Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,607)

Search Parameters:
Keywords = Ct value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 820 KiB  
Article
Establishing Diagnostic Reference Levels for Paediatric CT Imaging: A Multi-Centre Study
by Yassine Bouchareb, Manar Al Kharusi, Amani Al Maqbali, Amal Al Maimani, Hasina Al Maskari, Srinivasa Rao Sirasanagandla, Amna Al Jabri, Faiza Al Kindi, Saud Al Shabibi and Saleh Baawain
Healthcare 2025, 13(14), 1728; https://doi.org/10.3390/healthcare13141728 - 17 Jul 2025
Abstract
Background: Computed Tomography (CT) imaging is widely recognised for its high capability in assessing multiple organs. However, concerns about patient radiation exposure, particularly in children, pose significant challenges. Objective: This study aimed to establish diagnostic reference levels (DRLs) for paediatric patients in [...] Read more.
Background: Computed Tomography (CT) imaging is widely recognised for its high capability in assessing multiple organs. However, concerns about patient radiation exposure, particularly in children, pose significant challenges. Objective: This study aimed to establish diagnostic reference levels (DRLs) for paediatric patients in the most common CT examinations to monitor and better control radiation doses. Methods: Dosimetry records from 5956 patients’ scans for the four most common CT imaging examinations—Head, Chest, Abdomen Pelvis (AP), and Chest Abdomen Pelvis (CAP)—were considered. The CT dosimetric quantities (CT dose-index volume (CTDIvol) and dose-length product (DLP)), along with patient demographics (age and weight), were collected from radiology data storage systems. DRLs for CTDIvol and DLP were determined for each imaging examination, stratified by patient age and weight groups, in accordance with ICRP recommendations. Results: The derived DRLs are presented as [median CTDIvol (mGy): median DLP (mGy·cm)]. For (<1 yr): Head: 13:187, Chest: 0.4:7, AP: 0.9:19, CAP: 0.4:10. For (1–5 yrs): Head: 16:276, Chest: 1:22, AP: 1.5:58, CAP: 1.6:63. For (6–10 yrs): Head: 19:332, Chest: 1.4:35, AP: 1.9:74, CAP: 2:121. For (11–15 yrs): Head: 21:391, Chest: 3:86, AP: 4.1:191, CAP: 3:165. We observed that both the CTDIvol and DLP DRL values increase with patient age. Weight-based DRLs follow similar trends for CTDIvol, while DLP values show noticeable variations in Chest and AP examinations. Conclusions: The study findings highlight the need for review and optimisation of certain scanning protocols, particularly for chest and AP examinations. The derived DRLs are consistent with findings from other studies. The study recommends establishing national paediatric DRLs to enhance radiology practice across the country and ensure adherence to international safety standards. Full article
(This article belongs to the Collection Radiology-Driven Projects: Science, Networks, and Healthcare)
27 pages, 2272 KiB  
Article
A New Approach Based on Trend Analysis to Estimate Reference Evapotranspiration for Irrigation Planning
by Murat Ozocak
Sustainability 2025, 17(14), 6531; https://doi.org/10.3390/su17146531 - 17 Jul 2025
Abstract
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the [...] Read more.
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the reference evapotranspiration (ET0) trend. In the current situation, the trend is usually determined using one or two methods. Failure to conduct a detailed trend analysis results in incorrect irrigation management. With the new approach presented in the research, all of the Mann–Kendall (MK), innovative trend analysis (ITA), Sen’s slope (SS) and Spearman’s rho (SR) tests were used, and the common results of the four tests, namely increase, decrease, and no trend, were taken into account. The ET0 values calculated in different approaches were focused on temporal and spatial analysis for the future irrigation management of Türkiye with the Blaney–Criddle (BC), Turc (TR), and Coutagne (CT) methods. The future period forecast was made using four different trend analyses with geographical information system (GIS) based spatial applications using 12-month ET0 data calculated from 59 years of data between 1965 and 2023. Statistical analysis was performed to reveal the relationship between ET0 calculation methods. The findings showed that although there is a general increasing trend in ET0 values in the region, this situation is more pronounced, especially in the provinces in the western and central regions. The research results improve the determination of plant water needs for future periods in terms of irrigation management. This new approach, which determines ET0 trend analysis in the Black Sea region, can be used in regional, national, and international studies by supporting different calculations to be made in order to plan future water management correctly, to reduce the concern of decreasing water resources in drought conditions, and to obtain comprehensive data in order to provide appropriate irrigation. Full article
Show Figures

