, V.J.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014, 9, 3–12. [Google Scholar] [CrossRef]
- Feng, X.; Guang, S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim. Biophys. Sin. 2024, 57, 119–130. [Google Scholar] [CrossRef]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winterand, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA 2019, 5, 17. [Google Scholar] [CrossRef]
- Gowher, H.; Jeltsch, A. Mammalian DNA methyltransferases: New discoveries and open questions. Biochem. Soc. Trans. 2018, 46, 1191–1202. [Google Scholar] [CrossRef]
- Rando, O.J. Combinatorial complexity in chromatin structure and function: Revisiting the histone code. Curr. Opin. Genet. Dev. 2012, 22, 148–155. [Google Scholar] [CrossRef]
- Wiersma, M.; Bussiere, M.; Halsall, J.A.; Turan, N.; Slany, R.; Turner, B.M. Protein kinase Msk1 physically and functionally interacts with the KMT2A/MLL1 methyltransferase complex and contributes to the regulation of multiple target genes. Epigenet. Chromatin 2016, 9, 52. [Google Scholar] [CrossRef]
- Ernst, J.; Kheradpour, P.; Mikkelsen, T.S.; Shoresh, N.; Ward, L.D.; Epstein, C.B.; Zhang, X.; Wang, L.; Issner, R.; Coyne, M.; et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hawthorn, L.; Lan, L.; Mojica, W. Evidence for field effect cancerization in colorectal cancer. Genomics 2014, 103, 211–221. [Google Scholar] [CrossRef]
- Park, S.-K.; Song, C.S.; Yang, H.-J.; Jung, Y.S.; Choi, K.Y.; Koo, D.H.; Kim, K.E.; Jeong, K.U.; Kim, H.O.; Kim, H.; et al. Field Cancerization in Sporadic Colon Cancer. Gut Liver 2016, 10, 773–780. [Google Scholar] [CrossRef]
- Baba, Y.; Ishimoto, T.; Kurashige, J.; Iwatsuki, M.; Sakamoto, Y.; Yoshida, N.; Watanabe, M.; Baba, H. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 2016, 375, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Belshaw, N.J.; Pal, N.; Tapp, H.S.; Dainty, J.R.; Lewis, M.P.N.; Williams, M.R.; Lund, E.K.; Johnson, I.T. Patterns of DNA methylation in individual colonic crypts reveal aging and cancer-related field defects in the morphologically normal mucosa. Carcinogenesis 2010, 31, 1158–1163. [Google Scholar] [CrossRef]
- Subramaniam, M.M.; Loh, M.; Chan, J.Y.; Liem, N.; Lim, P.L.; Peng, Y.W.; Lim, X.Y.; Yeoh, K.G.; Iacopetta, B.; Soong, R.; et al. The topography of DNA methylation in the non-neoplastic colonic mucosa surrounding colorectal cancers. Mol. Carcinog. 2014, 53, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Ruszkiewicz, A.; Bennett, G.; Moore, J.; Grieu, F.; Watanabe, G. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br. J. Cancer 2006, 94, 593–598. [Google Scholar] [CrossRef]
- Kaz, A.M.; Wong, C.-J.; Dzieciatkowski, S.; Luo, Y.; Schoen, R.E. Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age. Epigenetics 2014, 9, 492–502. [Google Scholar] [CrossRef]
- Xie, M.; Hong, C.; Zhang, B.; Lowdon, R.F.; Xing, X.; Li, D.; Zhou, X.; Lee, H.J.; Maire, C.L.; Ligon, K.L.; et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat. Genet. 2013, 45, 836–841. [Google Scholar] [CrossRef]
- Pavicic, W.; Joensuu, E.I.; Nieminen, T.; Peltomäki, P. LINE-1 hypomethylation in familial and sporadic cancer. J. Mol. Med. 2012, 90, 827–835. [Google Scholar] [CrossRef]
- Kerachian, M.A.; Kerachian, M. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin. Chim. Acta 2019, 488, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K.; Yamauchi, M.; Nishihara, R.; Lochhead, P.; Qian, Z.R.; Kuchiba, A.; Kim, S.A.; Mima, K.; Sukawa, Y.; Jung, S.; et al. Tumor LINE-1 Methylation Level and Microsatellite Instability in Relation to Colorectal Cancer Prognosis. JNCI J. Natl. Cancer Inst. 2014, 106, dju195. [Google Scholar] [CrossRef] [PubMed]
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006, 38, 787–793. [Google Scholar] [CrossRef] [PubMed]
AUC | Std. Error | 95% CI | p Value | ||
---|---|---|---|---|---|
TA (Loci) | |||||
A | 0.885 | 0.043 | 0.80 | 0.97 | <0.0001 |
B | 0.657 | 0.069 | 0.52 | 0.79 | <0.05 |
C | 0.712 | 0.065 | 0.59 | 0.84 | <0.01 |
SA (Loci) | |||||
A | 0.594 | 0.104 | 0.39 | 0.80 | >0.05 |
B | 0.565 | 0.103 | 0.36 | 0.77 | >0.05 |
C | 0.604 | 0.102 | 0.40 | 0.80 | >0.05 |
Adenocarcinoma (Loci) | |||||
A | 0.950 | 0.043 | 0.87 | 1.00 | <0.0001 |
B | 0.851 | 0.065 | 0.72 | 0.98 | =0.0001 |
C | 0.838 | 0.063 | 0.71 | 0.96 | <0.001 |
Number | Mean ± SD | 95% CI | ||
---|---|---|---|---|
Adenocarcinoma | 21 | |||
Pathological | 66.33 ± 10.27 | 61.66 | 71.01 | |
Surrounding | 83.76 ± 3.49 | 82.17 | 85.35 | |
Tubular adenoma | 30 | |||
Pathological | 72.93 ± 7.73 | 70.04 | 75.82 | |
Surrounding | 81.77 ± 4.03 | 80.26 | 83.27 | |
Serrated adenoma | 15 | |||
Pathological | 78.67 ± 4.03 | 76.28 | 81.05 | |
Surrounding | 79.6 ± 2.23 | 78.37 | 80.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kildusiene, I.; Rynkeviciene, R.; Kaceniene, A.; Miknaite, R.; Suziedelis, K.; Smailyte, G. Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa. Medicina 2025, 61, 1243. https://doi.org/10.3390/medicina61071243
Kildusiene I, Rynkeviciene R, Kaceniene A, Miknaite R, Suziedelis K, Smailyte G. Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa. Medicina. 2025; 61(7):1243. https://doi.org/10.3390/medicina61071243
Chicago/Turabian StyleKildusiene, Inga, Ryte Rynkeviciene, Auguste Kaceniene, Rima Miknaite, Kestutis Suziedelis, and Giedre Smailyte. 2025. "Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa" Medicina 61, no. 7: 1243. https://doi.org/10.3390/medicina61071243
APA StyleKildusiene, I., Rynkeviciene, R., Kaceniene, A., Miknaite, R., Suziedelis, K., & Smailyte, G. (2025). Analysis of LINE-1 DNA Methylation in Colorectal Cancer, Precancerous Lesions, and Adjacent Normal Mucosa. Medicina, 61(7), 1243. https://doi.org/10.3390/medicina61071243