The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress
Abstract
1. Introduction
2. Results
2.1. Changes in S2P2 Gene Expression and Protein Abundance in Response to High Light Stress in A. thaliana Leaves
2.2. Functional Status of Photosystem II in S2P2 Mutant Lines Under High Light Stress
2.3. Abundance of Selected PSII Core Proteins in S2P2 Mutant Lines Under High Light Stress
2.4. Accumulation of Superoxide Anion Radical and Hydrogen Peroxide in S2P2 Mutants Under High Light Stress
2.5. Changes in the Abundance of Copper/Zinc Superoxide Dismutase 2 (CSD2) During High Light Stress
3. Discussion
4. Materials and Methods
4.1. Plant Material, Growth, and Stress Conditions
4.2. S2P2 Gene Expression Analysis
4.3. SDS-PAGE and Immunoblotting
4.4. Antibodies
4.5. Chlorophyll a Fluorescence Measurement
4.6. Hydrogen Peroxide Detection
4.7. Detection of Superoxide Anion Radical
4.8. Isolation of Leaf Proteins and Determination of Protein Concentration
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eckhard, N.A.; Avin-Wittenberg, T.; Bassham, D.C.; Chen, P.; Chen, Q.; Fang, J.; Genschik, P.; Ghifari, A.S.; Guercio, A.M.; Gibbs, D.J.; et al. The lowdown on breakdown: Open questions in plant proteolysis. Plant Cell 2024, 36, 2931–2975. [Google Scholar] [CrossRef]
- Adam, Z.; Rudella, A.; van Wijk, K. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Plant Biol. 2006, 9, 234–240. [Google Scholar] [CrossRef]
- Van der Hoorn, R.A.L.; Klemencic, M. Plant proteases: From molecular mechanisms to functions in development and immunity. J. Exp. Bot. 2021, 72, 3337–3339. [Google Scholar] [CrossRef] [PubMed]
- Lucinski, R.; Adamiec, M. The role of plant proteases in the response of plants to abiotic factors. Front. Plant Physiol. 2023, 1, 1330216. [Google Scholar] [CrossRef]
- Liu, Y.; Jackson, E.; Liu, X.; Huang, X.; van der Hoorn, R.A.L.; Zhang, Y.; Li, X. Proteolysis in plant immunity. Plant Cell 2024, 36, 3099–3115. [Google Scholar] [CrossRef] [PubMed]
- Adam, Z. Emerging roles for diverse intramembrane proteases in plant biology. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2933–2936. [Google Scholar] [CrossRef]
- Schneider, J.S.; Glickman, M.S. Function of site-2 proteases in bacteria and bacterial pathogens. Bioch. Biophys. Acta Biomembr. 2013, 1828, 2808–2814. [Google Scholar] [CrossRef]
- Knopf, R.R.L.; Feder, A.; Mayer, K.; Lin, A.; Rozenberg, L.A.M.; Schaller, A.; Adam, Z. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. Plant J. 2012, 72, 559–571. [Google Scholar] [CrossRef]
- Adamiec, M.; Ciesielska, M.; Zalaś, P.; Lucinski, R. Arabidopsis thaliana intramembrane proteases. Acta Physiol. Plant. 2017, 39, 146. [Google Scholar] [CrossRef]
- Chen, G.; Bi, Y.R.; Li, N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J. 2005, 41, 364–375. [Google Scholar] [CrossRef]
- Guo, D.; Gao, X.; Li, H.; Zhang, T.; Chen, G.; Huang, P.; An, L.; Li, N. EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylenedependent gravitropism of light-grown Arabidopsis hypocotyls. Plant Mol. Biol. 2008, 66, 345–360. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Xiong, L.; Kronzucker, H.J.; Kramer, U.; Shi, W. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol. 2012, 160, 2040–2051. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, X.; Li, G.; Kronzucker, H.J.; Shi, W. The chloroplast protease AMOS1/EGY1 affects phosphate homeostasis under phosphate stress. Plant Physiol. 2016, 172, 1200–1208. [Google Scholar] [CrossRef]
- Chen, G.; Law, K.; Ho, P.; Zhang, X.; Li, N. EGY2, a chloroplast membrane metalloprotease, plays a role in hypocotyl elongation in Arabidopsis. Mol. Biol. Rep. 2012, 39, 2147–2155. [Google Scholar] [CrossRef]
