Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = DDR deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2036 KiB  
Review
Radiogenomics of Stereotactic Radiotherapy: Genetic Mechanisms Underlying Radiosensitivity, Resistance, and Immune Response
by Damir Vučinić, Ana-Marija Bukovica Petrc, Ivona Antončić, Maja Kolak Radojčić, Matea Lekić and Felipe Couñago
Genes 2025, 16(7), 732; https://doi.org/10.3390/genes16070732 - 24 Jun 2025
Viewed by 911
Abstract
Stereotactic body radiotherapy (SBRT) delivers ablative radiation doses with sub-millimeter precision. Radiogenomic studies, meanwhile, provide insights into how tumor-intrinsic genetic factors influence responses to such high-dose treatments. This review explores the radiobiological mechanisms underpinning SBRT efficacy, emphasizing the roles of DNA damage response [...] Read more.
Stereotactic body radiotherapy (SBRT) delivers ablative radiation doses with sub-millimeter precision. Radiogenomic studies, meanwhile, provide insights into how tumor-intrinsic genetic factors influence responses to such high-dose treatments. This review explores the radiobiological mechanisms underpinning SBRT efficacy, emphasizing the roles of DNA damage response (DDR) pathways, tumor suppressor gene alterations, and inflammatory signaling in shaping tumor radiosensitivity or resistance. SBRT induces complex DNA double-strand breaks (DSBs) that robustly activate DDR signaling cascades, particularly via the ATM and ATR kinases. Tumors with proficient DNA repair capabilities often resist SBRT, whereas deficiencies in key repair genes can render them more susceptible to radiation-induced cytotoxicity. Mutations in tumor suppressor genes may impair p53-dependent apoptosis and disrupt cell cycle checkpoints, allowing malignant cells to evade radiation-induced cell death. Furthermore, SBRT provokes the release of pro-inflammatory cytokines and activates innate immune pathways, potentially leading to immunogenic cell death and reshaping the tumor microenvironment. Radiogenomic profiling has identified genomic alterations and molecular signatures associated with differential responses to SBRT and immune activation. These insights open avenues for precision radiotherapy approaches, including the use of genomic biomarkers for patient selection, the integration of SBRT with DDR inhibitors or immunotherapies, and the customization of treatment plans based on individual tumor genotypes and immune landscapes. Ultimately, these strategies aim to enhance SBRT efficacy and improve clinical outcomes through biologically tailored treatment. This review provides a comprehensive summary of current knowledge on the genetic determinants of response to stereotactic radiotherapy and discusses their implications for personalized cancer treatment. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 1419 KiB  
Review
Cancer Vulnerabilities Through Targeting the ATR/Chk1 and ATM/Chk2 Axes in the Context of DNA Damage
by Anell Fernandez, Maider Artola, Sergio Leon, Nerea Otegui, Aroa Jimeno, Diego Serrano and Alfonso Calvo
Cells 2025, 14(10), 748; https://doi.org/10.3390/cells14100748 - 20 May 2025
Cited by 3 | Viewed by 1829
Abstract
Eliciting DNA damage in tumor cells continues to be one of the most successful strategies against cancer. This is the case for classical chemotherapy drugs and radiotherapy. In the modern era of personalized medicine, this strategy tries to identify specific vulnerabilities found in [...] Read more.
Eliciting DNA damage in tumor cells continues to be one of the most successful strategies against cancer. This is the case for classical chemotherapy drugs and radiotherapy. In the modern era of personalized medicine, this strategy tries to identify specific vulnerabilities found in each patient’s tumor, to inflict DNA damage in certain cell contexts that end up in massive cancer cell death. Cells rely on multiple DNA repair pathways to fix DNA damage, but cancer cells frequently exhibit defects in these pathways, many times being tolerant to the damage. Key vulnerabilities, such as BRCA1/BRCA2 mutations, have been exploited with PARP inhibitors, leveraging synthetic lethality to selectively kill tumor cells and improving patients’ survival. In the DNA damage response (DDR) network, kinases ATM, ATR, Chk1, and Chk2 coordinate DNA repair, cell cycle arrest, and apoptosis. Inhibiting these proteins enhances tumor sensitivity to DNA-damaging therapies, especially in DDR-deficient cancers. Several small-molecule inhibitors targeting ATM/Chk2 or ATR/Chk1 are currently being tested in preclinical and/or clinical settings, showing promise in cancer models and patients. Additionally, pharmacological blockade of ATM/Chk2 and ATR/Chk1 axes enhances the effects of immunotherapy by increasing tumor immunogenicity, promoting T-cell infiltration and activating immune responses. Combining ATM/Chk2- or ATR/Chk1-targeting drugs with conventional chemotherapy, radiotherapy or immune checkpoint inhibitors offers a compelling strategy to improve treatment efficacy, overcome resistance, and enhance patients’ survival in modern oncology. Full article
(This article belongs to the Special Issue Unlocking the Secrets Behind Drug Resistance at the Cellular Level)
Show Figures

