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Abstract: The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is
known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play
a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR
family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and
reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage
to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD).
Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and
chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation,
differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was
detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone
regeneration. Based on the above information, we made an effort to outline the advancement of
the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their
structural, biological activity, and selectivity.
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1. Introduction

Tyrosine kinase, a single transmembrane-bound cytoplasmic catalytic domain, is
found on the polypeptide receptor cover in a group of significant cells. Tyrosine kinases
are classified as either receptor or non-receptor tyrosine kinases. There are 90 known
tyrosine kinases, 58 of which are receptor tyrosine kinases with 20 subfamilies, and the
remaining 30 are non-receptor tyrosine kinases (NRTK) with 10 subfamilies [1]. Compared
to NRTK, RTK is well known for its ability to regulate and stimulate growth factors and
perform numerous signaling functions. RTK is activated by attaching the ligand to its
receptor and dimerizing the receptor with a domain that forms the tyrosine kinase domain
(TKD), after which additional steps are taken [2]. Receptor tyrosine kinases (RTK) bind
to various ligands, including collagen, and regulate cell differentiation and proliferation
to cellular morphogenesis, cell adhesion, migration, and incursion [3]. Researchers have
discovered two self-promoting collagen receptor groups, one unique and containing dis-
coidin homology kinase, even though it was classified as DDR1 and DDR2 among various
DDRs from RTK until 1997 (Figure 1). DDRs have also been demonstrated to regulate
immune activities. DDR1 is articulate in stimulated peripheral blood mononuclear cells and
activated T cells, and it can regulate monocytic and T cell motility in three-dimensional (3D)
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collagen matrices [4]. DDR2, expressed in circulating human neutrophils, was discovered
to play a similar role. In neutrophils, DDR2 favors the migration in 3D collagen matrices
and enhances chemotaxis by activating MMP-8 and producing chemotactic collagen pep-
tides. This protein is expressed in various cell types and may also play a role in wound
repair, tumor cell proliferation, and invasiveness. The DDR2 mutations cause the short
limb-hand-type of spondylometaepiphyseal dysplasia [5].
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Figure 1. Structural diagram of DDR.

Furthermore, DDR1 and DDR2 regulate cellular morphology via receptor-mediated
signals via the RTK kinase family. This DDR is also an extracellular region protein, with
nearly 155 amino acids considered in the discoidin homology domain [6]. Discoidin
domain receptors (DDRs) are classified from the tyrosine kinase subfamily based on their
structure and physiological function [7]. DDRs have been related to various human illnesses,
including fibrotic disorders of various organs, arthritis, atherosclerosis, and several forms
of cancer. Some of the essential clinical significance of DDR associated with different
types of diseases are listed in Table 1. So far, many different types of receptors have been
discovered. On the other hand, several have a more extended history, as do their detection
and evaluation.
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Table 1. Some of the essential clinical significance of DDR associated with different types of diseases.

Receptor Disease/Disease Model Clinical Significance Reference

DDRI Chondrocyte-specific DDR1 knockout mice Controls chondrocyte activity during
endochondral ossification [8]

DDRI Osteogenesis/Osteoblast-specific knockout mice DDR1 controls osteoblast/osteocyte autophagy [9]

DDRI Osteogenesis/osteoblast-specific DDR1
knockout (OKO∆Ddr1) mice

Osteogenesis is controlled by p38
phosphorylation, which also down-regulates the
osteogenesis markers

[10]

DDRI DDR1 inhibition on osteoarthritis Injecting 7 rh intraarterially (IA) decreased
chondrocyte apoptosis and boosted autophagy. [11]

DDR2 Osteoarthritis/Col9a1−/−mice
In the knee joints of Col9a1−/−mice, MMP-13
and DDR2 protein expression and the amount of
type II collagen were degraded.

[12]

DDR2 Osteoarthritis/human
Increased fragments of type II collagen produced
from MMP-13, DDR2, and MMP-13 were seen in
cartilage

[13,14]

DDR2 Osteoarthritis/heterozygous sedc mouse Expression of HtrA1, Mmp-13, and DDR2.
Cartilage fissuring and erosion were observed [15]

DDR2 Osteoarthritis/transgenic Mice Expression of DDR2 was increased in knee joints,
and DDR2 accelerated OA progression [16]

DDR1 Atherosclerosis/DDR1-null SMC Reduced expression of MMP2 and MMP9,
decreased proliferative and migratory response [17]

DDR2 Carotid injury/DDR2 wild-type and knockout
mice

Reduced SMC proliferation, MMP synthesis, and
ECM synthesis. [18]

DDR1 and
DDR2

atherosclerosis and lymphangioleiomyomatosis/
smooth muscle cells

Collagen expression is downregulated, while
matrix metalloproteinase (MMP) is induced. [19]

DDR1 Atherosclerosis/Ldlr−/−mice Development of atherosclerotic plaque,
promoting inflammation and fibrosis [20]

DDR1 Atherogenesis/dr1+/+; ldlr−/− and
DDR1−/−;Ldlr−/−

Macrophage infiltration and accumulation,
decreased adhesion/chemotactic invasion of
type IV collagen

[21]

DDR1 Chronic renal failure/DDR1-deficient mice Blunting of glomerular fibrosis and
inflammation and prevention of proteinuria [22]

DDR1 Kidney fibrosis in Alport syndrome/DDR1
expression in Col4a3−/−mice

Improved kidney function and reduced
inflammation and fibrosis [23]

DDR1 Glomerulonephritis/DDR1−/−mice Protected the crescentic glomerulonephritis [24]
DDR1and
DDR2 Bleomycin-induced lung fibrosis/mouse inflammation and fibrosis [25]

DDR2 Chronic liver injury/DDR2+/+ and DDR2−/−
mice

Enhanced the gelatinolytic activity, HSC density,
and collagen deposition. [26]

DDR2 Alcoholic liver disease/rat Silencing DDR2 prevent early stage alcoholic
liver disease. [27,28]

DDR1 Cancer/MCF7 HCT116 cell line DDR1 activates the MAPK, Ras/Raf/ERK
signaling [29]

DDR1 and
DDR2 Lung cancer/phosphoproteomic approach

Analyses of phosphotyrosine signaling profiles
reveal novel ALK and ROS fusion proteins and
oncogenic kinases, including EGFR and c-Met.

[30]

DDR1,
DDR2 Non-small cell lung carcinoma.

DDR1 is overexpressed. Collagen types I, II, III,
IV, V, VIII, and XI encourage altered expression
of DDRs, which aid in the malignant progression
of NSCLC.

[31–33]

DDR2 Breast cancer/human

Tumor cell invasion via collagen-I-rich
extracellular matrices is assisted by maintaining
the EMT phenotype, enhanced ERK2 activation,
and phosphorylation of the transcription factor
SNAIL1.