- Adamiec, M.; Misztal, L.; Kasprowicz-Maluśki, A.; Lucinski, R. EGY3: Homologue of S2P protease located in chloroplasts. Plant Biol. 2020, 22, 735–743. [Google Scholar] [CrossRef]
- Ciesielska, M.; Adamiec, M.; Lucinski, R. S2P2—The chloroplast-located intramembrane protease and its impact on the stoichiometry and functioning of the photosynthetic apparatus of A. thaliana. Front. Plant. Sci. 2024, 15, 1372318. [Google Scholar] [CrossRef] [PubMed]
- Bötler, B.; Nada, A.; Fulgosi, H.; Soll, J. A chloroplastic inner envelope membrane protease is essential for plant development. FEBS Lett. 2006, 580, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, M.; Misztal, L.; Kosicka, E.; Paluch-Lubawa, E.; Lucinski, R. Arabidopsis thaliana egy2 mutants display altered expression level of genes encoding crucial photosystem II proteins. J. Plant Physiol. 2018, 231, 155–167. [Google Scholar] [CrossRef]
- Luciński, R.; Dobrogojski, J.; Ishikawa, T.; Adamiec, M. The role of EGY2 protease in response to high light stress. Funct. Plant Biol. 2024, 51, FP23243. [Google Scholar] [CrossRef]
- Chen, Y.E.; Yuan, S.; Schroder, W.P. Comparison of methods for extracting thylakoid membranes of Arabidopsis plants. Physiol. Plant. 2016, 156, 3–12. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, X.; Lei, P.; Li, H.; Yan, L.; Zhao, J.; Meng, J.; Shao, J.; An, L.; Yu, F.; et al. The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis. J. Biol. Chem. 2020, 295, 1036–1046. [Google Scholar] [CrossRef]
- Adamiec, M.; Misztal, L.; Ciesielska, M.; Lucinski, R. The changes of PSII supercompelex stoichiometry in egy1 mutants are related to chlorophyll b deficiency. Photosynthetica 2021, 59, 294–302. [Google Scholar] [CrossRef]
- Winter, D.; Vinegar, B.; Nahal, H.; Ammar, R.; Wilson, G.V.; Provart, N.J. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2007, 2, e718. [Google Scholar] [CrossRef]
- Wang, S.; Bai, G.; Wang, S.; Yang, L.; Yang, F.; Wang, Y.; Zhu, J.-K.; Hua, J.; Qu, L.-J. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance Through 23S rRNA Processing in Arabidopsis. PloS Genet. 2016, 12, e1006027. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Dai, S.; Yang, M.; Meng, Q.; Lv, W.; Ma, N. A tomato putative metalloprotease SlEGY2 plays a positive role in thermotolerance. Agriculture 2022, 12, 940. [Google Scholar] [CrossRef]
- Yamamoto, Y. Quality control of photosystem II: The mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front. Plant Sci. 2016, 7, 1136. [Google Scholar] [CrossRef]
- Che, P.; Bussell, J.D.; Zhou, W.; Estavillo, G.M.; Pogson, B.J.; Smith, S.M. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci. Signal. 2010, 3, ra69. [Google Scholar] [CrossRef]
- Adamiec, M.; Szomek, M.; Gabała, E.; Dobrogojski, J.; Misztal, L.; Luciński, R. Fatty acid composition and cpDNA content in Arabidopsis thaliana mutants deprived of EGY1 protease. Photosynthetica 2021, 59, 633–639. [Google Scholar] [CrossRef]
- Adamiec, M.; Dobrogojski, J.; Wojtyla, Ł.; Luciński, R. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts’ proteome composition. Front. Plant Sci. 2022, 13, 965143. [Google Scholar] [CrossRef] [PubMed]
- Baerenfaller, K.; Massonnet, C.; Walsh, S.; Baginsky, S.; Bühlmann, P.; Hennig, L.; Hirsch-Hoffmann, M.; A Howell, K.; Kahlau, S.; Radziejwoski, A.; et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol. Syst. Biol. 2012, 8, 606. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef]
- Luciński, R.; Jackowski, G. The structure, functions and degradation of pigment-binding proteins of photosystem II. Acta Biochim. Pol. 2006, 53, 693–708. [Google Scholar] [CrossRef]
- Chotewutmontri, P.; Barkan, A. Light-induced psbA translation in plants is triggered by photosystem II damage via assembly-linked autoregulatory circuit. Proc. Natl. Acad. Sci. USA 2020, 117, 21775–21784. [Google Scholar] [CrossRef]
