Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,490)

Search Parameters:
Keywords = DNA damage/DNA repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
60 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 (registering DOI) - 3 Aug 2025
Viewed by 54
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

20 pages, 2976 KiB  
Review
The Role of DNA in Neural Development and Cognitive Function
by Tharsius Raja William Raja, Janakiraman Pillai Udaiyappan and Michael Pillay
DNA 2025, 5(3), 37; https://doi.org/10.3390/dna5030037 - 1 Aug 2025
Viewed by 82
Abstract
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. [...] Read more.
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. Neural progenitors are formed and differentiated according to genetic instructions, whereas epigenetic changes, such as DNA methylation, dynamically control gene expression in response to external stimuli. These processes shape behavior and cognitive resilience by influencing neural identity, synaptic efficiency, and adaptation. This review also examines how DNA damage and repair mechanisms affect the integrity of neurons, which are essential for memory and learning. It also emphasizes how genetic predispositions and environmental factors interact to determine a person’s susceptibility to neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. Developments in gene-editing technologies, such as CRISPR, and non-viral delivery techniques provide encouraging treatment avenues for neurodegenerative disorders. This review highlights the fundamental role of DNA in coordinating the intricate interactions between molecular and environmental factors that underlie brain function and diseases. Full article
Show Figures

Graphical abstract

13 pages, 1135 KiB  
Brief Report
Assessing Determinants of Response to PARP Inhibition in Germline ATM Mutant Melanoma
by Eleonora Allavena, Michela Croce, Bruna Dalmasso, Cecilia Profumo, Valentina Rigo, Virginia Andreotti, Irene Vanni, Benedetta Pellegrino, Antonino Musolino, Nicoletta Campanini, William Bruno, Luca Mastracci, Gabriele Zoppoli, Enrica Teresa Tanda, Francesco Spagnolo, Paola Ghiorzo and Lorenza Pastorino
Int. J. Mol. Sci. 2025, 26(15), 7420; https://doi.org/10.3390/ijms26157420 (registering DOI) - 1 Aug 2025
Viewed by 111
Abstract
The ataxia–telangiectasia-mutated (ATM) protein plays a crucial role in the DNA damage response, particularly in the homologous recombination (HR) pathway. This study aimed to assess the impact of deleterious ATM variants on homologous recombination deficiency (HRD) and response to PARP inhibitors (PARPi) in [...] Read more.
The ataxia–telangiectasia-mutated (ATM) protein plays a crucial role in the DNA damage response, particularly in the homologous recombination (HR) pathway. This study aimed to assess the impact of deleterious ATM variants on homologous recombination deficiency (HRD) and response to PARP inhibitors (PARPi) in melanoma patients, using a cell line established from melanoma tissue of a patient carrying the c.5979_5983del germline ATM variant. Despite proven loss of heterozygosity, lack of ATM activation, and HRD, our model did not show sensitivity to PARPi. We assessed the potential contribution of the Schlafen family member 11 (SLFN11) helicase, whose expression is inversely correlated with PARPi sensitivity in other cancers, to the observed resistance. The ATM mutant cell line lacked SLFN11 expression and featured hypermethylation-mediated silencing of the SLFN11 promoter. While sensitive to the ATR inhibitor (ATRi), the addition of ATRi to PARPi was unable to overcome the resistance. Our findings suggest that ATM mutational status and HRD alone do not adequately account for variations in sensitivity to PARPi in our model. A comprehensive approach is essential for optimizing the exploitation of DNA repair defects and ultimately improving clinical outcomes for melanoma patients. Full article
(This article belongs to the Special Issue Melanoma: Molecular Mechanism and Therapy, 2nd Edition)
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 135
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