Graphical abstract

18 pages, 5795 KiB  
Article
C1QBP Modulates DNA Damage Response and Radiosensitivity in Hepatocellular Carcinoma by Regulating NF-κB Activity
by Haitao Zhou, Yanjin Wu, Jiahui Meng, Xiaotong Zhao, Yujia Hou, Qin Wang and Yang Liu
Int. J. Mol. Sci. 2025, 26(10), 4513; https://doi.org/10.3390/ijms26104513 - 9 May 2025
Viewed by 519
Abstract
C1QBP (Complement Component 1 Q Subcomponent-Binding Protein) plays a critical role in maintaining cellular metabolism, but its function in radiation-induced damage remains unclear. In this study, we generated C1QBP-deficient Huh-7 hepatocellular carcinoma (HCC) cells using CRISPR/Cas9 technology and observed that C1QBP deficiency significantly [...] Read more.
C1QBP (Complement Component 1 Q Subcomponent-Binding Protein) plays a critical role in maintaining cellular metabolism, but its function in radiation-induced damage remains unclear. In this study, we generated C1QBP-deficient Huh-7 hepatocellular carcinoma (HCC) cells using CRISPR/Cas9 technology and observed that C1QBP deficiency significantly enhanced radiation-induced damage, as indicated by reduced cell proliferation, impaired colony formation, and increased γ-H2AX foci, a marker of DNA double-strand breaks. Additionally, C1QBP deficiency resulted in elevated phosphorylation of key DNA damage response (DDR) molecules, ATM and CHK2, and caused pronounced S phase cell cycle arrest. Mechanistic investigations revealed that C1QBP modulates NF-κB nuclear activity via the AMPK signaling pathway. The loss of C1QBP reduced NF-κB nuclear translocation, further exacerbating radiation-induced damage. Reintroducing C1QBP alleviated DNA damage, enhanced cell proliferation, and improved survival following radiation exposure. These findings highlight the critical role of C1QBP in modulating HCC cells radiosensitivity and underscore its potential as a therapeutic target to enhance radiotherapy outcomes. Full article
(This article belongs to the Special Issue Radiation-Induced DNA Damage and Toxicity)
Show Figures

Figure 1

20 pages, 2014 KiB  
Review
Overview of Roles of Novel Components in the Regulation of DNA Damage Repair in BRCA1-Deficient Cancers: An Update
by Nhat Nguyen, Dominic Arris and Manh Tien Tran
DNA 2025, 5(2), 17; https://doi.org/10.3390/dna5020017 - 1 Apr 2025
Viewed by 1382
Abstract
Cancers that arise from germline mutations of breast cancer associated gene 1 (BRCA1), which is a crucial player in homologous recombination (HR) DNA repair, are vulnerable to DNA-damaging agents such as platinum and PARP inhibitors (PARPis). Increasing evidence suggests that BRCA1 [...] Read more.
Cancers that arise from germline mutations of breast cancer associated gene 1 (BRCA1), which is a crucial player in homologous recombination (HR) DNA repair, are vulnerable to DNA-damaging agents such as platinum and PARP inhibitors (PARPis). Increasing evidence suggests that BRCA1 is an essential driver of all phases of the cell cycle, thereby maintaining orderly steps during cell cycle progression. Specifically, loss of BRCA1 activity causes the S-phase, G2/M, spindle checkpoints, and centrosome duplication to be dysregulated, thereby blocking cell proliferation and inducing apoptosis. In vertebrates, loss of HR genes such as BRCA1 and/or BRCA2 is lethal, since HR is a prerequisite for genome integrity. Thus, cancer cells utilize alternative DNA repair pathways such as non-homologous end joining (NHEJ) to cope with the loss of BRCA1 function. In this review, we attempt to update and discuss how these novel components are crucial for regulating DNA damage repair (DDR) in BRCA1-deficient cancers. Full article
Show Figures

