Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = DC voltage control timescale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4919 KB  
Article
A Theoretical Framework for the Control of Modular Multilevel Converters Based on Two-Time Scale Analysis
by Riccardo Antonino Testa, Malik Qamar Abbas, Antonio Femia, Luca Vancini, Gabriele Rizzoli, Michele Mengoni, Luca Zarri and Angelo Tani
Energies 2025, 18(23), 6233; https://doi.org/10.3390/en18236233 - 27 Nov 2025
Viewed by 316
Abstract
The Modular Multilevel Converter (MMC) has gained significant popularity over the past decade due to its versatility. The MMC features have been leveraged in numerous fields, including high-voltage DC transmission, electric vehicle power trains, motor drives, and wind energy conversion. In controlling the [...] Read more.
The Modular Multilevel Converter (MMC) has gained significant popularity over the past decade due to its versatility. The MMC features have been leveraged in numerous fields, including high-voltage DC transmission, electric vehicle power trains, motor drives, and wind energy conversion. In controlling the MMC, the circulating current (i.e., the current flowing through both the upper and lower converter arms without delivering power to the load) has consistently been the most critical variable. In early applications, it was perceived as a source of losses, but more recently, it has become evident that injecting a specific current could reduce voltage and energy ripples. This paper presents a theoretical framework, based on time-scale analysis, useful for modeling and controlling MMCs. The new approach is adopted for generating the circulating current reference, which is expressed as a linear combination of orthogonal functions. The goals are to decouple the control of the voltages of the upper and lower converter arms and manage additional harmonic components of the circulating current for voltage ripple reduction on module capacitors. The simulations and experimental results demonstrate the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

22 pages, 4416 KB  
Article
Small-Signal Stability Analysis of Converter-Interfaced Systems in DC Voltage Timescale Based on Amplitude/Frequency Operating Points
by Jin Lyu, Sicheng Wang and Jiabing Hu
Processes 2025, 13(8), 2583; https://doi.org/10.3390/pr13082583 - 15 Aug 2025
Viewed by 756
Abstract
The oscillations induced by voltage source converters (VSCs) in DC voltage timescale dynamics pose significant challenges to the safe and stable operation of VSC-dominated power systems. However, previous studies have conducted simplified analyses without fully understanding the fundamental roles of different timescale control [...] Read more.
The oscillations induced by voltage source converters (VSCs) in DC voltage timescale dynamics pose significant challenges to the safe and stable operation of VSC-dominated power systems. However, previous studies have conducted simplified analyses without fully understanding the fundamental roles of different timescale control loops in converter-interfaced systems. In light of this, this study first identifies the key state variables and operating points that directly characterize the energy storage levels of devices and networks in AC systems. A model for the converter-interfaced system is then established in the specified DC voltage timescale. The key contribution of this work is the proposal of an analytical framework that decomposes system stability into self-stabilizing (Self-stable) and externally coupled stabilizing (En-stable) paths based on internal voltage amplitude and frequency, aiming to reveal the physical mechanisms behind internal voltage amplitude and frequency oscillations in DC voltage timescale dynamics. Based on this framework, the Self-stable path and En-stable path of the internal voltage amplitude/frequency of converter-interfaced systems are derived. This novel analytical method mathematically decouples the stability of a single variable into a direct self-influence path and an indirect path coupled through other system variables. Subsequently, the causes of internal voltage amplitude/frequency oscillations in the specified voltage timescale are explained using the Self-stability and En-stability analysis method. A key finding of this study is that the stability of the internal voltage amplitude and frequency exhibits a dual relationship: for amplitude stability, the Self-stable path is stabilizing, whereas the coupled path is destabilizing; for frequency stability, the roles are reversed. Finally, the results are verified through simulations. Full article
Show Figures

Figure 1

20 pages, 6870 KB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Cited by 2 | Viewed by 731
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