19 pages, 1716 KiB  
Review
Combination Therapy Using Phytochemicals and PARP Inhibitors in Hybrid Nanocarriers: An Optimistic Approach for the Management of Colon Cancer
by Mohammad Javed Qureshi, Gurpreet Kaur Narde, Alka Ahuja, Dhanalekshmi Unnikrishnan Meenakshi and Khalid Al Balushi
Int. J. Mol. Sci. 2025, 26(15), 7350; https://doi.org/10.3390/ijms26157350 - 30 Jul 2025
Viewed by 309
Abstract
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. [...] Read more.
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. Inhibitors of the PARP enzyme aid in chemotherapy, as shown by drug combinations such as Olaparib and Irinotecan in breast cancer treatment. However, the effect of Olaparib in colon cancer has not been studied extensively. Synthetic drugs have a significant limitation in cancer treatment due to drug resistance, leading to colon cancer relapse. Bioavailability of Olaparib and other PARP inhibitors is limited due to their hydrophobicity, which poses a significant challenge. These limitations and challenges can be addressed by encapsulating Olaparib in nanoparticles that could possibly increase the bioavailability of the drug at the site of action. New age nanoparticles, such as hybrid nanoparticles, provide superior quality in terms of design and circulatory time of the drug in the plasma. The side effects of Olaparib as a chemotherapeutic pave the way for exploring phytochemicals that may have similar effects. The combined impact of Olaparib and phytochemicals such as genistein, resveratrol and others in nano-encapsulated form can be explored in the treatment of colon cancer. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 202
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

14 pages, 3767 KiB  
Article
Unveiling Replication Timing-Dependent Mutational Biases: Mechanistic Insights from Gene Knockouts and Genotoxins Exposures
by Hadas Gross-Samuels, Amnon Koren and Itamar Simon
Int. J. Mol. Sci. 2025, 26(15), 7307; https://doi.org/10.3390/ijms26157307 - 29 Jul 2025
Viewed by 226
Abstract
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in [...] Read more.
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in DNA replication/repair genes or exposed to mutagenic compounds. Mutation distributions between early- and late-replicating regions were compared using bootstrapping and statistical modeling. We identified 14 genes that exhibit differential effects in early- or late-replicating regions, encompassing multiple DNA repair pathways, including mismatch repair (MLH1, MSH2, MSH6, PMS1, and PMS2), trans-lesion DNA synthesis (REV1) and double-strand break repair (DCLRE1A and PRKDC), DNA polymerases (POLB, POLE3, and POLE4), and other genes central to genomic instability (PARP1 and TP53). Similar analyses of mutagenic compounds revealed 19 compounds with differential effects on replication timing. These results establish replication timing as a critical modulator of mutagenesis, with distinct DNA repair pathways and exogenous agents exhibiting replication timing-specific effects on genomic instability. Our systematic bioinformatics approach identifies new DNA repair genes and mutagens that exhibit differential activity during the S phase. These findings pave the way for further investigation of factors that contribute to genome instability during cancer transformation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 3286 KiB  
Article
Molecular Insights into the Superiority of Platelet Lysate over FBS for hASC Expansion and Wound Healing
by Sakurako Kunieda, Michika Fukui, Atsuyuki Kuro, Toshihito Mitsui, Huan Li, Zhongxin Sun, Takayuki Ueda, Shigeru Taketani, Koichiro Higasa and Natsuko Kakudo
Cells 2025, 14(15), 1154; https://doi.org/10.3390/cells14151154 - 25 Jul 2025
Viewed by 342
Abstract
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis [...] Read more.
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis for its efficacy remains insufficiently elucidated. In this study, we performed RNA sequencing to compare hASCs cultured with PL or FBS, revealing a significant upregulation of genes related to stress response and cell proliferation under PL conditions. These findings were validated by RT–qPCR and supported by functional assays demonstrating enhanced cellular resilience to oxidative and genotoxic stress, reduced doxorubicin-induced senescence, and improved antiapoptotic properties. In a murine wound model, PL-treated wounds showed accelerated healing, characterized by thicker dermis-like tissue formation and increased angiogenesis. Immunohistochemical analysis further revealed elevated expression of chk1, a DNA damage response kinase encoded by CHEK1, which plays a central role in maintaining genomic integrity during stress-induced repair. Collectively, these results highlight PL not only as a viable substitute for FBS in hASC expansion but also as a bioactive supplement that enhances regenerative efficacy by promoting proliferation, stress resistance, and antiaging functions. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

