Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = D1 protein (psbA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6066 KB  
Article
The Complete Chloroplast Genome of the Green Algae Desmodesmus spinosus (Chodat) E.Hegewald: Genome Structure, Phylogeny, and Comparative Analysis
by Shixi Chen, Jiang Tan, Fardous Mohammad Safiul Azam, Ao Li, Renqing Zhang and Bin Li
Diversity 2025, 17(10), 721; https://doi.org/10.3390/d17100721 - 16 Oct 2025
Viewed by 711
Abstract
Desmodesmus spinosus (Chodat) E.Hegewald is a common freshwater green microalgae widely distributed in various aquatic environments. Owing to its pollution tolerance and rapid growth characteristics, it is often used in bioremediation and biofuel studies. Here, we report the draft chloroplast (cp) genome of [...] Read more.
Desmodesmus spinosus (Chodat) E.Hegewald is a common freshwater green microalgae widely distributed in various aquatic environments. Owing to its pollution tolerance and rapid growth characteristics, it is often used in bioremediation and biofuel studies. Here, we report the draft chloroplast (cp) genome of this species here for the first time to facilitate its genomic features and phylogenetic position in Scenedesmaceae. The whole chloroplast genome was 167, 203 base pairs in length, with 104 annotated genes, including 69 protein-coding genes, 29 tRNAs, and 6 rRNAs. The introns identified among them were: rbcL, psaA, and petD, each containing 1 intron; atpB with 2 introns; and psbA with 3 introns. A total of 106 SSRs with 16 motif classes, 50 dispersed repeats, and 17 long tandem repeats were identified in this genome. A total of 221 RNA-editing sites were distributed across 46 protein-coding genes in this genome. In IR boundaries, the position of genes was found to be remarkable in differentiating species, such as trnH and ycf1 at JLB and JSA, cemA, psbC, and rpl22 at JS, and cemA, psbC and rrs at JSB. Notably, psbA-rps11, psbH-psbK, and trnR-ACG-psbM were highly variable regions. Phylogenetic analysis revealed a sister relationship between D. spinosus and D. abundans. Chloroplast genomic data and findings from phylogenetic studies of D. spinosus could provide useful information and shed light on in-depth studies on the evolution pattern of the understudied species, as well as that of Scenedesmaceae. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

16 pages, 2363 KB  
Article
The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress
by Maria Ciesielska, Małgorzata Adamiec and Robert Luciński
Plants 2025, 14(16), 2584; https://doi.org/10.3390/plants14162584 - 20 Aug 2025
Cited by 1 | Viewed by 913
Abstract
High light intensity constitutes a critical abiotic stress factor that profoundly affects the structural and functional integrity of the photosynthetic apparatus. Excessive irradiance triggers accelerated degradation of the PsbA polypeptide, increases susceptibility to photoinhibition, and promotes overproduction of reactive oxygen species (ROS), thereby [...] Read more.
High light intensity constitutes a critical abiotic stress factor that profoundly affects the structural and functional integrity of the photosynthetic apparatus. Excessive irradiance triggers accelerated degradation of the PsbA polypeptide, increases susceptibility to photoinhibition, and promotes overproduction of reactive oxygen species (ROS), thereby inducing oxidative damage to proteins, lipids, and nucleic acids. Among the chloroplast-localized site-2 proteases of Arabidopsis thaliana, S2P2 remains the least characterized. In this study, our analyses revealed a pronounced upregulation of the S2P2 (AT1G05140) gene and a concomitant accumulation of the S2P2 protein under high light conditions. Functional characterization using two independent S2P2 insertional mutant lines lacking the protease demonstrated that loss of S2P2 significantly exacerbates photoinhibition. Mutants exhibited reduced photosystem II (PSII) efficiency, accompanied by accelerated degradation of the PSII core proteins PsbA, PsbD, and PsbC, as well as elevated ROS generation. These findings provide the first direct evidence that S2P2 plays a pivotal role in maintaining the stoichiometric balance of PSII core components and conferring resilience of the photosynthetic machinery to high light stress. This work expands the functional repertoire of chloroplast site-2 proteases and underscores S2P2 as a potential target for improving stress tolerance in plants. Full article
(This article belongs to the Special Issue Advances in Plant Photobiology)
Show Figures