[34,35]

2. Discoidin in Various Genomes

In particular, receptor tyrosine kinases are a novel subfamily that differs from another
member of the large RTK family, and the homology domain, discoidin, was discovered
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throughout the cell aggregation process in the slime mold, Dictyostelium discoideum [36].
Following that, this unique RTK subfamily was cloned, and various research laboratories
produced different cDNA copies. After cDNA cloning, they discovered that two distinct
genes had been renamed DDR1 (previously Cak, DDR, RTK6, Ptk-3, or NTRK4, MCK-10,
TrkE,) and DDR2 (previously called CCK-2, TKT, Ty-ro-10) [37]. Dictyostelium discoideum
protein homology results in DDRs performing multiple functions rather than just cell
adhesion, even though we knew nothing about DDR ligands at the time of discovery [38].
Later discovery of collagen identified as a physiological ligand for orphan receptors like
DDRs will help to see the responsibility in cellular mechanisms [39].

The alternative splicing of DDR1 favors the three isoforms: a, b, and c. Exon 11 in the
DDR1 juxta membrane region codes for 37 different amino acids for transcription, whereas
it is absent in the DDR1a sub-subfamily. However, it was found in DDR1b from another
sub-subfamily. Isoform-C would form if another set of six amino acids (S-F-S-L-F-F-S) were
added to the kinase domain. When DDR1 and DDR2 are over-expressed in cells, they
show 125 and 130 kDa of glycosylated proteins, respectively [40]. According to reports, the
DDR1b isoform improves rat postnatal development compared to the DDR1a isoform [41].
In an in vivo study, a rat treated with tunicamycin resulted in DDR1a and DDR1b with
102 and 106 kDa, indicating that shorter isoforms were glycosylated at a higher percentage
than longer ones [42]. Another study found that DDR1a is synthesized at 63 kDa, then
anchored to the protease membrane before being converted to 54 kDa and solubilized,
forming furn-like proteases [43].

The DDR2 gene in Saccharomyces cerevisiae is a multi-stress-response gene transcrip-
tionally activated by environmental, xenobiotic, or physiological factors. The DDR2 gene
encodes a short hydrophobic 61 amino acid polypeptide found on chromosome XV near
the SPE2 locus [44]. Labrador et al. (2001) discovered DDR2 expression along chondro-
cyte columns in the proliferative zone of the growth plate using in situ hybridization on
1-week-old mice. Though scattered, DDR2 mRNA was also found in calcified cartilage in
the cartilage bone interface and on the trabecular bone surface [45]. DDR2 protein was
found in the majority of mouse tissues studied. Excessive amounts of phosphorylated
DDR2 were noticed in the lung, ovary, and skin, but these levels did not correspond with
DDR2 protein levels. Both DDRs can interact with multiple fibrillary collagens; however,
DDR2 requires network-forming collagen IV to be started [45]. Despite this, the inter-
action of these DDR2 receptors with collagen results in auto-phosphorylation, the first
step in transmembrane signaling. Leitinger and colleagues (2006) isolated hypertrophic
chondrocytes from chicken embryos that efficiently expressed DDR2 [46].

3. Expression of DDRs and Related Proteins

The Expression of DDRs is studied using Northern blot and in situ hybridization in
most human and mouse hepatocytes. The DDR1 expression is restricted in mouse develop-
ment in the Langerhans islets. It can also be used as a primary marker for neuroectodermal
growth and development in mice [47]. The northern blot reveals that DDR2 is expressed
primarily in the skeletal muscle and heart tissue, with less expression in the brain, lung,
and kidney connective tissues [48]. More than five studies suspected and confirmed DDR1
overexpression in human tumors. Aside from its expression in tumor cells, it was discov-
ered that DDRs or any one subfamily of DDR cellular signaling allowed for a targeted
deletion mutation in embryonic stem cells [39]. A recent study used knock-out mice during
embryogenesis and post-adult-stage development to claim the role of DDR1 and DDR2 [49].

According to gene bank databases, researchers identified three homology domain
proteins for the Caenorhabditis brigade and C. elegans genomes, which activated DDR1
and DDR2 cellular signaling. At the same time, the above three proteins resemble DDRs
and share characteristics such as a long juxta membrane stretch, the amino terminal of the
discoidin domain, and a catalytic tyrosine kinase protein in the c-terminus. However, they
could not identify any significant role for the three proteins mentioned above, discovered
by chance during worm genome research [50,51]. Even though collagen can induce these
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receptors, a recent study demonstrated that RTKs could perform the same function as
DDRs in nematodes and mammals, namely the action of epinephrine in the nervous system
during an emergency.

Another surprising finding is that DDR1 of the tyrosine kinase family is closely
associated with the marine sponge, Geodia cydonium, genome. In contrast, 59%–61%
of the catalytic pattern in DDR1 and geodia tyrosine kinase are nearly identical to RTK.
Furthermore, the ancestor pattern for Geodia and DDR1 appears to have been developed
600 million years ago during primary evolution and multicellular organism development;
in addition to NTRK, the discoidin domain is found in two other mammalian proteins,
neuropilins and neurexins. The name implies these mammalian genomes played a role in
nervous system development [52,53].

The previously identified genome of Xenopus laevis belongs to the neuropilins and
is also known as the A5 antigen, acting as a receptor for semaphorins. It is a glycoprotein
with some isoforms found in growth factors. Tandem repeats are found in neuropilins and
their DS domains, flanked by other fields in cell adhesion proteins [54]. Another intriguing
discovery is that the neuropilin/A5 antigen domain is followed by a nearly 80 amino acid
stretch, which serves as the corresponding extracellular domain region for DDR2 [55];
furthermore, the collapse of semaphorin growth was influenced by sensory and motor
neuronal interactions. As a result, DDR1 of the DDRs is expressed in various forms and
promotes distinct protein synthesis and growth during cellular development are produced
by DS domain progenitors, improving cell aggregation and signaling to convert one-cell or-
ganisms, such as amoebas, to multicellular organisms. Several studies have shown that DS
domains can interact with mammalian proteins such as lectins [56–58]. Most reviews have
gone into great detail about the role of DDRs and their associated downstream signaling in
various human diseases. They have concentrated on DDR structural ligand recognition and
activation ligand binding specificity. When researchers decided to identify the ligand that
carries DDR through two different individual laboratories, they discovered that collagen is
the ligand that activates DDRs. The main question is how ligand binding becomes receptor
activation. Initially, it was thought that RTK activation causes the ligand-receptor dimer
to be converted into systolic tyrosine kinase, which promotes transautophosphorylation.
Dwarfism, SMED, and short limb-hand type are rare symptoms caused by mutations in the
human DDR2 gene [59]. Three out of four discovered missense mutations cause the reversal
of mutated proteins in the ER via MAP kinase signaling controlled by DDR receptors. The
E113K mutant gene is generally expressed on cell surfaces; however, it does not bind
with collagen X, resulting in the eventual shortening of long bones. The Arg105-Glu13
salt bridge distinguishes the OH-pro in the GVMGFO motif, as demonstrated by artificial
crystal DDR2 with Ds collagen mixtures [60].