28 pages, 2732 KiB  
Review
Molecular Mechanisms of Radiation Resistance in Breast Cancer: A Systematic Review of Radiosensitization Strategies
by Emma Mageau, Ronan Derbowka, Noah Dickinson, Natalie Lefort, A. Thomas Kovala, Douglas R. Boreham, T. C. Tai, Christopher Thome and Sujeenthar Tharmalingam
Curr. Issues Mol. Biol. 2025, 47(8), 589; https://doi.org/10.3390/cimb47080589 - 24 Jul 2025
Viewed by 524
Abstract
Breast cancer remains one of the most prevalent malignancies worldwide, and radiation therapy is a central component of its management. However, intrinsic or acquired resistance to radiation significantly compromises therapeutic efficacy. This systematic review aimed to identify and evaluate molecular mechanisms and interventions [...] Read more.
Breast cancer remains one of the most prevalent malignancies worldwide, and radiation therapy is a central component of its management. However, intrinsic or acquired resistance to radiation significantly compromises therapeutic efficacy. This systematic review aimed to identify and evaluate molecular mechanisms and interventions that influence radiation sensitivity in breast cancer models. A comprehensive PubMed search was conducted using the terms “breast cancer” and “radiation resistance” for studies published between 2002 and 2024. Seventy-nine eligible studies were included. The most frequently investigated mechanisms included the dysregulation of the PI3K/AKT/mTOR and MAPK signaling pathways, enhanced DNA damage repair via non-homologous end joining (NHEJ), and the overexpression of cancer stem cell markers such as CD44+/CD24/low and ALDH1. Several studies highlighted the role of non-coding RNAs, particularly the lncRNA DUXAP8 and microRNAs such as miR-21, miR-144, miR-33a, and miR-634, in modulating radiation response. Components of the tumor microenvironment, including cancer-associated fibroblasts and immune regulators, also contributed to radiation resistance. By synthesizing current evidence, this review provides a consolidated resource to guide future mechanistic studies and therapeutic development. This review highlights promising molecular targets and emerging strategies to enhance radiosensitivity and offers a foundation for translational research aimed at improving outcomes in radiation-refractory breast cancer. Full article
Show Figures

Figure 1

37 pages, 4312 KiB  
Review
Neutrophils and NETs in Pathophysiology and Treatment of Inflammatory Bowel Disease
by Marina Ortega-Zapero, Raquel Gomez-Bris, Ines Pascual-Laguna, Angela Saez and Jose M. Gonzalez-Granado
Int. J. Mol. Sci. 2025, 26(15), 7098; https://doi.org/10.3390/ijms26157098 - 23 Jul 2025
Viewed by 482
Abstract
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive [...] Read more.
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive oxygen species (ROS), pro-inflammatory cytokines, and neutrophil extracellular traps (NETs). NETs are web-like structures composed of DNA, histones, and associated proteins including proteolytic enzymes and antimicrobial peptides. NET formation is increased in IBD and has a context-dependent role; under controlled conditions, NETs support antimicrobial defense and tissue repair, whereas excessive or dysregulated NETosis contributes to epithelial injury, barrier disruption, microbial imbalance, and thrombotic risk. This review examines the roles of neutrophils and NETs in IBD. We summarize recent single-cell and spatial-omics studies that reveal extensive neutrophil heterogeneity in the inflamed gut. We then address the dual role of neutrophils in promoting tissue damage—through cytokine release, immune cell recruitment, ROS production, and NET formation—and in supporting microbial clearance and mucosal healing. We also analyze the molecular mechanisms regulating NETosis, as well as the pathways involved in NET degradation and clearance. Focus is given to the ways in which NETs disrupt the epithelial barrier, remodel the extracellular matrix, contribute to thrombosis, and influence the gut microbiota. Finally, we discuss emerging therapeutic strategies aimed at restoring NET homeostasis—such as PAD4 inhibitors, NADPH oxidase and ROS pathway modulators, and DNase I—while emphasizing the need to preserve antimicrobial host defenses. Understanding neutrophil heterogeneity and NET-related functions may facilitate the development of new therapies and biomarkers for IBD, requiring improved detection tools and integrated multi-omics and clinical data. Full article
Show Figures