Figure 1

21 pages, 1391 KB  
Review
The Toxicological Effects, Toxin-Producing Performance, and Molecular Mechanism of Marine Microalgae in Response to Environmental Estrogens: A Review
by Long Guo, Wenqing Chen, Chunyun Zhang, Yuanyuan Wang and Guofu Chen
Water 2025, 17(13), 1922; https://doi.org/10.3390/w17131922 - 27 Jun 2025
Viewed by 1351
Abstract
As emerging contaminants increasingly detected in aquatic and terrestrial ecosystems, environmental estrogens (EEs) pose significant ecological risks to marine ecosystems, particularly affecting photosynthetic microorganisms occupying fundamental roles in marine food webs. This review summarizes the current knowledge on the toxicological effects of EEs [...] Read more.
As emerging contaminants increasingly detected in aquatic and terrestrial ecosystems, environmental estrogens (EEs) pose significant ecological risks to marine ecosystems, particularly affecting photosynthetic microorganisms occupying fundamental roles in marine food webs. This review summarizes the current knowledge on the toxicological effects of EEs in marine microalgae through a systematic analysis of dose-dependent physiological, biochemical, and molecular responses. Experimental evidence reveals a biphasic response pattern characterized by growth promotion and photosynthetic enhancement in microalgae under low-concentration EE exposure (0.1–10 μg/L), while marked inhibition of both growth and photosynthetic activity was observed at elevated EE concentrations (>50 μg/L). Notably, sustained EE exposure induces metabolic reprogramming, manifested through reduced protein and polysaccharide biosynthesis concurrent with accelerated lipid accumulation. Cellular stress responses include significant ultrastructural alterations such as chloroplast membrane disruption, cell wall thickening, and the formation of multicellular aggregates. The study further elucidates the concentration-dependent modulation of toxin metabolism, with sublethal doses stimulating intracellular microcystin synthesis (1.5–2.3-fold increase), while acute exposure triggers toxin release through membrane permeabilization. At molecular levels, transcriptomic analyses identify the up-regulation of heat shock proteins (HSP70/90) and the differential expression of genes governing cell cycle progression (cyclin-D), apoptotic pathways (caspase-3), photosynthetic electron transport (psbA), and oxidative stress responses (SOD, CAT). These findings demonstrate that EEs exert multilevel impacts on microalgal physiology through interference with fundamental metabolic processes, potentially disrupting marine primary productivity and biogeochemical cycles. The identified response mechanisms provide critical insights for environmental risk assessment and establish a conceptual framework for investigating estrogenic pollutant effects in aquatic ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

20 pages, 6848 KB  
Article
Comparative Analysis of Chloroplast Genomes in Cephaleuros and Its Related Genus (Trentepohlia): Insights into Adaptive Evolution
by Jiao Fang, Lingling Zheng, Guoxiang Liu and Huan Zhu
Genes 2024, 15(7), 839; https://doi.org/10.3390/genes15070839 - 26 Jun 2024
Cited by 4 | Viewed by 2695
Abstract
Cephaleuros species are well-known as plant pathogens that cause red rust or algae spot diseases in many economically cultivated plants that grow in shady and humid environments. Despite their prevalence, the adaptive evolution of these pathogens remains poorly understood. We sequenced and characterized [...] Read more.
Cephaleuros species are well-known as plant pathogens that cause red rust or algae spot diseases in many economically cultivated plants that grow in shady and humid environments. Despite their prevalence, the adaptive evolution of these pathogens remains poorly understood. We sequenced and characterized three Cephaleuros (Cephaleuros lagerheimii, Cephaleuros diffusus, and Cephaleuros virescens) chloroplast genomes, and compared them with seven previously reported chloroplast genomes. The chloroplast sequences of C. lagerheimii, C. diffusus, and C. virescens were 480,613 bp, 383,846 bp, and 472,444 bp in length, respectively. These chloroplast genomes encoded 94 genes, including 27 tRNA genes, 3 rRNA genes, and 64 protein-coding genes. Comparative analysis uncovered that the variation in genome size was principally due to the length of intergenic spacer sequences, followed by introns. Furthermore, several highly variable regions (trnY-GTA, trnL-TAG, petA, psbT, trnD-GTC, trnL-TAA, ccsA, petG, psaA, psaB, rps11, rps2, and rps14) were identified. Codon bias analysis revealed that the codon usage pattern of Cephaleuros is predominantly shaped by natural selection. Additionally, six chloroplast protein-coding genes (atpF, chlN, psaA, psaB, psbA, and rbcL) were determined to be under positive selection, suggesting they may play a vital roles in the adaptation of Cephaleuros to low-light intensity habitats. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome—2nd Edition)
Show Figures