4. Collagen: The Prime Activator of DDRs Signaling

Collagen is not only a DDR1 and DDR2 ligand. It also acts on DDRs to release signals
that promote matrix protein and genome physiological growth. Currently, 19 different types
of collagen are as common as the sheet-like fiber collagens 1, 2, 3, and 4. The remaining
collagens are rarely expressed and play a minor role in cell and tissue size regulation [61].
Inadvertently, collagen-coding genes are reduced or deleted, resulting in a link between
collagen failure and severe disease in the skeleton, skin, and tendons. Even though several
studies have revealed that all 19 types of collagen could activate DDR1, DDR2 is started by
specific types of febrile collagen, and the activation is prolonged, it appears to be ongoing
more than 18 h after collagen was added. Additionally, no significant down-regulation
was observed after four days, and activation in DDR2 is maintained by febrile collagen.
The innate and actual configurations of collagen are required to activate DDR1 and DDR2,
whereas glycosylation alone is sufficient to enhance DDR2 [62].

Collagens 1 and 2 have a similar magnitude and increased affinity unless coupled
with collagen IV. At the same time, both DDRs and their interactions with collagen are
specific triple helices [63]. DDR2 could not recognize collagen IV and its associated base-
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ment membrane in a study on collagen binding receptors, and two decades of collective
information on them was observed as fibrillary collagen I, II, III, and IV [64]. Meanwhile, a
previous study reported that the physical interactions of collagen X and its cell collagen X
have significant reactions with DDR2. DDR1 weakly connects with collagen X due to its
low affinity for the receptor. DDR2 and its interaction with cartilage-specific collagen II
yielded the same results [65].

Collagen X and its expression are limited for long bone growth, according to Labrador
et al. (2001), whereas DDR2 and its broad face in the body are associated with hypertrophic
chondrocyte cells. Their findings suggested that DDR2 protein is synthesized by collagen X
from hypertrophic chondrocytes expressing mRNA. As a result, DDR2 advocates for colla-
gen X in the growth plate, citing its strong relationship and the fact that it is a physiological
receptor for X [45]. Another in vivo study found that DDR2 expression in proliferating
murine chondrocytes and DDR2 deletion or removal in the same mouse results in affected
bone growth or reduced chondrocyte proliferation, leading to a physiological growth defect
in the mouse. In any case, RT-PCR and immunohistochemistry failed to identify the DDR2
protein and its accumulation in the murine growth plate. According to their findings,
the expression of DDR2 at the junction of hypertrophic proliferative colonies results in
DDR2’s role in cell maturation and proliferation [66]. DDR2 protein is abundant in all
articular cartilages, while the collagen X expression is constrained to the deep zone of
pericellular chondrocyte hypertrophic regions. However, the reason DDR2 is not found
on the growth plate during chondrocyte proliferation remains unknown [67]. However,
DDR2 protein and mRNA expression confirm that it plays a prominent role in bone growth.
Leitinger et al. (2008) discovered that the DDR2 domain eventually has the binding sites
designed for fibrillary collagens I and II. On the other hand, Collagen I and its binding site
are represented by three spatially adjacent surface loops of the DDR2 [46].

Meanwhile, the surprising discovery is that the DDR2 discoid domain does not rec-
ognize collagen X, implying that it requires something else to be recognized in DDR2.
It also confirms that the non-fibrillar collagen-binding mechanism in DDR2 is more di-
verse than the fibrillary collagen binding mechanism [68]. Furthermore, based on existing
studies, which have thoroughly investigated the critical difference in DDR2 significance
between fibrillary and non-fibrillar collagens, collagen X binding with DDR2 differs from
collagen X binding, with the 21 integrins of triple helical dimension required for DDR2
protein binding [69]. Most studies have discovered that collagen X is necessary for growth
plate development, but cannot exist without DDR2 binding. Based on biological growth
changes, one study found that the tyrosine kinase domain activates DDR2 and promotes
cell proliferation in the growth plate. However, the mechanism by which the collagen
molecule docks the DDR1 and DDR2 through its epitopes remains unknown. Synthetic
collagen composed of ten repeated collagens was attempted in order to form a triple helix,
but it was insufficient to stimulate DDRs [70]. The significance of DDR signaling remains
unknown. Another study discovered that MMP-1, a significant collagen fibrillary upregu-
lating enzyme, improved the human skin fibroblasts with DDR2 [71]. Collagen is a ligand
for both DDRs and integrins. The fibroblast integrin is activated by fibroblasts, an impor-
tant cytoskeleton growth initiator for collagen formation through the DDRs delivering the
signaling process [72]. Furthermore, it has also been reported that 3D-cultured collagen gels
raise the question of whether mechanical or external forces induce DDR phosphorylation.
Lund et al. (2009) documented the interaction of DDR1 with three-dimensional type I
collagen using a 3D culture of human mesenchymal stem cells. The dynamic cell shape
changes and ECM microstructure tuning cause DDR1 and two-dimensional osteogenesis
pathways to interact and modify their functions [73]. Meanwhile, DDR1 signals activate
β-integrin, which is required for fibroblast and epithelial cell development [74].

5. Molecular Signaling of DDRs in Bone and Cartilage

In bone, DDR1 signaling is crucial for regulating osteoblast (bone-forming cell) func-
tion and remodeling. When activated, DDR1 initiates a cascade of intracellular signaling
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events that promote osteoblast differentiation and activity [75]. It stimulates the expression
of bone matrix-synthesis-associated genes, such as collagen type I and osteocalcin, leading
to the deposition of new bone tissue. Additionally, DDR1 signaling regulates osteoblast
migration, facilitating their recruitment to sites of bone remodeling [10].