14 pages, 555 KB  
Article
Small-Signal Modeling of Grid-Forming Wind Turbines in Active Power and DC Voltage Control Timescale
by Kezheng Jiang, Xiaotong Ji, Dan Liu, Wanning Zheng, Lixing Tian and Shiwei Chen
Electronics 2024, 13(23), 4728; https://doi.org/10.3390/electronics13234728 - 29 Nov 2024
Cited by 3 | Viewed by 1124
Abstract
Grid-forming wind turbines (GFM-WTs) based on virtual synchronous control can support the voltage and frequency of power system by emulating the synchronous generator. The dynamic characteristics of a GFM-WT decided by virtual synchronous control, dq-axis voltage, and current control is significant for small-signal [...] Read more.
Grid-forming wind turbines (GFM-WTs) based on virtual synchronous control can support the voltage and frequency of power system by emulating the synchronous generator. The dynamic characteristics of a GFM-WT decided by virtual synchronous control, dq-axis voltage, and current control is significant for small-signal stability analysis. This paper builds a small-signal model of a GFM-WT in active power control (APC) and DC voltage control (DVC) timescale from the perspective of internal voltage. The proposed model describes how the magnitude and phase of the internal voltage are excited by the unbalanced active and reactive power when small disturbances occur. Interactions in different control loops can be identified by the reduced order model. We verify the accuracy of the proposed model in APC and DVC timescales by time domain simulations based on MATLAB/Simulink. Case studies show how the control parameters interact with each other in the two timescales. Full article
Show Figures

Figure 1

20 pages, 1245 KB  
Article
Multi-Time Scale Energy Storage Optimization of DC Microgrid Source-Load Storage Based on Virtual Bus Voltage Control
by Xiaoxuan Guo, Yasai Wang, Min Guo, Leping Sun and Xiaojun Shen
Energies 2024, 17(22), 5626; https://doi.org/10.3390/en17225626 - 11 Nov 2024
Cited by 3 | Viewed by 1712
Abstract
The energy storage adjustment strategy of source and load storage in a DC microgrid is very important to the economic benefits of a power grid. Therefore, a multi-timescale energy storage optimization method for direct current (DC) microgrid source-load storage based on a virtual [...] Read more.
The energy storage adjustment strategy of source and load storage in a DC microgrid is very important to the economic benefits of a power grid. Therefore, a multi-timescale energy storage optimization method for direct current (DC) microgrid source-load storage based on a virtual bus voltage control is studied. It uses a virtual damping compensation strategy to control the stability of virtual bus voltage and establishes a virtual energy storage model by combining different types of distributed capability units. The design of an optimization process for upper-level daily energy storage has the objective function of maximizing the economic benefits of microgrids to cope with unplanned fluctuations in power. A real-time energy-adjustment scheme for the lower level is introduced, and a real-time energy-adjustment scheme based on virtual energy storage for the short-term partition of the source-load storage is designed to improve the reliability of microgrid operations. The experiment shows that, in response to the constant amplitude oscillation of the power grid after a sudden increase in power, this method introduces a virtual damping compensation strategy at 20 s, which can stabilize the virtual bus voltage. From 00:00 to 09:00, the battery power remains at around 4 MW, and from 12:00 to 21:00, the battery exits the discharge state. The economic benefits from applying this method are significantly higher than before. This method can effectively adjust the source-load energy storage in real time. During peak electricity price periods, the SOC value of supercapacitors is below 0.4, and during normal electricity price periods, the SOC value of supercapacitors can reach up to 1.0, which can make the state of the charge value of supercapacitors meet economic requirements. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 5490 KB  
Article
Transient Stability Analysis of Direct Drive Wind Turbine in DC-Link Voltage Control Timescale during Grid Fault
by Qi Hu, Yiyong Xiong, Chenruiyang Liu, Guangyu Wang and Yanhong Ma
Processes 2022, 10(4), 774; https://doi.org/10.3390/pr10040774 - 15 Apr 2022
Cited by 6 | Viewed by 2638
Abstract
Transient stability during grid fault is experienced differently in modern power systems, especially in wind-turbine-dominated power systems. In this paper, transient behavior and stability issues of a direct drive wind turbine during fault recovery in DC-link voltage control timescale are studied. First, the [...] Read more.
Transient stability during grid fault is experienced differently in modern power systems, especially in wind-turbine-dominated power systems. In this paper, transient behavior and stability issues of a direct drive wind turbine during fault recovery in DC-link voltage control timescale are studied. First, the motion equation model that depicts the phase and amplitude dynamics of internal voltage driven by unbalanced active and reactive power is developed to physically depict transient characteristics of the direct drive wind turbine itself. Considering transient switch control induced by active power climbing, the two-stage model is employed. Based on the motion equation model, transient behavior during fault recovery in a single machine infinite bus system is studied, and the analysis is also divided into two stages: during and after active power climbing. During active power climbing, a novel approximate analytical expression is proposed to clearly reveal the frequency dynamics of the direct drive wind turbine, which is identified as approximate monotonicity at excitation of active power climbing. After active power climbing, large-signal oscillation behavior is concerned. A novel analysis idea combining time-frequency analysis based on Hilbert transform and high order modes is employed to investigate and reveal the nonlinear oscillation, which is characterized by time-varying oscillation frequency and amplitude attenuation ratio. It is found that the nonlinear oscillation and even stability are related closely to the final point during active power climbing. With a large active power climbing rate, the nonlinear oscillation may lose stability. Simulated results based on MATLAB® are also presented to verify the theoretical analysis. Full article
(This article belongs to the Special Issue Modeling, Analysis and Control Processes of New Energy Power Systems)
Show Figures