Figure 1

18 pages, 18567 KB  
Article
Effects of Coverlys TF150® on the Photosynthetic Characteristics of Grape
by Zhonghan Li, Enshun Jiang, Minghui Liu, Qinghua Sun, Zhen Gao and Yuanpeng Du
Int. J. Mol. Sci. 2023, 24(23), 16659; https://doi.org/10.3390/ijms242316659 - 23 Nov 2023
Cited by 3 | Viewed by 1793
Abstract
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal [...] Read more.
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal antifoggy PE coating that has not yet been popularized as a rain shelter film for grapes in China. To investigate the effects of Coverlys TF150® on grapes, we measured the microdomain environment, leaf development, and photosynthetic characteristics of ‘Miguang’ (Vitis vinifera × V. labrusca) under rain-shelter cultivation and performed transcriptome analysis. The results showed that Coverlys TF150® significantly reduced (p < 0.05) the light intensity, temperature, and humidity compared with PO film, increased the chlorophyll content and leaf thickness (particularly palisade tissue thickness), and increased stomatal density and stomatal opening from 10:00 to 14:00. Coverlys TF150® was observed to improve the maximum efficiency of photosystem II (Fv/Fm), photochemical quenching (qP), the electron transfer rate (ETR), and the actual photochemical efficiency (ΦPSII) from 10:00 to 14:00. Moreover, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) of grape leaves significantly increased (p < 0.05) from 10:00 to 14:00. RNA-Seq analysis of the grape leaves at 8:00, 10:00, and 12:00 revealed 1388, 1562, and 1436 differential genes at these points in time, respectively. KEGG enrichment analysis showed the occurrence of protein processing in the endoplasmic reticulum. Plant hormone signal transduction and plant-pathogen interaction were identified as the metabolic pathways with the highest differential gene expression enrichment. The psbA encoding D1 protein was significantly up-regulated in both CO10vsPO10 and CO12vsPO12, while the sHSPs family genes were significantly down-regulated in all time periods, and thus may play an important role in the maintenance of the photosystem II (PSII) activity in grape leaves under Coverlys TF150®. Compared with PO film, the PSI-related gene psaB was up-regulated, indicating the ability of Coverlys TF150® to better maintain PSI activity. Compared with PO film, the abolic acid receptacle-associated gene PYL1 was down-regulated at all time periods under the Coverlys TF150® treatment, while PP2C47 was significantly up-regulated in CO10vsPO10 and CO12vsPO12, inducing stomatal closure. The results reveal that Coverlys TF150® alleviates the stress of high temperature and strong light compared with PO film, improves the photosynthetic capacity of grape leaves, and reduces the midday depression of photosynthesis. Full article
(This article belongs to the Special Issue Molecular Research in Fruit Crop)
Show Figures

Figure 1

18 pages, 15511 KB  
Article
Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism
by Min Chen, Artur Sawicki and Fanyue Wang
Microorganisms 2023, 11(9), 2305; https://doi.org/10.3390/microorganisms11092305 - 13 Sep 2023
Cited by 3 | Viewed by 2222
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit [...] Read more.
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria 2.0)
Show Figures