Figure 1

15 pages, 1645 KiB  
Article
Total Lesion Glycolysis (TLG) on 18F-FDG PET/CT as a Potential Predictor of Pathological Complete Response in Locally Advanced Rectal Cancer After Total Neoadjuvant Therapy: A Retrospective Study
by Handan Tokmak, Nurhan Demir and Hazal Cansu Çulpan
Diagnostics 2025, 15(14), 1800; https://doi.org/10.3390/diagnostics15141800 - 16 Jul 2025
Abstract
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose [...] Read more.
Background: The accurate prediction of pathological complete response (pCR) following total neoadjuvant therapy (TNT) is crucial for optimising treatment protocols in locally advanced rectal cancer (LARC). Although conventional imaging techniques such as MRI show limitations in assessing treatment response, metabolic imaging utilising 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) provides distinctive information by quantifying tumour glycolytic activity. This study investigates the predictive value of sequential 18F-FDG PET-CT parameters, focusing on Total Lesion Glycolysis (TLG), in predicting pCR after TNT. Methods: We conducted a retrospective analysis of 33 LARC patients (T3–4/N0–1) treated with TNT (neoadjuvant-chemoradiation followed by consolidation FOLFOX chemotherapy). Sequential PET-CT scans were performed at baseline, interim (after 4 cycles of FOLFOX), and post-TNT. Metabolic parameters, including maximum standardised uptake value (SUVmax) and TLG, were measured. Receiver operating characteristic (ROC) analysis assessed the predictive performance of these parameters for pCR. Results: The pCR rate was 21.2% (7/33). Post-TNT TLG ≤ 10 demonstrated excellent predictive accuracy for pCR (AUC 0.887, 92.3% sensitivity, 85.7% specificity, and 96.0% PPV), outperforming SUVmax (AUC 0.843). Interim TLG ≤ 10 also showed a strong predictive value (AUC 0.824, 100% sensitivity, and 71.4% specificity). Conclusions: TLG may serve as a reliable metabolic biomarker for predicting pathologic complete response (pCR) after total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC). Its inclusion in clinical decision-making could improve patient selection for organ preservation strategies, thereby reducing the need for unnecessary surgeries in the future. However, given that the study is based on a small retrospective design, the findings should be interpreted with caution and used alongside other decision-making tools until more comprehensive data are collected from larger studies. Full article
(This article belongs to the Special Issue Applications of PET/CT in Clinical Diagnostics)
Show Figures