Figure 1

20 pages, 1847 KB  
Article
Nonlinear Hierarchical Easy-to-Implement Control for DC MicroGrids
by Sabah B. Siad, Alessio Iovine, Gilney Damm, Lilia Galai-Dol and Mariana Netto
Energies 2022, 15(3), 969; https://doi.org/10.3390/en15030969 - 28 Jan 2022
Cited by 6 | Viewed by 3081
Abstract
In this work is considered the connection of a photovoltaics (PV) solar plant to the main grid through a Direct Current (DC) MicroGrid and a hybrid storage system, composed of a battery and a supercapacitor, in order to satisfy constraints of grid connection [...] Read more.
In this work is considered the connection of a photovoltaics (PV) solar plant to the main grid through a Direct Current (DC) MicroGrid and a hybrid storage system, composed of a battery and a supercapacitor, in order to satisfy constraints of grid connection (the so-called Grid-Codes). The objective, and main contribution of this paper, is to stabilize the DC MicroGrid voltage in spite of large variations in production and consumption, using a nonlinear hierarchical easy-to-implement control strategy. Here is presented the MicroGrid’s control design based on detailed models of the photovoltaic energy sources and the storage systems. Such DC grids may present an unstable behavior caused by the PV’s intermittent output power, by switching ripples from the power converters and their power electronics, and oscillatory currents produced by some types of loads. Therefore, the system is subject to both fast and slow variations, and its stabilization is based on different technologies of storage, such as battery and supercapacitor, and control algorithms designed thanks to the use of time-scale separation between different components of the storage systems. The obtained nonlinear results are stronger than current linear controllers, allowing to keep operating margins around the voltage reference. At the same time, in this work, insights from power systems practice have been used, aiming to obtain a very simple and easy-to-implement control scheme. Detailed simulation results are provided to illustrate the behavior and effectiveness of the proposed stabilization technique. Full article
(This article belongs to the Special Issue Hybrid AC/DC Grid)
Show Figures