Figure 1

15 pages, 6064 KB  
Article
Transcriptome Revealed the Effect of Shading on the Photosynthetic Pigment and Photosynthesis of Overwintering Tea Leaves
by Xiao Han, Yaozong Shen, Yu Wang, Jiazhi Shen, Hui Wang, Shibo Ding, Yang Xu, Yilin Mao, Hao Chen, Yujie Song, Zhaotang Ding and Kai Fan
Agronomy 2023, 13(7), 1701; https://doi.org/10.3390/agronomy13071701 - 25 Jun 2023
Cited by 10 | Viewed by 2851
Abstract
The physiological state of overwintering tea leaves is crucial for the growth and quality formation of spring tea shoots. Low temperatures in winter can easily cause damage to overwintering tea plants, leading to leaf chlorosis and abnormal physiological functions. Many pieces of research [...] Read more.
The physiological state of overwintering tea leaves is crucial for the growth and quality formation of spring tea shoots. Low temperatures in winter can easily cause damage to overwintering tea plants, leading to leaf chlorosis and abnormal physiological functions. Many pieces of research have shown that shading could promote chlorophyll (Chl) accumulation in tea leaves, but the impact on overwintering tea plants is not yet known. In this study, different shading rates (no-shading, S0%; 30% shading, S30%; 75% shading, S75%) were used to treat overwintering tea plants, which explored the effect of shading on the color and physiological functions of tea leaves. The results showed that Chl, carotenoid, and soluble sugar (SS) contents were S75% > S30% > S0%, and the net photosynthetic rate (Pn) was S75% > S30% > S0%. Transcriptome analysis showed that the genes involved in chlorophyll and carotenoid metabolism (such as protochlorophyllide reductase POR and zeaxanthin epoxidase ZEP) and photosynthesis (such as photosystem II P680 reaction center D2 protein PsbA and photosystem II CP47 chlorophyll apoprotein PsbB) were significantly up-regulated under shading. In addition, many differentially expressed genes (DEGs) were enriched in “starch and sucrose metabolism (ko00500)” and “anthocyanin biosynthesis (ko00942)” pathways. In summary, this study provided a theoretical basis and technical support for maintaining green leaves and normal physiological functions of overwintering tea plants. Full article
(This article belongs to the Special Issue Advances in Tea Agronomy: From Yield to Quality — Volume II)
Show Figures

Figure 1

18 pages, 10869 KB  
Article
Structural and Geochemical Assessment of the Coralline Alga Tethysphytum antarcticum from Terra Nova Bay, Ross Sea, Antarctica
by Matthias López Correa, Sebastian Teichert, Federica Ragazzola, Salvador Cazorla Vázquez, Felix B. Engel, Katrin Hurle, Claudio Mazzoli, Piotr Kuklinski, Giancarlo Raiteri and Chiara Lombardi
Minerals 2023, 13(2), 215; https://doi.org/10.3390/min13020215 - 2 Feb 2023
Cited by 5 | Viewed by 3477
Abstract
Crustose coralline algae (CCA) occur from the tropics to the poles in photic benthic environments. Here, we report on some of the world’s southernmost and coldest CCA sites in Terra Nova, Ross Sea, Antarctica at 74°41′ S. The recently described red alga Tethysphytum [...] Read more.
Crustose coralline algae (CCA) occur from the tropics to the poles in photic benthic environments. Here, we report on some of the world’s southernmost and coldest CCA sites in Terra Nova, Ross Sea, Antarctica at 74°41′ S. The recently described red alga Tethysphytum antarticum is investigated for its skeletal architecture, its mineralogical and geochemical composition, as well as for its taxonomic classification. A phylogenetic analysis based on molecular genetics and the sequencing of the photosystem II protein D1 (psbA) gave a perfect match with T. antarcticum. Histological sections and micro-CT-scans provide new diagnostic details for the conceptacles (the reproductive organs of the alga). X-ray diffractometry and electron-microprobe measurements yielded a clear high-Mg calcite (~8 mol%) composition of the skeletal parts. Detailed back-scattered electron imaging of polished petrographic thin sections revealed a two-layered thallus (vegetative plant tissue), comprising an organic-rich irregularly calcified basal layer with rectangular cells, overlain by the main thallus. Elemental maps show relatively increased sulphur in the basal layer, clearly tied to organic cell walls. MgCO3 and SrCO3 were targeted with semiquantitative elemental mappings and in an ontogenetic quantitative spot transect. Compared with temperature (−1.95 °C to +1.08 °C), the MgCO3 (mol%) reflects this world’s coldest CCA site temperature with the lowest MgCO3 content of 7.9 ± 1.6 mol%. The along transect variability, however, shows with ~6 mol% a larger MgCO3 variability than expected for the 3 °C intra-annual temperature amplitude in Terra Nova Bay. This implies that in low amplitude settings the biomineralisation control on Mg/Ca ratios can outcompete its temperature sensitivity. Mark-recapture studies, next to the environmental logger station La Zecca are suggested, to perform a detailed growth rate and biomineralisation quantification. Full article
(This article belongs to the Special Issue Biomineralization in Marine Environments)
Show Figures