Figure 1

13 pages, 851 KiB  
Article
Performance Evaluation of a Fully Automated Molecular Diagnostic System for Multiplex Detection of SARS-CoV-2, Influenza A/B Viruses, and Respiratory Syncytial Virus
by James G. Komu, Dulamjav Jamsransuren, Sachiko Matsuda, Haruko Ogawa and Yohei Takeda
Diagnostics 2025, 15(14), 1791; https://doi.org/10.3390/diagnostics15141791 - 16 Jul 2025
Abstract
Background/Objectives: Concurrent outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A and B viruses (IAV/IBV), and respiratory syncytial virus (RSV) necessitate rapid and precise differential laboratory diagnostic methods. This study aimed to evaluate the multiplex molecular diagnostic performance of the [...] Read more.
Background/Objectives: Concurrent outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A and B viruses (IAV/IBV), and respiratory syncytial virus (RSV) necessitate rapid and precise differential laboratory diagnostic methods. This study aimed to evaluate the multiplex molecular diagnostic performance of the geneLEAD VIII system (Precision System Science Co., Ltd., Matsudo, Japan), a fully automated sample-to-result precision instrument, in conjunction with the VIASURE SARS-CoV-2, Flu & RSV Real Time PCR Detection Kit (CerTest Biotec, S.L., Zaragoza, Spain). Methods: The specific detection capabilities of SARS-CoV-2, IAV/IBV, and RSV genes were evaluated using virus-spiked saliva and nasal swab samples. Using saliva samples, the viral titer detection limits of geneLEAD/VIASURE and manual referent singleplex RT-qPCR assays were compared. The performance of geneLEAD/VIASURE in analyzing single- and multiple-infection models was scrutinized. The concordance between the geneLEAD/VIASURE and the manual assays was assessed. Results: The geneLEAD/VIASURE successfully detected all the virus genes in the saliva and nasal swab samples despite some differences in the Ct values. The viral titer detection limits in the saliva samples for SARS-CoV-2, IAV, IBV, and RSV using geneLEAD/VIASURE were 100, ≤10−2, 100, and 102 TCID50/mL, respectively, compared to ≤10−1, ≤100, ≤100, and ≤104 TCID50/mL, respectively, in the manual assays. geneLEAD/VIASURE yielded similar Ct values in the single- and multiple-infection models, with some exceptions noted in the triple-infection models when low titers of RSV were spiked with high titers of the other viruses. The concordance between geneLEAD/VIASURE and the manual assays was high, with Pearson’s R2 values of 0.90, 0.85, 0.92, and 0.95 for SARS-CoV-2, IAV, IBV, and RSV, respectively. Conclusions: geneLEAD/VIASURE is a reliable diagnostic tool for detecting SARS-CoV-2, IAV/IBV, and RSV in single- and multiple-infection scenarios. Full article
Show Figures

Figure 1

59 pages, 11250 KiB  
Article
Automated Analysis of Vertebral Body Surface Roughness for Adult Age Estimation: Ellipse Fitting and Machine-Learning Approach
by Erhan Kartal and Yasin Etli
Diagnostics 2025, 15(14), 1794; https://doi.org/10.3390/diagnostics15141794 - 16 Jul 2025
Abstract
Background/Objectives: Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the “average distance to the fitted ellipse” score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT [...] Read more.
Background/Objectives: Vertebral degenerative features are promising but often subjectively scored indicators for adult age estimation. We evaluated an objective surface roughness metric, the “average distance to the fitted ellipse” score (DS), calculated automatically for every vertebra from C7 to S1 on routine CT images. Methods: CT scans of 176 adults (94 males, 82 females; 21–94 years) were retrospectively analyzed. For each vertebra, the mean orthogonal deviation of the anterior superior endplate from an ideal ellipse was extracted. Sex-specific multiple linear regression served as a baseline; support vector regression (SVR), random forest (RF), k-nearest neighbors (k-NN), and Gaussian naïve-Bayes pseudo-regressor (GNB-R) were tuned with 10-fold cross-validation and evaluated on a 20% hold-out set. Performance was quantified with the standard error of the estimate (SEE). Results: DS values correlated moderately to strongly with age (peak r = 0.60 at L3–L5). Linear regression explained 40% (males) and 47% (females) of age variance (SEE ≈ 11–12 years). Non-parametric learners improved precision: RF achieved an SEE of 8.49 years in males (R2 = 0.47), whereas k-NN attained 10.8 years (R2 = 0.45) in women. Conclusions: Automated analysis of vertebral cortical roughness provides a transparent, observer-independent means of estimating adult age with accuracy approaching that of more complex deep learning pipelines. Streamlining image preparation and validating the approach across diverse populations are the next steps toward forensic adoption. Full article
(This article belongs to the Special Issue New Advances in Forensic Radiology and Imaging)
Show Figures