The DDR1 signaling pathway significantly stimulates bone regeneration. As stated
previously, DDR1 is a receptor tyrosine kinase activated by collagen, an essential compo-
nent of the extracellular matrix of bone tissue. When collagen binds to DDR1, intracellular
signaling events modulate bone cell activity and promote bone remodeling and regener-
ation. The initial step in the DDR1 signaling pathway is the binding of collagen. DDR1
is activated when collagen molecules bind to its discoidin domain in the extracellular
matrix. This binding induces receptor dimerization, which assembles the intracellular
kinase domains of DDR1 [76]. DDR1 dimerization causes the autophosphorylation of
specific tyrosine residues in intracellular kinase domains, which is the next step in the
signaling pathway. This autophosphorylation enhances the kinase activity of DDR1 [77].
Diverse signaling molecules, such as adaptor proteins and kinases, bind at activated DDR1.
The phosphotyrosine-binding (PTB) domains or Src homology 2 (SH2), along with other
phosphotyrosine recognition modules have the potential to interact with the autophos-
phorylation event resulting from the dimerization process within the DDR1 signaling
pathway [78]. This autophosphorylation enhances the activity of the DDR1 kinase. The
p85 subunits of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), SHP-2, and ShcA
attach to the internal juxtamembrane region and the tyrosine kinase domain of DDR1.
These signal molecules bind to the phosphorylated tyrosine residues on DDR1 to start the
downstream signaling cascades [79]. Ras/ERK MAPK and PI3K/Akt cascades appear to
be activated in response to collagen stimulation of DDR1. The DDR1 activation favors the
regulation of several downstream signaling pathways, such as the JAK/STAT, PI3K/Akt,
and MAPK/ERK pathways [29]. These pathways control gene expression, cellular growth,
differentiation, and survival. These signaling molecules bind to the phosphorylated tyro-
sine residues on DDR1 to initiate downstream signaling cascades [80,81]. Additionally, it
encourages the differentiation of osteoblasts. To promote bone formation, DDR1 signaling
affects osteoblast differentiation and function. Moreover, the differentiated osteoblasts
have been found to promote osteogenic transcription factors, including Runx2 and Osterix.
During osteogenesis, the knockdown of DDR1 in osteoblasts decreased the ALP activity,
mineralization, phosphorylated p38, and protein levels of Runx2, BMP2, Col-I, ALP, and
OC in OKO∆DDR1 mice. Overexpression and DDR1 knockdown in osteoblasts showed
that DDR1 regulates the p38 phosphorylation mechanism to regulate Runx2 and the down-
stream osteogenesis markers during osteogenesis. DDR1 also increases the production of
extracellular matrix proteins like osteocalcin and collagen to form bone matrix [10].

Osteoclast activity is the crucial physiological process for bone remodeling, and it
is additionally impacted by DDR1 signaling. Osteoprotegerin (OPG) is encouraged to
express itself. By suppressing the expression of RANKL, a protein that promotes osteoclast
development and activity, OPG prevents osteoclastogenesis and inhibits osteoclastoge-
nesis [82]. Zhang et al. (2020) revealed the mechanism of DDR2 in chondrogenic and
osteogenic differentiation. They found that the induction enhanced DDR2 activation in
preosteoblastic cells without altering DDR2 expression. In the differentiated conditions,
the downregulation of endogenous DDR2 by specific shRNA inhibited the osteogenic
differentiation and osteoblastic marker gene expression [83].

DDR1 signaling promotes the production of factors that regulate osteoclast activity,
such as RANKL (Receptor Activator of Nuclear Factor Kappa-B Ligand), which stimulates
osteoclast formation and bone resorption. This delicate equilibrium between bone forma-
tion and resorption is crucial for maintaining bone integrity and homeostasis [9]. DDR’s
protein tyrosine kinase receptors regulate bone formation after binding to collagen. DDR1
originates in epithelial cells, whereas DDR2 originates in mesenchymal cells [84]. SMED
(spondylo-meta-epiphyseal dysplasia) is a type of limb-hand dysplasia characterized by
short limbs, short stature, and broad fingers with abnormal epiphyses and premature
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calcification [85]. Even though the absence of DDR2 signaling calcification results in bone
fractures or wide and shorthand fingers, Borochowitz reclassified it in 1993 as a type
of congenital familial skeletal dysplasia with histopathological damage to pathological
damage [86].

Meanwhile, hypertrophic chondrocytes are distinguished by the upregulation of prote-
olytic enzymes triggered by ECM degradation. As a result, the mechanisms underlying the
differentiation of hypertrophic chondrocytes with ECM degradation enzymes are critical
in developing effective treatments for OA. When tyrosine kinases (TKs) bind to collagen
and become activated, DDRs interact with cell-collagen communications in normal and
pathological conditions [87]. DDRs also regulate cell differentiation, migration, adhesion,
and tumor metastasis, including arthritis [39]. Collagen IV, II, and III can activate DDRs.
Depending on the receptor type, DDRs are activated by collagen IV, II, or X, which is
activated by molecular signaling via PI3K/AKT [88]. OA is classified as pathogenic based
on the affinity binding between collagen II and X and DDRs. Most in vitro research and
investigations have shown that DDR2 and its role in OA cause joint injuries in tissue joints
due to triggered collagen II cleavage, which results in DDR2 activation by TK autophospho-
rylation [89]. Another study discovered that DDR2 activation induced the over-expression
of hypertrophic markers such as MMP-12, Alpl, and Col10a1 [90].

According to Borochowitz, the shortened limbs result from a missense mutation in the
DDR2 gene, which fails in the ligand-binding function. Long bones become shorter in DDR2
knockout mice; the same phenomenon is seen in SMED patients. It is caused primarily
by a lack of DDR signaling, which is also necessary for bone tissue development [80].
Another recent study discovered that DDR2 regulates bone markers and their expression
by regulating osteogenic variation. DDR2 control of bone markers is most likely due to
the activity of RUNX2, a major transcription factor that becomes entangled during bone
differentiation [81]. RUNX2 action is modulated by phosphorylation in response to a signal
from the extracellular regulated kinase (ER-K), which activates DDRs. Another study
discovered that ER-K improves the upstream genome and that its activity is linked to DDRs
through Shc and Src [91].

DDR1 signaling differentiates mesenchymal stem cells into chondrocytes responsible
for cartilage production and maintenance. DDR1 activation increases the expression of sig-
nificant transcription factors implicated in chondrogenesis, including Sox9 and Runx2 [92].
These transcription factors kickstart the chondrocyte differentiation. Moreover, DDR1
signaling is involved in chondrocyte differentiation and maturation. It regulates the ex-
pression of transcription factors, such as Sox9 and Runx2, which play critical roles in
chondrogenesis and endochondral bone formation [93]. DDR1 also influences chondrocyte
proliferation and survival, contributing to the overall maintenance of cartilage tissue via
phosphorylation of p38. DDR1 signaling is a vital pathway in bone and cartilage, orches-
trating cellular processes essential for tissue development, maintenance, and remodeling. It
regulates the delicate balance between bone formation, resorption, and cartilage’s structural
integrity and function [76]. Understanding DDR1 signaling and its complex interactions in
bone and cartilage may have implications for developing therapeutic approaches targeting
musculoskeletal disorders, such as osteoporosis and osteoarthritis.