Figure 1

19 pages, 3209 KB  
Article
Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain
by Pablo Vergara-Barros, Jaime Alcorta, Angélica Casanova-Katny, Dennis J. Nürnberg and Beatriz Díez
Molecules 2022, 27(23), 8515; https://doi.org/10.3390/molecules27238515 - 3 Dec 2022
Viewed by 3196
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium [...] Read more.
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria. Full article
(This article belongs to the Special Issue Photosystem II Photochemistry in Biotic and Abiotic Stress)
Show Figures

Figure 1

17 pages, 3282 KB  
Article
Responses of Physiology, Photosynthesis, and Related Genes to Saline Stress in Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang
by Jia-Qiu Yuan, Da-Wei Sun, Qiang Lu, Ling Yang, Hao-Wei Wang and Xiang-Xiang Fu
Plants 2022, 11(7), 940; https://doi.org/10.3390/plants11070940 - 30 Mar 2022
Cited by 12 | Viewed by 2748
Abstract
Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang is a native evergreen species with high ornamental value for abundant variations in leaf, bract, fruit, and tree gesture. To broaden its cultivation in coastal saline soil, salt damage and survival rate, physiological [...] Read more.
Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang is a native evergreen species with high ornamental value for abundant variations in leaf, bract, fruit, and tree gesture. To broaden its cultivation in coastal saline soil, salt damage and survival rate, physiological responses, photosynthetic performance, and related genes were evaluated for annual seedlings exposed to 0.3% salt (ST) concentrations for 60 days. Syndromes of salt damage were aggravated, and the survival rate decreased with prolonged stress duration; all stressed seedlings displayed salt damage, and 58.3% survived. Under short-term saline stress (5 d), marked increases in malondialdehyde (MDA), relative electrical conductivity (REC), and decreases in superoxide dismutase (SOD), photosynthetic rate (Pn), stomatal conductance (gs), and internal carbon dioxide concentration (Ci) were recorded. The stable leaf water use efficiency (WUE) and chlorophyll content were positive physiological responses to ensure photosynthetic performance. Meanwhile, the expression levels of genes related to photosystem II (psbA) and photorespiration (SGAT and GGAT) were upregulated, indicating the role of photorespiration in protecting photosynthesis from photoinhibition. After 30 days of stress (≥30 d), there was a significant increase in MDA, REC, soluble sugar (SS), soluble protein (SP), and Ci, whereas descending patterns in Pn, gs, WUE, the maximal photochemical efficiency of photosystem II (Fv/Fm), and potential activities of PSII (Fv/F0) occurred in salt-stressed seedlings, compared with CK. Meanwhile, the expression levels of related genes significantly dropped, such as psbA, LFNR, GGAT, GLYK, and PGK, indicating photoinhibition and worse photosynthetic performance. Our results suggest that the moderate salt tolerance of C. hongkongensis subsp. tonkinensis mostly lies in a better photosynthetic system influenced by active photorespiration. Hence, these results provide a framework for better understanding the photosynthetic responses of C. hongkongensis subsp. tonkinensis to salt stress. Full article
(This article belongs to the Topic Plant Responses and Tolerance to Salinity Stress)
Show Figures

