Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = DNA acetylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 - 1 Aug 2025
Viewed by 109
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

24 pages, 1080 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 387
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Figure 1

16 pages, 4900 KiB  
Review
Non-Canonical Functions of Adenosine Receptors: Emerging Roles in Metabolism, Immunometabolism, and Epigenetic Regulation
by Giovanni Pallio and Federica Mannino
Int. J. Mol. Sci. 2025, 26(15), 7241; https://doi.org/10.3390/ijms26157241 - 26 Jul 2025
Viewed by 210
Abstract
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and [...] Read more.
Adenosine receptors (ARs) are G protein-coupled receptors that are widely expressed across tissues, traditionally associated with cardiovascular, neurological, and immune regulation. Recent studies, however, have highlighted their non-canonical functions, revealing critical roles in metabolism, immunometabolism, and epigenetic regulation. AR subtypes, particularly A2A and A2B, modulate glucose and lipid metabolism, mitochondrial activity, and energy homeostasis. In immune cells, AR signaling influences metabolic reprogramming and polarization through key regulators such as mTOR, AMPK, and HIF-1α, contributing to immune tolerance or activation depending on the context. Additionally, ARs have been implicated in epigenetic modulation, affecting DNA methylation, histone acetylation, and non-coding RNA expression via metabolite-sensitive mechanisms. Therapeutically, AR-targeting agents are being explored for cancer and chronic inflammatory diseases. While clinical trials with A2A antagonists in oncology show encouraging results, challenges remain due to receptor redundancy, systemic effects, and the need for tissue-specific selectivity. Future strategies involve biased agonism, allosteric modulators, and combination therapies guided by biomarker-based patient stratification. Overall, ARs are emerging as integrative hubs connecting extracellular signals with cellular metabolic and epigenetic machinery. Understanding these non-canonical roles may unlock novel therapeutic opportunities across diverse disease landscapes. Full article
Show Figures

Figure 1

17 pages, 3159 KiB  
Review
The Crucial Role of Epigenetic Modifications in Wharton’s Jelly Stem Cells
by Mao Yang, Juan Wang, Wensheng Deng and Qiang Wu
Int. J. Mol. Sci. 2025, 26(15), 7169; https://doi.org/10.3390/ijms26157169 - 24 Jul 2025
Viewed by 547
Abstract
Wharton’s jelly mesenchymal stem cells (WJ-SCs) are a promising source for regenerative medicine due to their multipotency, low immunogenicity, and ethical acceptability. Epigenetic regulation plays a crucial role in modulating their proliferation, differentiation, and therapeutic potential. Key mechanisms, including DNA methylation, histone modifications, [...] Read more.
Wharton’s jelly mesenchymal stem cells (WJ-SCs) are a promising source for regenerative medicine due to their multipotency, low immunogenicity, and ethical acceptability. Epigenetic regulation plays a crucial role in modulating their proliferation, differentiation, and therapeutic potential. Key mechanisms, including DNA methylation, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs), influence WJ-SC behavior by dynamically altering gene expression without changing the DNA sequence. DNA methylation often silences genes involved in differentiation, while histone acetylation/methylation can activate or repress lineage-specific pathways. Non-coding RNAs further fine-tune these processes by post-transcriptional regulation. Understanding these mechanisms could optimize WJ-SC-based therapies for tissue repair and immune modulation. This review summarizes current insights into epigenetic regulation in WJ-SCs and its implications for regenerative applications. Full article
Show Figures