6. DDRs Expression in Bone and Tissue

Human physiology or pathophysiology of balanced tissue homeostasis is achieved
through the interaction of cells with their environment. As a result, the interaction occurs
via bone tissue and a process known as remodeling. It maintains those physiologies by
allowing adaptable bone molecules to form during damage or regeneration. Although the
mechanisms of bone remodeling known as resorption and deposition have not been studied,
the extracellular matrix is a network of bound macromolecules found in the multicellular
organism of cells and connective tissues (ECM). It was discovered to be collagen, a protein
that provides adhesive properties and is the most abundant ECM macromolecule [94].
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DDRs are primarily expressed in osteoblasts, which are responsible for bone formation,
and the osteoclasts mechanism favors the bone resorption mechanism in bone. Several
researchers have documented the DDR1 and DDR2 expression in osteoblasts, and these
receptors have a crucial role in osteoblast differentiation and function [95]. A downstream
signaling event that controls osteoblast activity, such as cell migration, proliferation, and
formation of extracellular matrix elements like type I collagen, is triggered when their lig-
ands activate DDRs, which are collagen molecules in the extracellular matrix [39]. Similarly,
DDR1 has been linked to osteoclast differentiation and bone resorption and is expressed
by osteoclasts. In osteoclast precursors, activation of DDR1 triggers signaling pathways
that encourage osteoclast activity and development. However, there is conflicting evidence
about DDR2 expression in osteoclasts, with some research indicating it is present and others
indicating it is not. The function of DDR2 in osteoclasts requires more investigation [96].

The critical concern is that the onset of pathogenesis and fundamental OA metabolism
influences DDR-mediated matrix degeneration. On the other hand, DDR2’s effect on
MMP-13 and its expression causes significant damage to bone formation and regeneration,
leading to deformities [97]. Numerous researchers have acknowledged the importance of
DDR-mediated MMP production in diseases if it is dysregulated. It is also necessary to
understand physiological expression in homeostasis and its role in DDR-induced MMP
activation or its manifestation in conditions. The loss of chondrocyte proliferation in DDR1
knockout mice results in shortened long bones, dwarfism, and a smaller snout [45], in line
with previous studies involving chondrocyte-specific (a1(II) collagen, CreERT; Ddr1f/f
mice) using CKO mice and DDR1 knockout mice. The secondary ossification center’s
delayed development and inhibited the growth plates in the rear limbs of the CKODdr1
mice. Moreover, DDR1 deletion in chondrocytes reduces the Ihh/Gli1/2/Col-X signaling,
cell terminal differentiation, and apoptosis [93]. A recent study discovered an impulsive
autosomal recessive mutation in mouse colony culture that results in DDR2 gene dele-
tion. This DDR2-deficient mouse, also known as a “slie,” is a dwarf and sterile. Mice
(DDR2slie/slie) with a non-functional DDR2 allele (Smallie) have multiple skeletal defects.
When comparing wild-type, DDR2wt/slie, and DDR2slie/slie mice, a gradual decrease in
tibial trabecular BV/TV was observed. These alterations were accompanied by decreased
trabecular number, thickness, and spacing in both males and females. Additionally, the re-
searchers investigated the role of the DDR2 signaling mechanism in BMSCs cultured under
osteogenic and adipogenic conditions. DDR2slie/slie cells exhibited defective osteoblast
differentiation and enhanced adipogenesis, and the expression of RUNX2 and PPAR was
regulated by MAPK-dependent phosphorylation [98,99].

A 6-day-old mouse study revealed that DDR1 chimeric fusion protein was expressed,
as well as the presence of placental ALP. It left traces in the skeleton, skin, and UT when
sacrificed. In addition, abnormal or overexpressed expression of both DDRs has been
found in cancer cells [100]. DDR1 and its regulation are observed in atherosclerosis,
myxomatosis, rheumatoid arthritis, and osteoarthritis. DDR2 has also been linked to the
principle of atherosclerosis and lymphanmyomatosis [19]. Meanwhile, according to the
researchers, infertility of sperm is due to spermatogenesis defects caused by DDR-controlled
gonadal expression. Although it has not been reported in DDR2-/- mice, any additional
deficiencies may play a role in the cause of infertility in slie mice [101]. DDRs are a critical
bone growth-regulating factor that regulates several aspects of bone growth. Although
DDRs regulate endochondral ossification and maturation, Runx2 is a crucial transcription
factor in osteoblast and chondrocyte differentiation. However, it does not consider which
collagen and its ligands were triggers for DDRs to manage endochondral proliferation and
ossification [66]. An enzyme called lysyl oxidase catalyzes the cross-linking of collagen
fibers, which modifies bone strength.

In contrast, as mentioned earlier, lysyl oxidase is secreted by DDR–collagen interaction
in osteoblasts for bone strength [102]. Another study found that high DDR2 expression
in C57BL/6 x DBA transgenic mice influences body size physics and that this is the only
significantly different parameter from the other normal parameters listed. Transgenic mice
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are also longer and weigh less, resulting in a low BMI, according to CEPSCA guidelines.
Transgenic mice appear to have high leptin production, resulting in low epididymal body
fat. As a result, it is proposed that DDRs regulate fat metabolism, absorption, and storage by
maintaining skeletogenesis and bone growth. However, more research is needed to confirm
whether DDRs are directly linked in signaling to leptin production [103]. Numerous
studies have found that both DDRs play an essential role in development, particularly
DDR1 in organogenesis, which includes fibroblasts with diverse pedigrees, and DDR2 in
bone growth, which provides for chondrocytes and osteoblasts [84]. Due to the small size
characterization of knockout mice, Vogel et al. (2001) discovered deficiencies in DDR1. XX
(females) exhibited various reproductive defects and a decreased blastocyst, resulting in a
higher percentage of XX knockout mice becoming infertile. The most visible deficiency is
abnormal mammary gland branching, which results in milk secretion failure [100].

DDRs were discovered in different tissues of the adult brain after growth. DDR1
mRNA is observed in nearly all tissues of mice and humans, even though DDR1 is in high
concentrations in the human lung, brain, spleen, kidney, and placenta [104]. Meanwhile,
DDR2 mRNA is found primarily in the skeletal and cardiac muscles, with less in the
kidney and lungs. In addition, these DDRs are found and expressed in the human nervous
system [105]. Aside from the discovery of DDRs in various tissues and organs, a discussion
about their expression in tissues or systems and how they support human health began.
DDR1 is primarily expressed in epithelial tissue, whereas DDR2 is found in connective
tissues derived from the mesoderm in the embryo [64]. Few studies have found that DDRs
can also be found in innate immune systems. However, no comprehensive or organized
cellular expression of DDR proteins for various tissues has been performed.