Figure 1

14 pages, 1615 KB  
Article
Low Doses of Anatase and Rutile Nanoparticles Differently Modulate Photosynthesis and Regulatory Genes: A Contribution to the Nanoagroindustry
by Nuno Mariz-Ponte, Sara Sario, Rafael J. Mendes, Márcio Couto, Emil Gimranov, Marino Santos, Cristiana V. Correia, Anicia Gomes, Paulo R. Oliveira-Pinto, Isabel Amorim, Maria Celeste Dias, José Miguel P. Ferreira de Oliveira and Conceição Santos
Agriculture 2022, 12(2), 190; https://doi.org/10.3390/agriculture12020190 - 28 Jan 2022
Cited by 10 | Viewed by 3600
Abstract
Industrial applications of titanium dioxide nanoparticles (TiO2 NPs) are wide, and their use in nano-fertilizing technology has been proposed in the last few years. Bioactivity evaluation of different TiO2 NPs formulations is therefore crucial, not only to select the most appropriate [...] Read more.
Industrial applications of titanium dioxide nanoparticles (TiO2 NPs) are wide, and their use in nano-fertilizing technology has been proposed in the last few years. Bioactivity evaluation of different TiO2 NPs formulations is therefore crucial, not only to select the most appropriate formulation but also to validate potential agro-applications. In the current work, we compared the bioactivity of the two most used TiO2 NPs formulations (anatase and rutile–anatase) on the photosynthesis of Lactuca sativa. Seeds were exposed to concentrations of 0, 10, and 50 mg L−1 of anatase (A) or rutile–anatase (RA). Germination rate was not affected by NPs, but root growth was stimulated mainly by RA50. Compared with control, RA showed positive effects on photophosphorylation-related parameters. A50 was more efficient in promoting the gas exchange phase (PN, Ci, gs, and E) and in stimulating the absorption of some nutrients. Expanding on the biochemical and physiological data, we show that RA50 stimulated several genes coding for proteins involved in the electron transport in thylakoids (psbA, petB, petA, psaA, psaC, ndhA, ndhD) and ATP synthesis (atpA, atpB). The transcript coding for the large subunit of RuBisCO (rbcL), was stimulated by lower concentration (RA10). This suggests that RuBisCO is highly sensitive to these NPs even at low doses. RA at low doses has been demonstrated to be the most promising NP. These discriminative effects of TiO2 NPs, based on their formulation and dose, may present advantages for their use in the precision nanoagroindustry. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

16 pages, 3651 KB  
Article
Low Light Alters the Photosynthesis Process in Cigar Tobacco via Modulation of the Chlorophyll Content, Chlorophyll Fluorescence, and Gene Expression
by Xiaoying Wu, Rayyan Khan, Huajun Gao, Haobao Liu, Juan Zhang and Xinghua Ma
Agriculture 2021, 11(8), 755; https://doi.org/10.3390/agriculture11080755 - 9 Aug 2021
Cited by 36 | Viewed by 5126
Abstract
Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of [...] Read more.
Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of cigar tobacco under different light intensities (T200, T100, and T50 μmol m−2 s−1). The results reveal that under low light, T50 especially improved the light interception and increased carbon utilization, as witnessed by a higher specific leaf area and lower specific leaf weight. Low light intensity caused better light interception and carbon utilization in cigar tobacco leaves, and thus thinner leaves are more able to use low light efficiently. The chlorophyll content is related to the photosynthesis process; thus, LL affected the photosynthesis process by lowering the chlorophyll content. Similarly, LL also altered the photosynthetic efficiency by lowering the QY_Lss, qP_Lss, and Rfd_Lss. Additionally, higher expression of Lhcb4.2, Lhcb6, PsbA, PsbB, and PsbD under low light, especially T50, shows that the PSII and antenna proteins complex efficiently utilized the absorbed energy for photosynthesis. Finally, the lower photosynthesis, particularly in T50, is attributed to the downregulation of genes related to NADPH production (petH) and the rubisco enzyme synthesis-related gene (rbcs) for CO2 fixation in the Calvin cycle. Overall, the results show that the photosynthesis is decreased under LL intensities which might be related to lower chlorophyll content and downregulation of petH and rbcs genes. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

19 pages, 1439 KB  
Article
Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants
by Mehar Fatma, Noushina Iqbal, Zebus Sehar, Mohammed Nasser Alyemeni, Prashant Kaushik, Nafees A. Khan and Parvaiz Ahmad
Antioxidants 2021, 10(8), 1216; https://doi.org/10.3390/antiox10081216 - 28 Jul 2021
Cited by 83 | Viewed by 5024
Abstract
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 [...] Read more.
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 °C and monitored during their growth for the study duration. Application of MeJA resulted in increased enzymatic antioxidant activity that reduced the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) and enhanced the photosynthetic efficiency. Exogenous MeJA had a beneficial effect on chlorophyll fluorescence under HS and enhanced the pigment system (PS) II system, as observed in a JIP-test, a new tool for chlorophyll fluorescence induction curve. Exogenous MeJA improved the quantum yield of electron transport (ETo/CS) as well as electron transport flux for each reaction center (ET0/RC). However, the specific energy fluxes per reaction center (RC), i.e., TR0/RC (trapping) and DI0/RC (dissipation), were reduced by MeJA. These results indicate that MeJA affects the efficiency of PS II by stabilizing the D1 protein, increasing its abundance, and enhancing the expression of the psbA and psbB genes under HS, which encode proteins of the PS II core RC complex. Thus, MeJA is a potential tool to protect PS II and D1 protein in wheat plants under HS and to accelerate the recovery of the photosynthetic capacity. Full article
(This article belongs to the Special Issue Approaches in Enhancing Antioxidant Defense in Plants)
Show Figures