Figure 1

16 pages, 3244 KiB  
Article
Finite Element Analysis of Dental Diamond Burs: Stress Distribution in Dental Structures During Cavity Preparation
by Chethan K N, Abhilash H N, Afiya Eram, Saniya Juneja, Divya Shetty and Laxmikant G. Keni
Prosthesis 2025, 7(4), 84; https://doi.org/10.3390/prosthesis7040084 - 16 Jul 2025
Abstract
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This [...] Read more.
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This study employed finite element analysis (FEA) to investigate the stress distribution in dental structures during cavity preparation using round diamond burs of varying diameters and depths of cut (DOC). Methods: A three-dimensional human maxillary first molar was generated from computed tomography (CT) scan data using 3D Slicer, Fusion 360, and ANSYS Space Claim 2024 R-2. Finite element analysis (FEA) was conducted using ANSYS Workbench 2024. Round diamond burs with diameters of 1, 2, and 3 mm were modeled. Cutting simulations were performed for DOC of 1 mm and 2 mm. The burs were treated as rigid bodies, whereas the dental structures were modeled as deformable bodies using the Cowper–Symonds model. Results: The simulations revealed that larger bur diameters and deeper cuts led to higher stress magnitudes, particularly in the enamel and dentin. The maximum von Mises stress was reached at 136.98 MPa, and dentin 140.33 MPa. Smaller burs (≤2 mm) and lower depths of cut (≤1 mm) produced lower stress values and were optimal for minimizing dental structural damage. Pulpal stress remained low but showed an increasing trend with increased DOC and bur size. Conclusions: This study provides clinically relevant guidance for reducing mechanical damage during cavity preparation by recommending the use of smaller burs and controlled cutting depths. The originality of this study lies in its integration of CT-based anatomy with dynamic FEA modeling, enabling a realistic simulation of tool–tissue interaction in dentistry. These insights can inform bur selection, cutting protocols, and future experimental validations. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

12 pages, 744 KiB  
Article
QTc Prolongation as a Diagnostic Clue in Acute Pulmonary Embolism
by Saleh Sharif, Eran Kalmanovich, Gil Marcus, Faina Tsiporin, Sa’ar Minha, Michael Barkagan, Itamar Love, Shmuel Fuchs, Guy Zahavi and Anat Milman
J. Clin. Med. 2025, 14(14), 5005; https://doi.org/10.3390/jcm14145005 - 15 Jul 2025
Viewed by 71
Abstract
Background: Pulmonary embolism (PE) increases right ventricular (RV) afterload, potentially leading to myocardial stress and electrocardiographic abnormalities. Although QTc prolongation has been suggested as a marker of RV dysfunction, its prevalence, clinical significance, and prognostic value in acute PE remain poorly defined. Objective: [...] Read more.
Background: Pulmonary embolism (PE) increases right ventricular (RV) afterload, potentially leading to myocardial stress and electrocardiographic abnormalities. Although QTc prolongation has been suggested as a marker of RV dysfunction, its prevalence, clinical significance, and prognostic value in acute PE remain poorly defined. Objective: The objective of this study is to evaluate the prevalence and clinical implications of QTc prolongation in patients with intermediate–high and high-risk acute PE. Methods: We retrospectively analyzed 95 consecutive patients admitted with intermediate–high or high-risk PE between September 2021 and December 2023. QTc prolongation was defined as ≥470 ms in males and ≥480 ms in females. Clinical, imaging, and laboratory data were compared between patients with normal and prolonged QTc intervals. QTc was assessed at admission, after treatment, and prior to discharge. Results: QTc prolongation was observed in 28.4% of patients at presentation. This group had significantly higher lactate levels (2.3 vs. 1.8 mmol/L, p = 0.03) and a non-significant trend toward elevated troponin and lower oxygen saturation. No differences were observed in echocardiographic or CT-based RV dysfunction parameters. QTc values normalized by discharge irrespective of treatment modality. There was no association between QTc prolongation and in-hospital or long-term mortality. A trend toward more aspiration thrombectomy was noted in the prolonged QTc group (29.6% vs. 11.8%, p = 0.06). Conclusions: QTc prolongation is common in acute intermediate–high and high-risk PE and may reflect transient myocardial stress. While not predictive of clinical outcomes, it should be considered in the differential diagnosis of QTc prolongation in patients presenting with dyspnea and chest pain. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