In the meantime, DDRs play an essential role in embryonic development, but their
role in adult tissue remains unknown. DDR1 function is necessary for the development of
the mammary gland, though DDR2 is crucial in the growth of long bones. DDR1 activation
in response to collagen binding during embryogenesis may favor the cells and tissue
organization. DDR1 expression is also linked to maturation of the brain cells. It has been
detected in neural precursor cells and neurons during nervous system development [106].
In wild-type mice, DDR1 is expressed at every stage of mammary development. In late-
stage pregnant DDR1/mice, the mammary glands displayed a compressed alveolar form,
with the fat pad packed with ducts [100]. DDR1−/− animals have abnormalities of
cell-autonomous and localized to the mammary epithelium as shown by transplantation
experiment [107]. Besides, the DDR2 expression was identified in mouse and rat hearts,
and it was principally expressed in the form of cardiac fibroblast [108], whereas DDR2
expression was placed on the epicardial surface of the heart [109]. Some studies have
implicated DDR2 in cardiac fibrosis, which can affect heart function during development
and adulthood.

Discoidin Domain Receptors (DDR1/2) are the members of Receptor Tyrosine Kinases
(RTKs). There are two isoforms DDR1 and DDR2. The phosphorylation of the intracellular
tyrosine domain decides the faith of the signaling cascade. Collagen an extracellular matrix
structural protein found in connective tissue is the ligand for the activation of DDR1/2
approximately 28 types of collagens are identified but only a few are involved in activation.
DDR1/2 have a crucial role in bone and cartilage development. The interactive pathways of
DDR1/2 are MAPK, PI3K, JAK/STAT, and Rho-GTPase. The signal transduction induced
by DDR1/2 also activates ERK1/2, Akt, cytokine signaling, and RhoA signaling pathway,
respectively, and play a role in cytoskeletal dynamics, cell proliferation, differentiation,
survival, adhesion, migration, cell metabolism, cytokine signaling, and immune responses.
The possible molecular signaling pathways of DDR1 and DDR2 in association with bone
and cartilage are shown in Figure 2.
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Figure 2. Schematic overview of possible DDR1/DDR2 associated signaling pathway {mito-gen-
activated protein kinase (MAPK), Phosphoinositide 3-kinases (PI3Ks), Janus ki-nase/signal trans-
ducers and activators of transcription (JAK/STAT) and Rho-GTPase} in bone and cartilage. DDR1:
Discoidin Domain Receptor Tyrosine Kinase 1; DDR2: Discoidin Domain Receptor Tyrosine Kinase 2;
Grp-2: Growth factor receptor-bound pro-tein 2; Sos: Son of Sevenless; MPAK: Mitogen-activated
protein kinase; MPAK 2: Mitogen-activated protein kinase 2; MPAK 3: Mitogen-activated protein
kinase 3; ERK1:Extracellular signal-regulated kinase 1; P85: Phosphatidylinosi-tol-4,5-bisphosphate
3-kinase 85 kDa; P110: Phosphatidylinositol-4,5-bisphosphate 3-kinase 110 kDa; PIP2: Phosphatidyli-
nositol 4,5-bisphosphate; PIP3: Phosphatidylino-sitol-3,4,5-triphosphate; PTEN: Phosphatase and
tensin homolog; NF-κB: Nuclear factor kappa B; GTP: Guanosine-5′-triphosphate; GDP: Guanosine
diphosphate; GEF: Guanine nucleotide exchange factor; Rho: Ras homologous; Pi: Inorganic phos-
phate; JAK: Janus kinase; PTP: Protein tyrosine phosphatases; STAT: Signal transducers and activators
of transcription; STAT P: Phosphorylated signal transducers and activators of transcription.

7. DDRs as a Potential Therapeutic against OA and RA

In the previous two decades, Hou et al. (2012), Franco et al. (2010), and other re-
searchers (2006) identified how the regulation of DDRs, particularly DDR1, fails in expres-
sion and leads to disease, most notably bone and brain disorders. According to reports,
the mechanism by which DDRs regulate cell adhesion and migration behavior has yet
to be fully discovered [18,110,111]. DDRs have been linked to multiple pathological con-
ditions, including osteoarthritis (OA), rheumatoid arthritis (RA), and cancer, and they
are being explored as potential therapeutic targets [112]. Osteoarthritis (OA) is a degen-
erative joint disease depicted by the breakdown of cartilage and the under-lying bone.
DDRs have been found to play a role in cartilage homeostasis and matrix remodeling,
critical processes involved in OA progression [113]. Prior studies have reported that the
increased DDR expression is associated with cartilage degradation in OA. Additionally,
some studies proposed that the signaling of DDR is a potential therapeutic approach to
prevent cartilage breakdown and slow the progression of OA. A study by Manning et al.
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(2006) offers experimental evidence that DDR2 may be an attractive target for develop-
ing disease-modifying OA medications. DDR2 was conditionally eliminated from the
articular cartilage of Aggrecan-CreERT2 mice. The progressive process of articular car-
tilage deterioration was significantly slowed in the knee joints of DDR2-deficient mice
compared to their control mice. Damage to articular cartilage in the knee joints of mice
was related to elevated expression levels of DDR2 and matrix metalloproteinase. These
findings imply that DDR2 may be an appropriate target for developing disease-modifying
OA medicines [114]. Sunk et al. (2007) investigate the connection between upregulated
DDR2 expression and cartilage degeneration in OA. This investigation used cartilage tissue
samples from 16 human knee joints to examine the expression of MMP-13, DDR2, and
MMP-derived type II collagen fragments. The immunohistochemistry study showed that
the expression of DDR2 in human articular cartilage increased with increasing tissue injury.
At the same time, cartilage degradation with higher DDR2 expression led to a more signifi-
cant release of MMP-13 and type II collagen breakdown products [14]. A similar pattern
of results showed the up-regulation of DDR2 in chondrocytes in the articular cartilage of
knee joints in mice exhibiting OA due to a mutation in type XI collagen. The activation of
DDR2 initiates a cascade of cellular processes that ultimately lead to the release, synthesis,
and activation of matrix-degrading proteinases, specifically MMP-13, which leads to the
development of OA [115]. Our recent findings also revealed that the inhibition of DDR1
minimizes osteoarthritis through the autophagy mechanism. The results indicate that the
intra-articular injection of 7rh molecules effectively diminished the cartilage deterioration
in C57BL/6 mice with osteoarthritis produced by anterior cruciate ligament transection.
The suppression of DDR1 has been shown to reduce the hypertrophic differentiation of
chondrocytes and chondrocytes apoptosis in OA. Additionally, it can restore the reduced
autophagy function caused by OA [11].