Figure 1

18 pages, 5734 KB  
Article
Modeling and Stability Analysis of Weak-Grid Tied Multi-DFIGs in DC-Link Voltage Control Timescale
by Dong Wang, Houquan Chen, Yunhui Huang, Xiangtian Deng and Guorong Zhu
Energies 2020, 13(14), 3689; https://doi.org/10.3390/en13143689 - 17 Jul 2020
Cited by 5 | Viewed by 2441
Abstract
The DC-link voltage control (DVC) timescale (i.e., the frequency dynamics covering converter outer controls) instabilities in wind generation have gained increased attention recently. This paper presents DVC timescale modeling and stability analysis for multi doubly-fed induction generators (DFIGs) connected to weak AC grids. [...] Read more.
The DC-link voltage control (DVC) timescale (i.e., the frequency dynamics covering converter outer controls) instabilities in wind generation have gained increased attention recently. This paper presents DVC timescale modeling and stability analysis for multi doubly-fed induction generators (DFIGs) connected to weak AC grids. A reduced-order, small-signal model of a grid-tied multi-DFIG system, designed for DVC dynamics analysis, is firstly proposed. The model allows for the dynamic interactions among the DC-link voltage control, active power control (APC), terminal voltage control (TVC) and phase-locked loop (PLL). Eigenvalue and participation factor analyses are conducted to explore the potential instabilities and correlated critical factors for such a multi-machine system. The sensitivity studies find that instability can occur at high levels of power generations or low short-circuit ratio (SCR) conditions. In addition, the dominant mode is identified to be highly related to the PLL, and its modal damping is decreased when the bandwidths of PLLs in different generators are close. Detailed model-based time domain simulations verified the analysis above. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 4812 KB  
Article
Modeling and Analyzing the Effect of Frequency Variation on Weak Grid-Connected VSC System Stability in DC Voltage Control Timescale
by Hui Yang and Xiaoming Yuan
Energies 2019, 12(23), 4458; https://doi.org/10.3390/en12234458 - 22 Nov 2019
Cited by 6 | Viewed by 3177
Abstract
The effect of frequency variation on system stability becomes crucial when a voltage source converter (VSC) is connected to a weak grid. However, previous studies lack enough mechanism cognitions of this effect, especially on the stability issues in DC voltage control (DVC) timescale [...] Read more.
The effect of frequency variation on system stability becomes crucial when a voltage source converter (VSC) is connected to a weak grid. However, previous studies lack enough mechanism cognitions of this effect, especially on the stability issues in DC voltage control (DVC) timescale (around 100 ms). Hence, this paper presented a thorough analysis of the effect mechanism of frequency variation on the weak grid-connected VSC system stability in a DVC timescale. Firstly, based on instantaneous power theory, a novel method in which the active/reactive powers are calculated with the time-varying frequency of voltage vectors was proposed. This method could intuitively reflect the effect of frequency variation on the active/reactive powers and could also help reduce the system order to a certain extent. Then, a small-signal model was established based on the motion equation concept, to depict the effect of frequency variation on the weak grid-connected VSC system dynamics. Furthermore, an analytical method was utilized to quantify the effect of frequency variation on the system’s small-signal stability. The quantitative analysis considered the interactions between the DC voltage control, the terminal voltage control, phase-locked loop, and the power network. Finally, case studies were conducted, and simulation results supported the analytical analyses. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Graphical abstract

17 pages, 9189 KB  
Article
Analysis of Inertia Characteristics of Direct-Drive Permanent-Magnet Synchronous Generator in Micro-Grid
by Donghui Zhang, Yongbin Wu, Liansong Xiong and Chengyong Zhao
Energies 2019, 12(16), 3141; https://doi.org/10.3390/en12163141 - 15 Aug 2019
Cited by 10 | Viewed by 3600
Abstract
Micro-grid has received extensive attention as an effective way to absorb new energy. Compared to large power systems, the micro-grid system consisting of power electronics is relatively weak due to the lack of support for synchronous machines. In this paper, the direct-drive wind [...] Read more.
Micro-grid has received extensive attention as an effective way to absorb new energy. Compared to large power systems, the micro-grid system consisting of power electronics is relatively weak due to the lack of support for synchronous machines. In this paper, the direct-drive wind turbine (WT) is connected to the low-inertia micro-grid as the research background. Based on the virtual inertia control of the WT, the inertia source and the physical mechanism of the WT connected to the micro-grid system are studied. The inertia characteristics of the rotor of the WT on the electromechanical time-scale, the DC side capacitor on the DC voltage time-scale, and the simulated grid under the droop control are analyzed. The research results show that under the control of the system, the inertia of the system is derived from the WT, DC capacitor, and the micro-grid simulated by droop control converter. The equivalent inertia of each link is determined by the control parameters, steady-state operating point, and structural parameters. The resulting inertia characteristics will have frequency domain characteristics under control. Finally, the correctness of the system inertia analysis conclusion is verified by simulation and experiment. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 1507 KB  
Article
Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route
by Jemma J. Makrygiorgou and Antonio T. Alexandridis
Energies 2019, 12(10), 1990; https://doi.org/10.3390/en12101990 - 24 May 2019
Cited by 12 | Viewed by 9117
Abstract
Electric vehicles (EVs), during a route, should normally operate at the desired speed by effectively controlling the power that flows between their batteries and the electric motor/generator. To implement this task, in this paper, the voltage source AC/DC converter is considered as a [...] Read more.
Electric vehicles (EVs), during a route, should normally operate at the desired speed by effectively controlling the power that flows between their batteries and the electric motor/generator. To implement this task, in this paper, the voltage source AC/DC converter is considered as a controlled power interface between the electric machine and the output of the DC storage device; the DC/DC converter is used to automatically regulate the battery operating condition in accordance to the profile of the acting on the vehicle wheels, unknown external torque. Particularly, the speed is continuously regulated by the vehicle driver via the pedal while all other regulations for absorbing or regenerating energy are internally controlled. The driver command is acting as speed reference input on a PI outer-loop motor speed controller which, in its turn, drives a fast P inner-loop current controller operating in cascaded mode. In a similar manner, the machine and the battery performance are self-regulated by a pure PI current controller that achieves maximum electric torque per ampere operation of the motor and by a PI/P cascaded scheme for the DC-voltage/battery–current regulation, respectively. In order to exclude any possibility of instabilities and adverse impacts between the different parts, a rigorous analysis is deployed on the complete electromechanical system that involves the motor, the batteries, the converter dynamic models and the proposed controllers. Modeling the system in Euler–Lagrange nonlinear form and applying sequentially suitable Lyapunov techniques and the time-scale separation principle, a systematic method for tuning the gains of the inner- and outer-loop controllers is derived. Therefore, the proposed controller design procedure guarantees asymptotic stability by considering the accurate system model as a whole. Finally, the proposed approach is validated by simulating realistic route conditions, performed under unknown external torque variations. Full article
(This article belongs to the Special Issue Power Processing Systems for Electric Vehicles)
Show Figures