12 pages, 872 KiB  
Article
Assessment of Radiation Attenuation Properties in Dental Implants Using Monte Carlo Method
by Ali Rasat, Selmi Tunc, Yigit Ali Uncu and Hasan Ozdogan
Bioengineering 2025, 12(7), 762; https://doi.org/10.3390/bioengineering12070762 - 14 Jul 2025
Viewed by 91
Abstract
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% [...] Read more.
This study investigated the radiation attenuation characteristics of commonly used dental implant materials across an energy spectrum relevant to dental radiology. Two titanium implants were examined, with densities of 4.428 g/cm3 and 4.51 g/cm3, respectively. The first consisted of 90.39% titanium, 5.40% aluminum, and 4.21% vanadium, while the second comprised 58% titanium, 33% oxygen, 7% iron, 1% carbon, and 1% nitrogen. The third material was a zirconia implant (5Y form) composed of 94.75% zirconium dioxide, 5.00% yttrium oxide, and 0.25% aluminum oxide, exhibiting a higher density of 6.05 g/cm3. Monte Carlo simulations (MCNP6) and XCOM data were utilized to estimate photon source parameters, geometric configuration, and interactions with biological materials to calculate the half-value layer, mean free path, and tenth-value layer at varying photon energies. The results indicated that titanium alloys are well suited for low-energy imaging modalities such as CBCT and panoramic radiography due to their reduced artifact production. While zirconia implants demonstrated superior attenuation at higher energies (e.g., CT), their higher density may induce beam-hardening artifacts in low-energy systems. Future research should validate these simulation results through in vitro and clinical imaging and further explore the correlation between material-specific attenuation and CBCT image artifacts. Full article
Show Figures

Figure 1

15 pages, 9834 KiB  
Article
Rosmarinic Acid Protects Against Acetaminophen-Induced Hepatotoxicity by Suppressing Ferroptosis and Oxidative Stress Through Nrf2/HO-1 Activation in Mice
by Liqin Wu, Li Lv, Yifei Xiang, Dandan Yi, Qiuling Liang, Min Ji, Zhaoyou Deng, Lanqian Qin, Lingyi Ren, Zhengmin Liang and Jiakang He
Mar. Drugs 2025, 23(7), 287; https://doi.org/10.3390/md23070287 - 14 Jul 2025
Viewed by 179
Abstract
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring [...] Read more.
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring novel liver-protecting drugs and elucidating their mechanisms of action is of great scientific significance and clinical value. Rosmarinic acid (RA), as a natural polyphenolic compound, has been proven to have significant antioxidant activity. Previous studies have shown that it has a protective effect against drug-induced liver injury. Nevertheless, the precise protective mechanism of RA in APAP-induced acute liver injury (AILI) has not been fully defined. This study was based on an AILI mouse model to systematically explore the liver-protecting effect of RA and its underlying molecular mechanisms. The research results showed that pretreatment with RA could notably mitigate liver pathological injury. It could decrease the activities of ALT and AST in the serum, suppress the liver inflammatory reaction, and reverse the decline in the levels of CAT, T-AOC, SOD, and GSH caused by APAP. Meanwhile, RA could enhance antioxidant defense capabilities by activating the Keap1/Nrf2/HO-1 signaling pathway, regulate the xCT/GPX4 axis to inhibit lipid peroxidation, and thus block the process of ferroptosis. In conclusion, this study confirmed that RA exerts a protective effect against AILI by regulating the Keap1/Nrf2/HO-1 axis to enhance antioxidant capacity and inhibit ferroptosis through the xCT/GPX4 pathway. Our research provides a theoretical basis for RA as a potential therapeutic agent for APAP-induced liver injury. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
Show Figures

Figure 1

20 pages, 1539 KiB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 143
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