Graphical abstract

23 pages, 3781 KiB  
Review
The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease
by Qi Shu, Yun Liu and Huasong Ai
Cells 2025, 14(4), 307; https://doi.org/10.3390/cells14040307 - 18 Feb 2025
Cited by 2 | Viewed by 1245
Abstract
Histone modifications serve as molecular switches controlling critical cellular processes. The ubiquitination of histone H2A at lysines 13 and 15 (H2AK13/15ub) is a crucial epigenetic modification that coordinates DNA repair and genome stability during the DNA damage response (DDR). This epigenetic mark is [...] Read more.
Histone modifications serve as molecular switches controlling critical cellular processes. The ubiquitination of histone H2A at lysines 13 and 15 (H2AK13/15ub) is a crucial epigenetic modification that coordinates DNA repair and genome stability during the DNA damage response (DDR). This epigenetic mark is dynamically regulated by three functional protein groups: “writer” enzymes (e.g., E3 ubiquitin ligase RNF168 that catalyzes H2AK13/15ub formation), “reader” proteins (including 53BP1 and BRCA1-BARD1 that recognize the mark to guide DNA repair), and “eraser” deubiquitinases (such as USP3 and USP16 that remove the modification). Dysregulation of the precisely coordinated network of H2AK13/15ub is strongly associated with various diseases, including RIDDLE syndrome, neurodegenerative disorders, immune deficiencies, and breast cancer. This review systematically analyzes the dynamic regulation of H2AK13/15ub in DDR and explores its therapeutic potential for disease intervention. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

17 pages, 12428 KiB  
Article
Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in TP53-Mutated Epithelial Ovarian Cancer Cell Lines
by Patrycja Gralewska, Łukasz Biegała, Arkadiusz Gajek, Izabela Szymczak-Pajor, Agnieszka Marczak, Agnieszka Śliwińska and Aneta Rogalska
Int. J. Mol. Sci. 2025, 26(2), 693; https://doi.org/10.3390/ijms26020693 - 15 Jan 2025
Viewed by 1539
Abstract
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial–mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and [...] Read more.
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial–mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance. Targeted therapies like PARP inhibitors (PARPi) have improved outcomes, particularly in BRCA-mutated and DNA repair-deficient tumors; however, resistance and limited efficacy in advanced stages remain challenges. Recent studies highlight the potential synergy of PARPi with DNA damage response (DDR) inhibitors, such as ATR and CHK1 inhibitors, which disrupt cancer cell survival pathways under stress. This study investigated the combined effects of olaparib with ATR and CHK1 inhibitors (ATRi and CHK1i) on migration, invasion, and EMT-related protein expression and miRNA expression in ovarian cancer cell lines OV-90 and SKOV-3. The results demonstrated enhanced cytotoxicity, inhibition of migration and invasion, and modulation of miRNAs linked to metastasis. These findings suggest that combination therapies targeting DNA repair and cell cycle pathways may offer a novel, more effective approach to managing advanced EOC and reducing metastatic spread. Full article
(This article belongs to the Special Issue Gynecologic Diseases: From Molecular Basis to Therapy)
Show Figures