Figure 1

21 pages, 2183 KB  
Article
Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide
by Jessica E. Lumian, Anne D. Jungblut, Megan L. Dillion, Ian Hawes, Peter T. Doran, Tyler J. Mackey, Gregory J. Dick, Christen L. Grettenberger and Dawn Y. Sumner
Genes 2021, 12(3), 426; https://doi.org/10.3390/genes12030426 - 16 Mar 2021
Cited by 17 | Viewed by 5868
Abstract
Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic [...] Read more.
Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic environments throughout Earth history. In Lake Fryxell, Antarctica, the benthic, filamentous cyanobacterium Phormidium pseudopriestleyi creates a 1–2 mm thick layer of 50 µmol L−1 O2 in otherwise sulfidic water, demonstrating that it sustains oxygenic photosynthesis in the presence of sulfide. A metagenome-assembled genome of P. pseudopriestleyi indicates a genetic capacity for oxygenic photosynthesis, including multiple copies of psbA (encoding the D1 protein of Photosystem II), and anoxygenic photosynthesis with a copy of sqr (encoding the sulfide quinone reductase protein that oxidizes sulfide). The genomic content of P. pseudopriestleyi is consistent with sulfide tolerance mechanisms including increasing psbA expression or directly oxidizing sulfide with sulfide quinone reductase. However, the ability of the organism to reduce Photosystem I via sulfide quinone reductase while Photosystem II is sulfide-inhibited, thereby performing anoxygenic photosynthesis in the presence of sulfide, has yet to be demonstrated. Full article
Show Figures

Figure 1

10 pages, 2325 KB  
Article
Sequencing of Organellar Genomes of Nowellia curvifolia (Cephaloziaceae Jungermanniales) Revealed the Smallest Plastome with Complete Gene Set and High Intraspecific Variation Suggesting Cryptic Speciation
by Jakub Sawicki, Katarzyna Krawczyk, Monika Ślipiko and Monika Szczecińska
Diversity 2021, 13(2), 81; https://doi.org/10.3390/d13020081 - 15 Feb 2021
Cited by 5 | Viewed by 3471
Abstract
The leafy liverwort Nowellia curvifolia is a widespread Holarctic species belonging to the family Cephaloziaceae. It is made up of a newly sequenced, assembled and annotated organellar genomes of two European specimens, which revealed the structure typical for liverworts, but also provided new [...] Read more.
The leafy liverwort Nowellia curvifolia is a widespread Holarctic species belonging to the family Cephaloziaceae. It is made up of a newly sequenced, assembled and annotated organellar genomes of two European specimens, which revealed the structure typical for liverworts, but also provided new insights into its microevolution. The plastome of N. curvifolia is the second smallest among photosynthetic liverworts, with the shortest known inverted repeats. Moreover, it is the smallest liverwort genome with a complete gene set, since two smaller genomes of Aneura mirabilis and Cololejeunea lanciloba are missing six and four protein-coding genes respectively. The reduction of plastome size in leafy liverworts seems to be mainly impacted by deletion within specific region between psbA and psbD genes. The comparative intraspecific analysis revealed single SNPs difference among European individuals and a low number of 35 mutations differentiating European and North American specimens. However, the genetic resources of Asian specimen enabled to identify 1335 SNPs in plastic protein-coding genes suggesting an advanced cryptic speciation within N. curvifolia or the presence of undescribed morphospecies in Asia. Newly sequenced mitogenomes from European specimens revealed identical gene content and structure to previously published and low intercontinental differentiation limited to one substitution and three indels. The RNA-seq based RNA editing analysis revealed 17 and 127 edited sites in plastome and mitogenome respectively including one non-canonical editing event in plastid chiL gene. The U to C editing is common in non-seed plants, but in liverwort plastome is reported for the first time. Full article
(This article belongs to the Special Issue Taxonomy, Diversity and Evolution of Bryophytes)
Show Figures

Figure 1

Back to TopTop