Figure 1

17 pages, 6500 KB  
Article
Modeling and Mechanism Investigation of Inertia and Damping Issues for Grid-Tied PV Generation Systems with Droop Control
by Yongbin Wu, Donghui Zhang, Liansong Xiong, Sue Wang, Zhao Xu and Yi Zhang
Energies 2019, 12(10), 1985; https://doi.org/10.3390/en12101985 - 23 May 2019
Cited by 20 | Viewed by 3553
Abstract
Inertia effect and damping capacity, which are the basic characteristics of traditional power systems, are critical to grid frequency stability. However, the inertia and damping characteristics of grid-tied photovoltaic generation systems (GPVGS), which may affect the frequency stability of the grid with high [...] Read more.
Inertia effect and damping capacity, which are the basic characteristics of traditional power systems, are critical to grid frequency stability. However, the inertia and damping characteristics of grid-tied photovoltaic generation systems (GPVGS), which may affect the frequency stability of the grid with high proportional GPVGS, are not yet clear. Therefore, this paper takes the GPVGS based on droop control as the research object. Focusing on the DC voltage control (DVC) timescale dynamics, the mathematical model of the GPVGS is firstly established. Secondly, the electrical torque analysis method is used to analyze the influence law of inertia, damping and synchronization characteristics from the physical mechanism perspective. The research finds that the equivalent inertia, damping and synchronization coefficient of the system are determined by the control parameters, structural parameters and steady-state operating point parameters. Changing the control parameters is the simplest and most flexible way to influence the inertia, damping and synchronization ability of the system. The system inertia is influenced by the DC voltage outer loop proportional coefficient Kp and enhanced with the increase of Kp. The damping characteristic of the system is affected by the droop coefficient Dp and weakened with the increase of Dp. The synchronization effect is only controlled by DC voltage outer loop integral coefficient Ki and enhanced with the increase of Ki. In addition, the system dynamic is also affected by the structural parameters such as line impedance X, DC bus capacitance C, and steady-state operating point parameters such as the AC or DC bus voltage level of the system and steady-state operating power (power angle). Finally, the correctness of the above analysis are verified by the simulation and experimental results. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 3278 KB  
Article
Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System
by Abdelali El Aroudi, Mohamed Al-Numay, Germain Garcia, Khalifa Al Hossani, Naji Al Sayari and Angel Cid-Pastor
Energies 2019, 12(1), 61; https://doi.org/10.3390/en12010061 - 25 Dec 2018
Cited by 18 | Viewed by 4555
Abstract
In this paper, the nonlinear dynamics of a PV-fed high-voltage-gain single-switch quadratic boost converter loaded by a grid-interlinked DC-AC inverter is explored in its parameter space. The control of the input port of the converter is designed using a resistive control approach ensuring [...] Read more.
In this paper, the nonlinear dynamics of a PV-fed high-voltage-gain single-switch quadratic boost converter loaded by a grid-interlinked DC-AC inverter is explored in its parameter space. The control of the input port of the converter is designed using a resistive control approach ensuring stability at the slow time-scale. However, time-domain simulations, performed on a full-order circuit-level switched model implemented in PSIM© software, show that at relatively high irradiance levels, the system may exhibit undesired subharmonic instabilities at the fast time-scale. A model of the system is derived, and a closed-form expression is used for locating the subharmonic instability boundary in terms of parameters of different nature. The theoretical results are in remarkable agreement with the numerical simulations and experimental measurements using a laboratory prototype. The modeling method proposed and the results obtained can help in guiding the design of power conditioning converters for solar PV systems, as well as other similar structures for energy conversion systems. Full article
(This article belongs to the Special Issue Control and Nonlinear Dynamics on Energy Conversion Systems)
Show Figures