Figure 1

17 pages, 14786 KiB  
Article
Loss of Brcc3 in Zebrafish Embryos Increases Their Susceptibility to DNA Damage Stress
by Zhengyang Wang, Caixia Wang, Yanpeng Zhai, Yan Bai, Hongying Wang and Xiaozhi Rong
Int. J. Mol. Sci. 2024, 25(22), 12108; https://doi.org/10.3390/ijms252212108 - 11 Nov 2024
Viewed by 2381
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe forms of genetic damage in organisms, yet vertebrate models capable of monitoring DSBs in real-time remain scarce. BRCA1/BRCA2-containing complex subunit 3 (BRCC3), also known as BRCC36, functions within various multiprotein complexes to mediate [...] Read more.
DNA double-strand breaks (DSBs) represent one of the most severe forms of genetic damage in organisms, yet vertebrate models capable of monitoring DSBs in real-time remain scarce. BRCA1/BRCA2-containing complex subunit 3 (BRCC3), also known as BRCC36, functions within various multiprotein complexes to mediate diverse biological processes. However, the physiological role of BRCC3 in vertebrates, as well as the underlying mechanisms that govern its activity, are not well understood. To explore these questions, we generated brcc3-knockout zebrafish using CRISPR/Cas9 gene-editing technology. While brcc3 mutant zebrafish appear phenotypically normal and remain fertile, they exhibit significantly increased rates of mortality and deformity following exposure to DNA damage. Furthermore, embryos lacking Brcc3 display heightened p53 signaling, elevated γ-H2AX levels, and increased apoptosis in response to DNA-damaging agents such as ultraviolet (UV) light and Etoposide (ETO). Notably, genetic inactivation of p53 or pharmacological inhibition of Ataxia-telangiectasia mutated (ATM) activity rescues the hypersensitivity to UV and ETO observed in Brcc3-deficient embryos. These findings suggest that Brcc3 plays a critical role in DNA damage response (DDR), promoting cell survival during embryogenesis. Additionally, brcc3-null mutant zebrafish offer a promising vertebrate model for real-time monitoring of DSBs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2818 KiB  
Article
Impact of Optimized Ku–DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response
by Pamela L. Mendoza-Munoz, Narva Deshwar Kushwaha, Dineshsinha Chauhan, Karim Ben Ali Gacem, Joy E. Garrett, Joseph R. Dynlacht, Jean-Baptiste Charbonnier, Navnath S. Gavande and John J. Turchi
Cancers 2024, 16(19), 3286; https://doi.org/10.3390/cancers16193286 - 26 Sep 2024
Cited by 1 | Viewed by 2018
Abstract
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. [...] Read more.
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku–DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment. Full article
Show Figures

Figure 1

21 pages, 387 KiB  
Review
Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy
by Sophia J. Zhao, Daniel Prior, Christine M. Heske and Juan C. Vasquez
Cancers 2024, 16(9), 1648; https://doi.org/10.3390/cancers16091648 - 25 Apr 2024
Cited by 1 | Viewed by 2697
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential [...] Read more.
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR. Full article
16 pages, 2294 KiB  
Review
Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells
by Jian Xu, Peiwen Fei, Dennis W. Simon, Michael J. Morowitz, Parinda A. Mehta and Wei Du
Cells 2024, 13(9), 733; https://doi.org/10.3390/cells13090733 - 24 Apr 2024
Cited by 5 | Viewed by 3385
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied [...] Read more.
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders. Full article
(This article belongs to the Special Issue Metabolic Regulation of Hematopoietic Stem Cells)
Show Figures

Figure 1

19 pages, 1101 KiB  
Review
Targeting ATR Pathway in Solid Tumors: Evidence of Improving Therapeutic Outcomes
by Dimitra Mavroeidi, Anastasia Georganta, Emmanouil Panagiotou, Konstantinos Syrigos and Vassilis L. Souliotis
Int. J. Mol. Sci. 2024, 25(5), 2767; https://doi.org/10.3390/ijms25052767 - 27 Feb 2024
Cited by 9 | Viewed by 5511
Abstract
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). [...] Read more.
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators. Full article
(This article belongs to the Special Issue Molecular Mechanism of DNA Replication and Repair, 2nd Edition )
Show Figures