Figure 1

22 pages, 2985 KiB  
Review
Class IIa HDACs Are Important Signal Transducers with Unclear Enzymatic Activities
by Claudio Brancolini
Biomolecules 2025, 15(8), 1061; https://doi.org/10.3390/biom15081061 - 22 Jul 2025
Viewed by 204
Abstract
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the [...] Read more.
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the best characterized. A notable feature of class IIa HDACs is the substitution of tyrosine for histidine in the catalytic site, which has occurred over the course of evolution and has a profound effect on the efficiency of catalysis against acetyl-lysine. Another distinctive feature of this family of “pseudoenzymes” is the regulated nucleus–cytoplasm shuttling associated with several non-histone proteins that have been identified as potential substrates, including proteins localized in the cytosol. Within the complexity of class IIa HDACs, several aspects deserve further investigation. In the following, I will discuss some of the recent advances in our knowledge of class IIa HDACs. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin and Chromosome Molecular Research)
Show Figures

Figure 1

17 pages, 3159 KiB  
Article
Csn5 Depletion Reverses Mitochondrial Defects in GCN5-Null Saccharomyces cerevisiae
by Angela Cirigliano, Emily Schifano, Alessandra Ricelli, Michele M. Bianchi, Elah Pick, Teresa Rinaldi and Arianna Montanari
Int. J. Mol. Sci. 2025, 26(14), 6916; https://doi.org/10.3390/ijms26146916 - 18 Jul 2025
Viewed by 216
Abstract
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal [...] Read more.
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal lysine residues on histones H2B and H3 to modulate gene expression. The loss of GCN5 leads to mitochondrial abnormalities, including defects in mitochondrial morphology, a reduced mitochondrial DNA copy number, and defective mitochondrial inheritance due to the depolarization of actin filaments. These defects collectively trigger the activation of the mitophagy pathway. Interestingly, deleting CSN5, which encodes to Csn5/Rri1 (Csn5), the catalytic subunit of the COP9 signalosome complex, rescues the mitochondrial phenotypes observed in the gcn5Δ strain. Furthermore, these defects are suppressed by exogenous ergosterol supplementation, suggesting a link between the rescue effect mediated by CSN5 deletion and the regulatory role of Csn5 in the ergosterol biosynthetic pathway. Full article
(This article belongs to the Special Issue Research on Mitochondrial Genetics and Epigenetics)
Show Figures

Figure 1

31 pages, 3964 KiB  
Article
Integrase-Deficient Lentiviral Vector as a Platform for Efficient CRISPR/Cas9-Mediated Gene Editing for Mucopolysaccharidosis IVA
by Fnu Nidhi and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(14), 6616; https://doi.org/10.3390/ijms26146616 - 10 Jul 2025
Viewed by 490
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme [...] Read more.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available, they have significant limitations regarding efficacy in skeletal tissues and long-term safety, highlighting the need for more effective therapies. We evaluated a novel gene therapy approach using a dual Integrase-deficient lentiviral vector (IDLV) to deliver an expression cassette that includes human GALNS cDNA and Cas9 sgRNA, targeting the upstream region of the mouse Galns initial codon. This approach leverages the endogenous promoter to drive transgene expression. We assessed in vitro transduction, editing, and functional correction in NIH3T3 and MPS IVA mouse fibroblasts. In vivo efficacy was successfully evaluated via the facial vein injection in MPS IVA newborn mice. In vitro, this IDLV platform demonstrated supraphysiological GALNS activity in cell lysate, resulting in the normalization of KS levels. In vivo direct IDLV platform in newborn MPS IVA mice led to sustained plasma GALNS activity, reduced plasma KS, and favorable biodistribution. Partial correction of heart and bone pathology was observed, with no vector toxicity and minimal antibody responses. This dual IDLV-CRISPR/Cas9 approach effectively mediated targeted GALNS knock-in, yielding sustained enzyme activity, reduced KS storage, and partial pathological amelioration in MPS IVA mice. In conclusion, IDLVs represent an efficient, safe platform for delivering the CRISPR/Cas9 gene editing system for MPS IVA. Full article
Show Figures