OA is a potentially fatal morbidity and dominant joint disorder affecting more than
60% of people over 40. It is due to poor calcification or uric acid deposition in joints and
the release of molecular signaling receptors [116]. Degeneration of articular cartilages
associated with failure in subchondra. Bone remodeling regulation leads to inflammation
in the synovial adjacent and, ultimately, loss of joint movements and pain [117]. As OA’s
primary cause and risk factors have yet to be determined, no effective drug or preventative
measure is available. According to the data from Pub-Med and arthritis journals, articular
chondrocytes undergo phenotypic changes and accumulate fluid, resulting in OA. This
also appears to be an endochondral ossification issue, a naturally occurring procedure in
long bone elongation growth plates from the neonatal period to puberty [118].

Meanwhile, cartilage is synthesized in early embryonic stages on endochondral bone,
which is differentiated as hypertrophic cartilage, and eventually enters apoptosis or is
distinguished as osteoblast, resulting in bone replacement [119]. Conversely, rheumatoid
arthritis (RA) is an autoimmune condition that causes joint damage and chronic inflamma-
tion while the host immune cells attack the healthy cells. DDRs are thought to play a vital
role in controlling inflammatory and immunological reactions in these clinical conditions.
The synovial tissue, the source of inflammation in the joints, has been found to express
DDRs more frequently in RA [120]. Mu and colleagues discovered that inhibiting DDR2
lowers inflammation and joint destruction via the H19-miR-103a-IL-15/Dkk-1 axis, where
DDR2 plays a stimulatory function in the development of RA. DDRs may help control
the inflammatory response and stop the damaging effects on the joints. POSTN enhances
the collagen and proteoglycan degradation of chondrocytes [121]. In line with previous
studies, POSTN influences the proteoglycan collagen degradation in cartilage through
DDR1. POSTN-induced MMP-13 expression was inhibited in mouse chondrocytes by
genetic or experimental inhibition of DDR1. These findings revealed that POSTN signals
via DDR1 are systematically implicated in OA’s pathogenesis. Specific DDR1 inhibitors
may offer therapeutic options for treating OA. Liu et al. (2023) conditionally deleted the
DDR2 in myeloid lineage cells to generate cKO mice to investigate the role of DDR2 in
myeloid lineage cells. They found that cKO mice exhibited more severe inflammation in
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collagen-antibody-induced arthritis (CAIA) and high-fat diet (HFD)-induced obesity, indi-
cating the protective role of DDR2 against inflammation. Mechanistically, DDR2 promotes
macrophage repolarization are systematically implicated in OA’s pathogenesis from the M1
to M2 phenotype and protects the systemic inflammation [122]. Ge et al. (2008) discovered
that DDR2 is preferentially expressed and activated in the articular zone of TMJs but not
knee joints using DDR2 LacZ-tagged mice. The absence of DDR2 results in abnormalities
in chondrocyte maturation and mineralization, according to research on primary cultures
of TMJ articular chondrocytes from wild-type and Ddr2slie/slie mice. These investigations
show that DDR2 functions are localized to the fibrocartilage of the TMJ and are not present
in the hyaline cartilage of the knee and that DDR2 is required for appropriate condyle
formation and homeostasis in the TMJ [123]. TMJ osteoarthritis could develop as a result
of gene editing, which includes overexpressing the genes of transforming growth factor-1
(TGF-1), short stature homeobox 2 (SHOX), and β-catenin, as well as knockout or inhibit
the DDR1, fibroblast growth factor receptor (FGFR3), and small mother in opposition to
decapentaplegic 3 (SMAD3) [124]. After experiments on mice and mouse models, DDRs
have been used to treat various chronic, long-term human diseases. DDRs play a positive
role in pathology, and DDR inhibitors have been identified as a promising therapeutic
method when treating specific conditions with limited options [7,39]. As their use by
scientists and researchers grows daily, DDRs are now regarded as a bulleting target in drug
development. Nilotinib, imatinib, and dasatinib are the protein kinase inhibitors that target
the tyrosine kinase activity of the Breakpoint Cluster Region-Abelson kinase (BCR-ABL).
These inhibitors are also utilized to treat chronic myelogenous leukemia [125]. Nilotinib
is a small-molecule kinase inhibitor that targets the leukaemia-enhancing cluster region
Abelson kinase protein. These drugs, however, inhibit DDRs and other potentially active
kinase receptors [126]. VU6015929, a powerful DDR1 kinase inhibitor with improved phys-
iochemical, DMPK, and kinome profiles, favors the development of the DDR1 inhibitor’s
efficacy, as proven by the in slico model [127]. DDR1-IN-2 is another powerful DDR1
inhibitor that inhibits several other kinase targets. DDR1-IN-1 binds to DDR1 in the ‘DFG-
out’ conformity and suppresses DDR1 autophosphorylation in cells at sub-micromolar
concentrations with high selectivity as evaluated by the KinomeScan technology against a
panel of 451 kinases [128]. The preclinical study also revealed that 7rh ((3-(−2-(pyrazolo
[1,5-a] pyrimidin-6-yl)-ethynyl) benzamides) inhibited the DDR1-expression. It has an
IC50 value of 6.8 nM for suppressing DDR1 enzymatic activity but is substantially less
effective in overwhelming other kinase activities such as Bcr-Abl, DDR2, and c-Kit [129].
As a result, there are two types of subfamily receptors: DDR1 kinase inhibitors and DDR2
kinases. Even though a recent study found two groups described as optimistic, DDR1
kinase inhibitors and DDR2, DDR2 was ineffective against common antibiotics such as
actinomycin-D [130].

According to studies and their findings, DDR2 is a critical receptor molecule in the
development and progression of tumor migration, osteoarthritis, and bone development.
According to a survey, overexpression of DDR2 with partial Function in RA patients
increases RA synovial fluid while promoting cartilage-degrading matrix metalloproteases
(MMP-1, MMP-2, and MMP-13) [131]. Meanwhile, the overall process of DDR2 depends
on the pathophysiologic involvement of RA FLS-influenced DDR2-induced MMP and
MMP subclass secretions [132]. RA is a chronic systemic disorder characterized by joint
inflammation that leads to bone function loss, a physiology defect. Excessive inflammation
leads to invasion because the synovial layer lining is a crucial feature in RA. DDR2 is a key
promoter of collagen and its associated actions in ECM remodeling, fibroblast migration
and differentiation, and neovessel formation. According to some studies, over-expression
of DDR2 in RA synovial tissue causes cartilage and bone devastation in OA and RA, which
MMPs regulate [133–135]. Another research finding stated that communication between
DDR1 and collagen II in-duces the expression of MMP-13, which damages the RA cartilage.
Finally, it is unclear whether DDR2 and its role in regulating bone and cartilage influenced
the inflammatory response and how bone damage manifested in RA.
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A study shows that it reduced the severity of OA in mice lacking DDR2 [136]. In addi-
tion, recent research has shown that inhibiting DDR1 in OA mice results in lower MMP13
and Col1a1 expression levels. Although these findings confirm and elucidate the role of
DDR1 and DDR2 in stimulating chondrocyte hypertrophy [137]. There has been a surge
of interest in the molecular signaling of TK and its pathophysiology in various disorders
associated with receptors that play an essential role in controlling those conditions. It
contains the receptors FGFR-1, DDR1, DDR2, EGFR, FAK, TrkA, and Fyn, a few of which
have been identified as inducers of chondrocyte hyper-trophy and articular cartilage. As a
result, the receptors mentioned above may impair the functions of TKs and can be consid-
ered a potential treatment for OA [89]. Meanwhile, articular cartilage and its homeostasis,
regulated by TKs-regulated signaling receptors (particularly DDR2), may be dysregulated,
leading to chondrocyte hypertrophy [138]. Although some repositioning drugs can be used
as an alternative medicine at a low cost, they are best suited for developing countries.