Figure 1

14 pages, 4726 KB  
Article
Inertial and Damping Characteristics of DC Distributed Power Systems Based on Frequency Droop Control
by Liancheng Xiu, Liansong Xiong, Ping Yang and Zhiliang Kang
Energies 2018, 11(9), 2418; https://doi.org/10.3390/en11092418 - 12 Sep 2018
Cited by 14 | Viewed by 4045
Abstract
With high penetration of renewable energy, DC distributed power systems (DDPSs) need to improve the inertia response and damping capacity of the power grid. The effects of main circuit parameters and control factors on the inertia, damping and synchronization of the DDPS were [...] Read more.
With high penetration of renewable energy, DC distributed power systems (DDPSs) need to improve the inertia response and damping capacity of the power grid. The effects of main circuit parameters and control factors on the inertia, damping and synchronization of the DDPS were studied in this paper. Firstly, the dynamic model of DDPSs based on frequency droop control is established in the DC voltage control (DVC) timescale. Then, a static synchronous generator (SSG) model is used to analyze the parameters that affect the inertial level, damping effect and synchronization capability of the DDPS. The analysis results show that an optimal design of the frequency droop coefficient and proportional integral (PI) parameters of the DC bus voltage control loop can equivalently change the characteristics of inertia and damping when the frequency droop control strategy is applied to the DC/DC converter and the DC bus voltage control strategy is used in the grid-tied inverter. Simulation results verify the correctness of the conclusions. This paper helps to design an effective control strategy for DDPSs to enhance the inertial level and damping effect of the power grid and to improve the stable operation capability of renewable energy systems. Full article
Show Figures

Figure 1

6 pages, 491 KB  
Article
A Novel Hybrid Control Strategy for Maximising Regenerative Braking Capability In a Battery-Supercapacitor Energy Storage System
by Ralph Clague, Ilja Siera and Michael Lamperth
World Electr. Veh. J. 2010, 4(3), 511-516; https://doi.org/10.3390/wevj4030511 - 24 Sep 2010
Cited by 5 | Viewed by 1521
Abstract
EVO Electric has designed, built and tested the DuoDrive hybrid system based on proprietary axial flux motor technology, and installed it in a London Taxi Cab. The DuoDrive switchable series/parallel hybrid system has demonstrated a 60% improvement in fuel economy compared to a [...] Read more.
EVO Electric has designed, built and tested the DuoDrive hybrid system based on proprietary axial flux motor technology, and installed it in a London Taxi Cab. The DuoDrive switchable series/parallel hybrid system has demonstrated a 60% improvement in fuel economy compared to a conventional taxi when operated over an urban drive cycle. As with many hybrid vehicles, a large part of this improvement is attributed to effective and efficient recapture of braking energy. The amount of braking energy that can be recovered, and the efficiency with which it can be returned to the road will therefore have a significant impact on the overall fuel economy of the vehicle. One factor that limits the amount of energy that can be recovered is the allowable charge rate of the battery, as braking events are usually high power and in a hybrid vehicle the battery size is generally small. The vehicle described in this paper has an energy storage system comprised of high power ultra-capacitors and a high energy lithium ion battery connected through a DC/DC converter. This allows efficient, high power transfer under regenerative braking and acceleration, and similarly efficient energy storage over longer timescales. Managing the power flow through the DC/DC converter and therefore the ultra-capacitor voltage, is a key control parameter that affects the efficiency of the overall system. This paper presents the energy storage system layout and demonstrates how different DC/DC converter control strategies can affect the system energy efficiency. Full article
Back to TopTop