Graphical abstract

17 pages, 532 KiB  
Review
The Fundamental Role of Nutrients for Metabolic Balance and Epigenome Integrity Maintenance
by Ana Paula de Souza, Vitor Marinho and Marcelo Rocha Marques
Epigenomes 2025, 9(3), 23; https://doi.org/10.3390/epigenomes9030023 - 9 Jul 2025
Viewed by 444
Abstract
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining [...] Read more.
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining cellular function, and it impacts every cellular process. Many metabolic cofactors are critical for the activity of chromatin-modifying enzymes, influencing methylation and the global acetylation status of the epigenome. For instance, dietary nutrients, particularly those involved in one-carbon metabolism (e.g., folate, vitamins B12 and B6, riboflavin, methionine, choline, and betaine), take part in the generation of S-adenosylmethionine (SAM), which represents the main methyl donor for DNA and histone methylation; α-ketoglutarate and ascorbic acid (vitamin C) act, respectively, as a co-substrate and cofactor for Ten-eleven Translocation (TET), which is responsible for DNA demethylation; and metabolites such as Acetyl-CoA directly impact histone acetylation, linking metabolism of the TCA cycle to epigenetic regulation. Further, bioactive compounds, such as polyphenols, modulate epigenetic patterns by affecting methylation processes or targeting epigenetic enzymes. Since diet and nutrition play a critical role in shaping epigenome functions and supporting human health, this review offers a comprehensive update on recent advancements in metabolism, epigenetics, and nutrition, providing insights into how nutrients contribute to metabolic balance, epigenome integrity maintenance and, consequently, disease prevention. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Graphical abstract

17 pages, 7372 KiB  
Article
A Novel HDAC6 Inhibitor Enhances the Efficacy of Paclitaxel Against Ovarian Cancer Cells
by An-Jui Chi, Jui-Ling Hsu, Yun-Xin Xiao, Ji-Wang Chern, Jih-Hwa Guh, Chao-Wu Yu and Lih-Ching Hsu
Molecules 2025, 30(13), 2793; https://doi.org/10.3390/molecules30132793 - 28 Jun 2025
Viewed by 435
Abstract
Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound [...] Read more.
Ovarian cancer cells overexpress HDAC6, and selective HDAC6 inhibitors have been considered potential new drugs for ovarian cancer either alone or in combination with other anticancer agents. We screened 46 potential novel HDAC6 inhibitors in ES-2 ovarian cancer cells and showed that compound 25253 demonstrated the most potent anti-proliferative activity and effective synergy with paclitaxel, which was also validated in TOV21G ovarian cancer cells. The combination of 25253 and paclitaxel significantly induced subG1 and apoptotic cells, revealed by PI staining assay and Annexin V-FITC/PI double staining assay, respectively. Western blot analysis showed downregulation of Bcl-2 and Bcl-XL, and upregulation of Bax and Bak, indicating that apoptosis was mediated through the intrinsic pathway. The combination increased γ-H2AX and p-p53 protein levels, suggesting the induction of DNA damage. Furthermore, HDAC6 was downregulated and acetylated α-tubulin was profoundly increased. Compound 25253 enhanced the inhibitory effect of paclitaxel on cell migration and invasion, possibly due to the extensive accumulation of acetylated α-tubulin, which affected microtubule dynamics. Taken together, the combination of 25253 and paclitaxel synergistically inhibited the growth, migration, and invasion of ovarian cancer cells and induced apoptosis, providing supporting evidence that the combination of HDAC6 inhibitors and paclitaxel may be a promising treatment strategy for ovarian cancer. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