Osteoarthritis (OA) is a set of disorders that can cause symptoms and signs in the
joints, also known as chronic degenerative disorder. The signs and symptoms of OA are
connected with a loss of integrity in the articular cartilage and changes in the underlying
bone and joint margins [139]. However, the molecular mechanism underlying OA has yet
to be discovered. Our recent study investigated the DDR1 inhibitor of 7 rh roles in OA
prevention and autophagy mechanisms. According to our findings, the IA injection of
7 rh increased the OA joint functionality and decreased the OARSI score. Furthermore, we
uncovered that 7 rh inhibits the production of MMP13, Col X, and IHH, which can reduce
chondrocyte hypertrophic differentiation [11].

A high incidence of OA in the temporomandibular joint (TMJ) was seen in DDR1
knockout mice. The decrease in DDR1 expression significantly impacts the pathophysiol-
ogy of OA, including increased expression of collagen type I, MMP-13, DDR2, and Runx-2.
These effects include the loss of DDR1 expression [104]. In humans and mice, DDR2 knock-
out leads to severe craniofacial and skeletal malformations, such as changed dwarfism,
cranial shape, diminished trabecular and cortical bone, and alveolar bone/periodontal
deficiencies. In primary calvarial osteoblast cultures and mesenchymal cell lines, DDR2
knockdown/knockout inhibited osteoblast development, while DDR2 overexpression stim-
ulated it. Reduced osteoprogenitor or osteoblast cell proliferation and differentiation may
contribute to the poor bone repair associated with DDR2 deficiency [140].

Moreover, a crossbred of DDR1−/− and Ldle−/−mice develop atherosclerosis, in
which the mice lack the DDR2 gene, long bones become shorter and flat bones become
irregular. The CT evaluation confirmed it. DDR1 and DDR2 knockout mice have different
skull development during live-CT imaging. At the same time, no research has been carried
out to determine bone mineral density in DDR2 knockout mice. However, the loss of
collagen binding in the DDR2 knockout mice delayed wound healing and lower tensile
strength [141]. In addition, augmentation of DDRs and MMP-13 expression was observed
in various in vivo animal studies induced by OA.

OA-induced genetic induction and surgically operated OA-induced models were
utilized to explore the DDRs’ role in bone physiology. Besides, patients were found to
have increased DDRs with MMP-13 expression in cartilage [142,143]. However, these
findings contradicted a subsequent study by Holt et al. (2012), who discovered the same
changes previously reported, such as DDR and MMP-13 upregulation in different mouse
models and sedc mice. As a result, overexpression of DDRs is observed as one of the
critical and early changes in many mouse models induced with OA, because researchers
decided to reduce DDR expression in animal models generated with OA, facilitate cartilage
degeneration leads to bone/joints speedy recovery for indirect proportional chances [144].

According to the previous study, when DDR2 and collagen II interact, they activate
various downstream signaling pathways and dozens of effective terminator molecules,
such as IL-15 and Dkk-1, which contribute to inflammation of cells entering membranes and
causing cartilage and bone destruction in RA [118]. According to the US Food and Drug
Administration, the most potent RTK inhibitor against severe bone damage developed
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arthritis in mice models is dasatinib. DDR2 inhibitors, on the other hand, are less effective
due to their low binding specificity for collagen molecules [120]. DDR expression is lower
in RA after OA, and there is little research on this disease. It is essential to remember that
research in the field of DDRs is ongoing. As of our knowledge, no DDR-specific treatments
have been licensed to treat OA or RA despite the promise of DDRs as therapeutic targets
in these disorders. It is necessary to do additional research into the processes behind
DDR signaling and their function in the pathogenesis of OA and RA to create effective
DDR-targeted therapy.

The pericellular matrix (PCM) comprises several molecules interacting to generate a
distinct extracellular matrix network. These components include collagen types VI and IX,
biglycan, matrilin, fibronectin, and fibromodulin [145]. The PCM is frequently damaged or
changed in osteoarthritis conditions. This can happen due to several physical and biological
factors, including mechanical stress, inflammation, and OA-related biochemical changes.
According to Cherry et al. (2020), pericellular matrix degradation may happen early in
the progression of OA, causing abnormal chondrocyte–type II collagen interactions and
initiating the catabolic signaling process. Type II collagen is the most abundant collagen in
cartilage, which is the source of phosphorylate DDR-2 [146]. Due to its interaction with
collagen type II, the DDR2 exhibits increased expression.

Additionally, Xu et al. (2011) use a mouse model with inducible DDR2 overexpression
in cartilage to study the effects of the chondrocyte pericellular matrix on DDR2. The activa-
tion of DDR2 interacts with native collagen type II, which increases receptor expression in
chondrocytes and induction of MMP13 expression [16]. The pericellular matrix typically
surrounds articular cartilage and bone chondrocytes, whereas collagen II fibrils are found
in territorial and interterritorial matrices, though they are not directly related to chondro-
cytes [147]. Although only surgery can jeopardize the medical meniscus, which hastens the
development of OA by activating DDR, an independent study using chondrocyte cultures
(cells without pericellular matrix) and in vitro, chondrocytes demonstrated the presence
of collagen-induced MMP-13 stimulation (with organized pericellular matrix). All these
findings suggest that DDRs may also play a role in RA pathogenesis [148].

8. Conclusions

It is widely accepted that DDR1 and DDR2 are pivotal in responding to numerous
signaling pathways in bone formation, regeneration, as well as cartilage-related diseases.
DDR1 and DDR2 expression dysregulation delay bone growth and bone regeneration,
and targeting the DDR1 and DDR2 signaling pathways is an intriguing strategy for bone
research. Several types of small-molecule inhibitors have been developed to regulate the
expression of DDR1 and DDR2. Therefore, a better comprehension of the mechanism
underlying the pathological intervention of DDR1 and DDR2 in bone diseases is essential
for developing more specific and efficient therapeutic agents for treating bone-related
disorders.
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