Figure 1

18 pages, 2003 KiB  
Review
Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities
by Katia De Marco, Paola Sanese, Cristiano Simone and Valentina Grossi
Cancers 2023, 15(20), 4976; https://doi.org/10.3390/cancers15204976 - 13 Oct 2023
Cited by 10 | Viewed by 3032
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the [...] Read more.
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors. Full article
(This article belongs to the Special Issue Drug Resistance in Gastrointestinal Cancer)
Show Figures

Figure 1

9 pages, 2941 KiB  
Communication
Novel Treatments for PXE: Targeting the Systemic and Local Drivers of Ectopic Calcification
by Ida Joely Jacobs and Qiaoli Li
Int. J. Mol. Sci. 2023, 24(20), 15041; https://doi.org/10.3390/ijms242015041 - 10 Oct 2023
Cited by 2 | Viewed by 1753
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of [...] Read more.
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of age, before the development of ectopic calcification, were treated with ETD, Mino, or both for 18 weeks. Micro-computed tomography, histopathologic examination, and quantification of the calcium content in Abcc6-/- mice treated with both ETD and Mino revealed further reduced calcification than either treatment alone. The effects were associated with reduced serum alkaline phosphatase activity without changes in plasma PPi concentrations. These results suggest that ETD and Mino combination therapy might provide an effective therapeutic approach for PXE, a currently intractable disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 1109 KiB  
Review
Exploring the Cellular and Molecular Mechanism of Discoidin Domain Receptors (DDR1 and DDR2) in Bone Formation, Regeneration, and Its Associated Disease Conditions
by Arokia Vijaya Anand Mariadoss and Chau-Zen Wang
Int. J. Mol. Sci. 2023, 24(19), 14895; https://doi.org/10.3390/ijms241914895 - 4 Oct 2023
Cited by 14 | Viewed by 4377
Abstract
The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family [...] Read more.
The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD). Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation, differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone regeneration. Based on the above information, we made an effort to outline the advancement of the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their structural, biological activity, and selectivity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 3275 KiB  
Article
Arsenite Impairs BRCA1-Dependent DNA Double-Strand Break Repair, a Mechanism Potentially Contributing to Genomic Instability
by Tizia Matthäus, Sandra Stößer, Hatice Yasemin Seren, Vivien M. M. Haberland and Andrea Hartwig
Int. J. Mol. Sci. 2023, 24(18), 14395; https://doi.org/10.3390/ijms241814395 - 21 Sep 2023
Cited by 2 | Viewed by 2104
Abstract
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic [...] Read more.
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic arsenic, which is indirectly genotoxic via induction of oxidative stress and inhibition of DNA repair pathways. In the present study, we investigated the effect of NaAsO2 on the transcriptional and functional DDR. Particular attention was paid to the potential impairment of BRCA1-mediated DDR mechanisms by arsenite by comparing BRCA1-deficient and -proficient cells. At the transcriptional level, arsenite itself activated several DDR mechanisms, including a pronounced oxidative stress and DNA damage response, mostly independent of BRCA1 status. However, at the functional level, a clear BRCA1 dependency was observed in both cell cycle regulation and cell death mechanisms after arsenite exposure. Furthermore, in the absence of arsenite, the lack of functional BRCA1 impaired the largely error-free homologous recombination (HR), leading to a shift towards the error-prone non-homologous end-joining (NHEJ). Arsenic treatment also induced this shift in BRCA1-proficient cells, indicating BRCA1 inactivation. Although BRCA1 bound to DNA DSBs induced via ionizing radiation, its dissociation was impaired, similarly to the downstream proteins RAD51 and RAD54. A shift from HR to NHEJ by arsenite was further supported by corresponding reporter gene assays. Taken together, arsenite appears to negatively affect HR via functional inactivation of BRCA1, possibly by interacting with its RING finger structure, which may compromise genomic stability. Full article
Show Figures

Figure 1

Back to TopTop