18 pages, 2943 KiB  
Article
IFI16 Mediates Deacetylation of KSHV Chromatin via Interaction with NuRD and Sin3A Co-Repressor Complexes
by Anandita Ghosh, Bala Chandran and Arunava Roy
Viruses 2025, 17(7), 921; https://doi.org/10.3390/v17070921 - 28 Jun 2025
Viewed by 1277
Abstract
IFI16 is a well-characterized nuclear innate immune DNA sensor that detects foreign dsDNA, including herpesviral genomes, to activate the inflammasome and interferon pathways. Beyond immune signaling, IFI16 also functions as an antiviral restriction factor, promoting the silencing of invading viral genes through transcriptional [...] Read more.
IFI16 is a well-characterized nuclear innate immune DNA sensor that detects foreign dsDNA, including herpesviral genomes, to activate the inflammasome and interferon pathways. Beyond immune signaling, IFI16 also functions as an antiviral restriction factor, promoting the silencing of invading viral genes through transcriptional and epigenetic mechanisms. We recently demonstrated another role of IFI16, in which it interacts with and recruits the class I histone deacetylases, HDAC1 and 2, to the KSHV latency protein LANA, modulating its acetylation and function. In this study, we asked whether these IFI16-HDAC1/2 interactions contribute to broader epigenetic regulation of the KSHV chromatin. Our findings reveal that IFI16 associates with and facilitates the recruitment of the NuRD and Sin3A co-repressor complexes—both multiprotein, HDAC1/2-containing chromatin regulators—on KSHV episomes. Depletion of IFI16 led to reductions in NuRD and Sin3A occupancy on viral chromatin, accompanied by increased histone acetylation at lytic gene promoters. These results suggest that IFI16 plays a critical role in recruiting or stabilizing these HDAC-containing co-repressor complexes on the KSHV genome, thereby enforcing transcriptional silencing of lytic genes and maintaining latency in KSHV. Our study expands the known functions of IFI16 and identifies a novel epigenetic mechanism by which it modulates herpesviral chromatin states. Full article
(This article belongs to the Special Issue Epigenetic Modifications in Viral Infections, Volume II)
Show Figures

Figure 1

55 pages, 2896 KiB  
Review
Epigenetic Modifications in the Retinal Pigment Epithelium of the Eye During RPE-Related Regeneration or Retinal Diseases in Vertebrates
by Eleonora Grigoryan and Yuliya Markitantova
Biomedicines 2025, 13(7), 1552; https://doi.org/10.3390/biomedicines13071552 - 25 Jun 2025
Viewed by 424
Abstract
The retinal pigment epithelium (RPE) is a cellular source of retinal regeneration in lower vertebrates and a cellular source of retinal diseases in mammals, including humans. Both processes are based on a genetic program for the conversion of RPE cells into cells of [...] Read more.
The retinal pigment epithelium (RPE) is a cellular source of retinal regeneration in lower vertebrates and a cellular source of retinal diseases in mammals, including humans. Both processes are based on a genetic program for the conversion of RPE cells into cells of other phenotypes: neural in the first case and mesenchymal in the second. RPE reprogramming in the neural direction is realized in tailed amphibians and bird embryos in vivo, but in higher vertebrates and humans, this process is realized in vitro. Epigenetic regulation determines the phenotypic plasticity of RPE cells, i.e., their choice of the cell differentiation pathway in animals of different classes. It has been suggested that the implementation of the genetic program for RPE reprogramming into different types of retinal neurons in adult amphibians and birds at the early stages of embryogenesis is conditioned by the specificity of the epigenetic landscape. The retinal RPE-dependent pathologies in mammals are characterized by different epigenetic signatures, and have a shared characteristic: specifically, a deficient epigenetic landscape (dysregulations in DNA methylation and histone modifications). Knowledge of the patterns and features of the epigenetic regulation of RPE cell behavior will allow us to obtain RPE cells that are in demand in medicine, from direct reprogramming with the possibility of epigenetically maintaining the cellular identities to the creation of neuro-regenerative technologies for the replacement therapy of RPE-dependent retinal pathologies in humans. Full article
Show Figures