Figure 1

23 pages, 2056 KiB  
Article
Nanoceria Coated with Maltodextrin or Chitosan: Effects on Key Genes of Oxidative Metabolism, Proliferation, and Autophagy in Human Embryonic Lung Fibroblasts
by Elena V. Proskurnina, Madina M. Sozarukova, Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Natalia N. Veiko, Vladimir P. Saprykin, Khamzat K. Vyshegurov, Vladimir K. Ivanov and Svetlana V. Kostyuk
Molecules 2025, 30(15), 3078; https://doi.org/10.3390/molecules30153078 - 23 Jul 2025
Viewed by 284
Abstract
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we [...] Read more.
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we used human embryonic lung fibroblasts to study the effects of maltodextrin and chitosan coatings on cellular oxidative metabolism of nanoceria by examining cell viability, mitochondrial potential, accumulation of nanoparticles in cells, intracellular ROS, expression of NOX4 (NADPH oxidase 4), NRF2 (nuclear factor erythroid 2-related factor 2), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and STAT3 (signal transducer and activator of transcription 3) proteins as well as the expression of biomarkers of DNA damage/repair, cell proliferation, and autophagy. Both types of polysaccharide-coated nanoceria were non-toxic up to millimolar concentrations. For maltodextrin-coated nano-CeO2, in contrast to bare nanoparticles, there was no oxidative DNA damage/repair with moderate activation of NOX4 expression. Like bare nanoceria, maltodextrin-coated nanoparticles demonstrate the proliferative impact and do not activate autophagy. However, maltodextrin-coated nanoparticles have an activating impact on mitochondrial potential and the NF-κB pathway. Chitosan-coated nanoceria causes short-term intracellular oxidative stress, activation of the expression of NOX4, STAT3, and NRF2, oxidative DNA damage, and double-strand breaks accompanied by activation of DNA repair systems. In contrast to maltodextrin-coated nanoparticles, chitosan-coated nanoceria inhibits the NF-κB pathway and activates autophagy. These findings would be useful in the development of advanced nanoceria-based pharmaceuticals and contribute to the understanding of the biochemical properties of nanoceria as a modulator of ROS-dependent signaling pathways. Full article
Show Figures

Figure 1

29 pages, 4988 KiB  
Article
Amphiphilic Oligonucleotide Derivatives as a Tool to Study DNA Repair Proteins
by Svetlana N. Khodyreva, Alexandra A. Yamskikh, Ekaterina S. Ilina, Mikhail M. Kutuzov, Ekaterina A. Belousova, Maxim S. Kupryushkin, Timofey D. Zharkov, Olga A. Koval, Sofia P. Zvereva and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(15), 7078; https://doi.org/10.3390/ijms26157078 - 23 Jul 2025
Viewed by 150
Abstract
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the [...] Read more.
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the interaction between amphiphilic DNA duplexes, in which one of the chains contains a lipophilic substituent, and several DNA repair proteins, particularly DNA-damage-dependent PARPs, using various biochemical approaches. DNA with a lipophilic substituent (LS-DNA) demonstrates more efficient binding with DNA damage activated poly(AD-ribose) polymerases 1-3 (PARP1, PARP2, PARP3) and DNA polymerase β. Chemically reactive LS-DNA derivatives containing a photoactivatable nucleotide (photo-LS-DNAs) or a 5′ deoxyribose phosphate (dRP) group in the vicinity of double-strand breaks (DSBs) are used for the affinity labelling of PARPs and other proteins in several whole-cell extracts of human cells. In particular, photo-LS-DNAs are used to track the level of Ku antigen in the extracts of neuron-like differentiated SH-SY5Y, undifferentiated SH-SY5Y, and olfactory epithelial cells. In vitro, PARP1–PARP3 are shown to be able to slowly excise the 5′ dRP group at DSBs. LS-DNAs can activate PARP1 and PARP2 for autoPARylation, albeit less effectively than regular DNA duplexes. Full article
Show Figures