11 pages, 1704 KiB  
Article
Impact of Aging on Periodontitis Progression: A Murine Model Study of Porphyromonas gingivalis-Induced Alveolar Bone Loss
by Mitsutaka Nishimura, Motohiro Komaki, Shuntaro Sugihara and Toshiro Kodama
Oral 2025, 5(3), 51; https://doi.org/10.3390/oral5030051 - 10 Jul 2025
Viewed by 162
Abstract
Background: Periodontitis is a chronic inflammatory disease influenced by host aging, yet the specific effects of aging on disease susceptibility remain unclear. Objective: This study aimed to evaluate whether aging increases susceptibility to Porphyromonas gingivalis (P. gingivalis)-induced periodontitis in [...] Read more.
Background: Periodontitis is a chronic inflammatory disease influenced by host aging, yet the specific effects of aging on disease susceptibility remain unclear. Objective: This study aimed to evaluate whether aging increases susceptibility to Porphyromonas gingivalis (P. gingivalis)-induced periodontitis in a murine model. We formulated the null hypothesis that age does not affect susceptibility to periodontal bone loss. Methods: Young (8 weeks) and aged (78 weeks) male C57BL/6 mice were randomly assigned into four groups: young control, young infected, old control, and old infected (n = 8 per group, except for old control, where n = 7). Experimental periodontitis was induced by oral application of P. gingivalis suspended in 5% carboxymethylcellulose (CMC), administered every other day, for a total of three applications. Alveolar bone loss was assessed 39 days after the last inoculation using histomorphometric measurement of buccal distance from the cemento-enamel junction to the alveolar bone crest (CEJ–ABC distance) and micro-computed tomography (μCT) at mesial and distal interdental sites. Bonferroni’s correction was applied to the Mann–Whitney U Test to determine statistical significance. A p-value of less than 0.05 was considered statistically significant. Results: Morphometric analysis showed significantly greater buccal bone loss in infected mice versus controls in both age groups (young: 0.193 mm vs. 0.100 mm, p < 0.01; old: 0.262 mm vs. 0.181 mm, p < 0.01). μCT analysis revealed that interdental bone loss was significant only in aged infected mice (mesial: 0.155 mm vs. 0.120 mm, p < 0.05; distal: 0.185 mm vs. 0.100 mm, p < 0.01), and not significant in young infected mice. Conclusions: Aging significantly exacerbates P. gingivalis-induced alveolar bone loss, particularly in interdental regions. These results allowed us to reject the null hypothesis. This study validates a clinically relevant murine model for analyzing age-related periodontitis and provides a foundation for investigating underlying molecular mechanisms and potential therapeutic interventions. Full article
Show Figures

Graphical abstract

9 pages, 4257 KiB  
Article
Ultrasonic-Assisted Face Turning of C45 Steel: An Experimental Investigation on Surface Integrity
by Thanh-Trung Nguyen
Alloys 2025, 4(3), 13; https://doi.org/10.3390/alloys4030013 - 10 Jul 2025
Viewed by 121
Abstract
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately [...] Read more.
This study investigates the effect of ultrasonic vibration applied in the cutting speed direction on surface quality during face turning of C45 steel. The experiments were performed using an ultrasonic generator operating at a frequency of 20 kHz with an amplitude of approximately 10 µm. The cutting parameters used in the experiments included spindle speeds of 700, 1100, and 1300 rpm, feed rates of 0.1 and 0.15 mm/rev, while the depth of cut was fixed at 0.2 mm. Surface quality was evaluated based on the roughness parameters Ra and Rz, as well as surface topography was observed using a Keyence VHX-7000 digital microscope. The results show that ultrasonic-assisted face turning (UAFT) significantly improves surface finish, particularly in the central region of the workpiece where the cutting speed is lower and built-up edge (BUE) formation is more likely. The lowest Ra value recorded was 0.91 µm, representing a 71% reduction compared to conventional turning (CT). Furthermore, at the highest spindle speed (1300 rpm), the standard deviations of both Ra and Rz were minimal, indicating improved surface consistency due to the suppression of BUE by ultrasonic vibration. Topographical observations further confirmed that UAFT generated regular and periodic surface patterns, in contrast to the irregular textures observed in CT. Full article
Show Figures