Figure 1

29 pages, 4906 KiB  
Article
Ex Vivo Molecular Studies and In Silico Small Molecule Inhibition of Plasmodium falciparum Bromodomain Protein 1
by David O. Oladejo, Titilope M. Dokunmu, Gbolahan O. Oduselu, Daniel O. Oladejo, Olubanke O. Ogunlana and Emeka E. J. Iweala
Drugs Drug Candidates 2025, 4(3), 29; https://doi.org/10.3390/ddc4030029 - 21 Jun 2025
Viewed by 465
Abstract
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression [...] Read more.
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression through chromatin remodeling, have gained attention as potential targets. Plasmodium falciparum bromodomain protein 1 (PfBDP1), a 55 kDa nuclear protein, plays a key role in recognizing acetylated lysine residues and facilitating transcription during parasite development. Methods: This study investigated ex vivo PfBDP1 gene mutations and identified potential small molecule inhibitors using computational approaches. Malaria-positive blood samples were collected. Genomic DNA was extracted, assessed for quality, and amplified using PfBDP1-specific primers. DNA sequencing and alignment were performed to determine single-nucleotide polymorphism (SNP). Structural modeling used the PfBDP1 crystal structure (PDB ID: 7M97), and active site identification was conducted using CASTp 3.0. Virtual screening and pharmacophore modeling were performed using Pharmit and AutoDock Vina, followed by ADME/toxicity evaluations with SwissADME, OSIRIS, and Discovery Studio. GROMACS was used for 100 ns molecular dynamics simulations. Results: The malaria prevalence rate stood at 12.24%, and the sample size was 165. Sequencing results revealed conserved PfBDP1 gene sequences compared to the 3D7 reference strain. Virtual screening identified nine lead compounds with binding affinities ranging from −9.8 to −10.7 kcal/mol. Of these, CHEMBL2216838 had a binding affinity of −9.9 kcal/mol, with post-screening predictions of favorable drug-likeness (8.60), a high drug score (0.78), superior pharmacokinetics, and a low toxicity profile compared to chloroquine. Molecular dynamics simulations confirmed its stable interaction within the PfBDP1 active site. Conclusions: Overall, this study makes a significant contribution to the ongoing search for novel antimalarial drug targets by providing both molecular and computational evidence for PfBDP1 as a promising therapeutic target. The prediction of CHEMBL2216838 as a lead compound with favorable binding affinity, drug-likeness, and safety profile, surpassing those of existing drugs like chloroquine, sets the stage for preclinical validation and further structure-based drug design efforts. These findings are supported by prior experimental evidence showing significant parasite inhibition and gene suppression capability of predicted hits. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

25 pages, 1508 KiB  
Review
Modulating Cognition-Linked Histone Acetyltransferases (HATs) as a Therapeutic Strategy for Neurodegenerative Diseases: Recent Advances and Future Trends
by Huong Anh Mai, Christina M. Thomas, Gu Gu Nge and Felice Elefant
Cells 2025, 14(12), 873; https://doi.org/10.3390/cells14120873 - 10 Jun 2025
Viewed by 850
Abstract
Recent investigations into the neuroepigenome of the brain are providing unparalleled understanding into the impact of post-translational modifications (PTMs) of histones in regulating dynamic gene expression patterns required for adult brain cognitive function and plasticity. Histone acetylation is one of the most well-characterized [...] Read more.
Recent investigations into the neuroepigenome of the brain are providing unparalleled understanding into the impact of post-translational modifications (PTMs) of histones in regulating dynamic gene expression patterns required for adult brain cognitive function and plasticity. Histone acetylation is one of the most well-characterized PTMs shown to be required for neuronal function and cognition. Histone acetylation initiates neural circuitry plasticity via chromatin control, enabling neurons to respond to external environmental stimuli and adapt their transcriptional responses accordingly. While interplay between histone acetylation and deacetylation is critical for these functions, dysregulation during the aging process can lead to significant alterations in the neuroepigenetic landscape. These alterations contribute to impaired cognitive functions, neuronal cell death, and brain atrophy, all hallmarks of age-related neurodegenerative disease. Significantly, while age-related generation of DNA mutations remains irreversible, most neuroepigenetic PTMs are reversible. Thus, manipulation of the neural epigenome is proving to be an effective therapeutic strategy for neuroprotection in multiple types of age-related neurodegenerative disorders (NDs) that include Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). Here, we highlight recent progress in research focusing on specific HAT-based neuroepigenetic mechanisms that underlie cognition and pathogenesis that is hallmarked in age-related NDs. We further discuss how these findings have potential to be translated into HAT-mediated cognitive-enhancing therapeutics to treat these debilitating disorders. Full article
(This article belongs to the Special Issue Biological Mechanisms in the Treatment of Neuropsychiatric Diseases)
Show Figures