Figure 1

10 pages, 615 KiB  
Article
The Impact of DDR Gene Mutations on the Efficacy of Etoposide Plus Cisplatin in Grade 3 Metastatic Gastroenteropancreatic (GEP)—Neuroendocrine Carcinoma (NEC)
by Ji Eun Shin, Minsuk Kwon, Sung Hee Lim, Jung Yong Hong and Seung Tae Kim
Cancers 2025, 17(15), 2436; https://doi.org/10.3390/cancers17152436 - 23 Jul 2025
Viewed by 206
Abstract
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. [...] Read more.
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. Materials and Methods: This study analyzed patients with grade 3 recurrent or metastatic NEC treated with first-line etoposide plus cisplatin at Samsung Medical Center between January 2019 and September 2023. All patients underwent next-generation sequencing to determine DDR mutation status, defined by pathogenic alterations in major DNA repair pathways. Clinical outcomes were assessed per RECIST v1.1. Survival analyses were conducted using Kaplan–Meier methods and Cox regression models, with significance set at p ≤ 0.05. Results: A total of 40 patients with NEC were included in this study. There were 16 patients with DDR wild-type (WT) and 24 patients with DDR mutant type (MT). The most common primary tumor sites were the pancreas (25.0%), stomach (20.0%), and gallbladder/duct (12.5%). Among 40 patients, those with DDR mutations (n = 24) showed significantly higher objective response (58.3% vs. 12.5%) and disease control rates (91.7% vs. 50.0%) compared to patients with DDR WT (n = 16). The median progression-free survival (PFS) showed the favorable trend in the DDR mutant group (8.0 vs. 4.3 months; p = 0.15), with similar trends observed across homologous recombination repair (HRR), Fanconi anemia (FA), and mismatch repair (MMR) subgroups. Conclusions: This study revealed that patients with DDR mutations had significantly higher response to first-line etoposide–cisplatin, suggesting DDR mutation status as a potential predictive marker to guide treatment and improve outcomes in recurrent or metastatic NEC. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

32 pages, 1319 KiB  
Review
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose
by Guillermina Ferro-Flores, Erika Azorín-Vega, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Pedro Cruz-Nova and Laura Meléndez-Alafort
Int. J. Mol. Sci. 2025, 26(14), 6968; https://doi.org/10.3390/ijms26146968 - 20 Jul 2025
Viewed by 607
Abstract
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal [...] Read more.
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME). TRT also modulates immune responses, promoting immune-mediated cell death and enhancing the efficacy of combination therapies, such as the use of immune checkpoint inhibitors. The molecular mechanisms underlying TRT involve DNA damage, oxidative stress, and apoptosis, with repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) playing critical roles. However, challenges such as tumor heterogeneity, hypoxia, and radioresistance limit the effectiveness of this approach. Advances in theranostics, which integrate diagnostic imaging with TRT, have enabled personalized treatment approaches, while artificial intelligence and improved dosimetry offer potential for treatment optimization. Despite the significant survival benefits of TRT in prostate cancer and neuroendocrine tumors, 30–40% of patients remain unresponsive, which highlights the need for further research into molecular pathways, long-term effects, and combined therapies. This review outlines the dual mechanisms of TRT, direct toxicity and NTEs, and discusses strategies to enhance its efficacy and expand its use in oncology. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

23 pages, 4866 KiB  
Article
Role of Individual Amino Acid Residues Directly Involved in Damage Recognition in Active Demethylation by ABH2 Dioxygenase
by Anastasiia T. Davletgildeeva, Timofey E. Tyugashev, Mingxing Zhao, Alexander A. Ishchenko, Murat Saparbaev and Nikita A. Kuznetsov
Int. J. Mol. Sci. 2025, 26(14), 6912; https://doi.org/10.3390/ijms26146912 - 18 Jul 2025
Viewed by 200
Abstract
The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly [...] Read more.
The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly oxidizing DNA damages such as N1-methyladenine, N3-methylcytosine, 1,N6-ethenoadenine, 3,N4-ethenocytosine, and a number of others. In our investigation, we sought to uncover the subtleties of the mechanisms governing substrate specificity in ABH2 by focusing on several critical amino acid residues situated in its active site. To gain insight into the function of this enzyme, we performed a functional mapping of its active site region, concentrating on pivotal residues, participating in forming a damaged binding pocket of the enzyme (Val99 and Ser125), as well as the residues directly involved in interactions with damaged bases, namely Arg110, Phe124, Arg172, and Glu175. To support our experimental data, we conducted a series of molecular dynamics simulations, exploring the interactions between the ABH2 mutant forms, bearing corresponding substitutions and DNA substrates, and harboring various types of methylated bases, specifically N1-methyladenine or N3-methylcytosine. The comparative studies revealed compelling data indicating that alterations in most of the studied amino acid residues significantly influence both the binding affinity of the enzyme for DNA and its catalytic efficiency. Intriguingly, the findings suggest that the mutations impact the catalytic activity of ABH2 to a greater extent than its ability to associate with DNA strands. Collectively, these results show how changes to the active site affect molecular dynamics and reaction kinetics, improving our understanding of the substrate recognition process in this pivotal enzyme. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Figure 1

Back to TopTop