- Zybailov, B.; Rutschow, H.; Friso, G.; Rudella, A.; Emanuelsson, O.; Sun, Q.; van Wijk, K.J.; Koch, K.-W. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 2008, 3, e1994. [Google Scholar] [CrossRef]
- Telfer, A.; Bishop, S.M.; Philips, D.; Barber, J. Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J. Biol. Chem. 1994, 269, 13244–13253. [Google Scholar] [CrossRef]
- Vass, I. Molecular mechanism of photodamage in the photosystem II complex. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 2015, 66, 23–48. [Google Scholar] [CrossRef]
- Umena, Y.; Kawakami, K.; Shen, J.R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P.; Van de Peer, Y. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008, 2008, 420747. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Hua, L.; Reyna-Llorens, I.; Shi, Y.; Chen, K.M.; Smirnoff, N.; Kromdjik, J.; Hibberd, J.M. Photosynthesis-independent production of reactive oxygen species in the rice bundle sheath during high light is mediated by NADPH oxidase. Proc. Natl. Acad. Sci. USA 2021, 118, e2022702118. [Google Scholar] [CrossRef]
- Borbély, P.; Gasperl, A.; Palmai, T.; Ahres, M.; Asghar, M.A.; Galiba, G.; Muller, M.; Kocsy, G. Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants 2022, 11, 1311. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Gupta, D.; Patel, M.; Van Der Vyver, C.; Koyama, H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. Plants 2024, 13, 2071. [Google Scholar] [CrossRef]
- Tripathy, B.C.; Oelmuller, R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 2012, 7, 1621–1633. [Google Scholar] [CrossRef]
- Aguirre, G.; Pilon, M. Copper Delivery to Chloroplast Proteins and its Regulation. Front. Plant Sci. 2015, 6, 1250. [Google Scholar] [CrossRef]
- Pilon, M.; Ravet, K.; Tapken, W. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim. Biophys. Acta-Bioenerg. 2011, 1807, 989–998. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Boyidi, P.; Trishla, V.S.; Botta, H.K.; Yadav, D.; Kirti, P.B. Heterologous expression of rice annexin OsANN5 potentiates abiotic stress tolerance in transgenic tobacco through ROS amelioration. Plant Stress 2021, 2, 100022. [Google Scholar] [CrossRef]
- Becana, M.; Aparicio-Tejo, P.; Irigoyen, J.J.; Sanchez-Diaz, M. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 1986, 82, 1169–1171. [Google Scholar] [CrossRef]
- Ratajczak, E.; Małecka, A.; Bagniewska-Zadworna, A.; Kalemba, E.M. The production, localization and spreading of reactive oxygen species contributes to low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. J. Plant Physiol. 2015, 174, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Doke, N. Generation of superoxide anion by potato tuber protoplasts during the hyper-sensitive response to hyphal wall components of Phytophtora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 1983, 23, 359–367. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielska, M.; Adamiec, M.; Luciński, R. The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress. Plants 2025, 14, 2584. https://doi.org/10.3390/plants14162584
Ciesielska M, Adamiec M, Luciński R. The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress. Plants. 2025; 14(16):2584. https://doi.org/10.3390/plants14162584
Chicago/Turabian StyleCiesielska, Maria, Małgorzata Adamiec, and Robert Luciński. 2025. "The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress" Plants 14, no. 16: 2584. https://doi.org/10.3390/plants14162584
APA StyleCiesielska, M., Adamiec, M., & Luciński, R. (2025). The Involvement of the S2P2 Intramembrane Protease in the Response of Arabidopsis thaliana Chloroplasts to High Light Stress. Plants, 14(16), 2584. https://doi.org/10.3390/plants14162584