Figure 1

20 pages, 1496 KiB  
Review
Lysine Acetyltransferase 8: A Target for Natural Compounds in Cancer Therapy
by Lei Wang, Liting Zhao, Xintian Lan, Ming Zhu, Yiying Tan, Haoming Luo and Donglu Wu
Int. J. Mol. Sci. 2025, 26(11), 5257; https://doi.org/10.3390/ijms26115257 - 29 May 2025
Viewed by 646
Abstract
Lysine acetyltransferase 8 (KAT8) is a member of the MYST family of histone acetyltransferases. It catalyzes the acetylation of histone H4 at lysine 16 (H4K16ac) and non-histone proteins. Abnormal upregulation or downregulation of KAT8 and its associated H4K16ac have been observed in malignant [...] Read more.
Lysine acetyltransferase 8 (KAT8) is a member of the MYST family of histone acetyltransferases. It catalyzes the acetylation of histone H4 at lysine 16 (H4K16ac) and non-histone proteins. Abnormal upregulation or downregulation of KAT8 and its associated H4K16ac have been observed in malignant tumors, suggesting its close association with tumorigenesis and progression. Characterized by structural diversity and multi-target mechanisms, natural agents have been increasingly shown to possess significant antitumor activity. This review focuses on KAT8, summarizing its molecular mechanisms in regulating tumor development by catalyzing substrate protein acetylation, which impacts tumor cell proliferation, cell cycle regulation, apoptosis, DNA damage repair, and autophagy. It also systematically discusses the pharmacological activities and molecular mechanisms of small-molecule agents that target KAT8 to inhibit tumor proliferation, including natural compounds, synthetic drugs, and non-coding RNAs. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation)
Show Figures

Figure 1

21 pages, 1578 KiB  
Review
Programming Effects of Maternal Nutrition on Intestinal Development and Microorganisms of Offspring: A Review on Pigs
by Liang Hu, Fali Wu and Lianqiang Che
Microorganisms 2025, 13(5), 1151; https://doi.org/10.3390/microorganisms13051151 - 17 May 2025
Viewed by 600
Abstract
Intestinal development is a critical determinant of growth and overall health in pigs. Accumulating evidence underscores the significant influence of intestinal microbiota on essential physiological functions and systemic health. Dietary nutrients play a pivotal role in regulating both intestinal development and the composition [...] Read more.
Intestinal development is a critical determinant of growth and overall health in pigs. Accumulating evidence underscores the significant influence of intestinal microbiota on essential physiological functions and systemic health. Dietary nutrients play a pivotal role in regulating both intestinal development and the composition of intestinal microbiota. Optimal early-life nutrient provision ensures proper intestinal growth and functional maturation, with maternal nutrition emerging as a key factor shaping intestinal development during fetal and neonatal stages. This review synthesizes recent studies on maternal nutrient intake—encompassing protein, energy, carbohydrates, minerals, vitamins, probiotics, and prebiotics—and their effects on intestinal growth and health of offspring. Emerging multi-omics evidence has revealed that gestational and lactational nutrition dynamically coordinates offspring intestinal development through vertical microbial transmission and epigenetic mechanisms, such as DNA methylation and histone acetylation. These processes further regulate intestinal barrier maturation, mucosal immunity, and enteroendocrine signaling. Collectively, this review emphasizes that enhancing maternal nutrition can promote postnatal growth by enhancing intestinal development and early microbial colonization in piglets. Further research is crucial to determining the optimal nutritional strategies during the perinatal period. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

Back to TopTop