Figure 1

18 pages, 1276 KiB  
Article
A Pressure-Driven Recovery Factor Equation for Enhanced Oil Recovery Estimation in Depleted Reservoirs: A Practical Data-Driven Approach
by Tarek Al Arabi Omar Ganat
Energies 2025, 18(14), 3658; https://doi.org/10.3390/en18143658 - 10 Jul 2025
Viewed by 121
Abstract
This study presents a new equation, the dynamic recovery factor (DRF), for evaluating the recovery factor (RF) in homogeneous and heterogeneous reservoirs. The DRF method’s outcomes are validated and compared using the decline curve analysis (DCA) method. Real measured [...] Read more.
This study presents a new equation, the dynamic recovery factor (DRF), for evaluating the recovery factor (RF) in homogeneous and heterogeneous reservoirs. The DRF method’s outcomes are validated and compared using the decline curve analysis (DCA) method. Real measured field data from 15 wells in a homogenous sandstone reservoir and 10 wells in a heterogeneous carbonate reservoir are utilized for this study. The concept of the DRF approach is based on the material balance principle, which integrates several components (weighted average cumulative pressure drop (ΔPcum), total compressibility (Ct), and oil saturation (So)) for predicting RF. The motivation for this study stems from the practical restrictions of conventional RF valuation techniques, which often involve extensive datasets and use simplifying assumptions that are not applicable in complex heterogeneous reservoirs. For the homogenous reservoir, the DRF approach predicts an RF of 8%, whereas the DCA method predicted 9.2%. In the heterogeneous reservoir, the DRF approach produces an RF of 6% compared with 5% for the DCA technique. Sensitivity analysis shows that RF is very sensitive to variations in Ct, ΔPcum, and So, with values that vary from 6.00% to 10.71% for homogeneous reservoirs and 4.43% to 7.91% for heterogeneous reservoirs. Uncertainty calculation indicates that errors in Ct, ΔPcum, and So propagate to RF, with weighting factor (Wi) uncertainties causing changes of ±3.7% and ±4.4% in RF for homogeneous and heterogeneous reservoirs, respectively. This study shows the new DRF approach’s ability to provide reliable RF estimations via pressure dynamics, while DCA is used as a validation and comparison baseline. The sensitivity analyses and uncertainty analyses provide a strong foundation for RF estimation that helps to select well-informed decisions in reservoir management with reliable RF values. The novelty of the new DRF equation lies in its capability to correctly estimate RFs using limited available historical data, making it appropriate for early-stage development and data-scarce situations. Hence, the new DRF equation is applied to various reservoir qualities, and the results show a strong alignment with those obtained from DCA, demonstrating high accuracy. This agreement validates the applicability of the DRF equation in estimating recovery factors through different reservoir qualities. Full article
(This article belongs to the Special Issue Petroleum Exploration, Development and Transportation)
Show Figures

Figure 1

13 pages, 1548 KiB  
Article
Reevaluating Routine Post-Biopsy Chest X-Rays After CT-Guided Lung Biopsy: Incidence of Pneumothorax and Value of Symptom-Based Monitoring
by Rosa Alba Pugliesi, Ina Schade, Amina Benchekroun, Roua BenAyed, Andreas Mahnken, Nour Maalouf and Jonas Apitzsch
J. Clin. Med. 2025, 14(14), 4867; https://doi.org/10.3390/jcm14144867 - 9 Jul 2025
Viewed by 219
Abstract
Background/Objectives: The aims of this study were to re-evaluate the necessity routine post-biopsy chest X-rays by evaluating the incidence, timing, and clinical relevance of pneumothorax (PTX) following CT-guided lung biopsies, and to determine whether symptom-based monitoring can safely replace routine imaging. Methods [...] Read more.
Background/Objectives: The aims of this study were to re-evaluate the necessity routine post-biopsy chest X-rays by evaluating the incidence, timing, and clinical relevance of pneumothorax (PTX) following CT-guided lung biopsies, and to determine whether symptom-based monitoring can safely replace routine imaging. Methods: This retrospective, single-center study included 112 patients (mean age: 69.3 years; 55% male) who underwent CT-guided lung biopsy between 9 January 2020 and 16 April 2025. PTX occurrence was assessed both intraprocedurally and during follow-up within 7 days. The primary outcome was the development of PTX; secondary outcomes were chest drainage need and delayed PTX identification. Logistic regression analysis and descriptive statistics were used to identify predictors and associations. Results: Intra-procedural PTX occurred in 43.8%, of whom 10.7% required immediate drainage. Clinically silent PTX that did not require intervention occurred in 25.9%. Routine chest X-rays were obtained 4 h post-biopsy for all patients. Importantly, no asymptomatic patient required any intervention. These results suggest that routine 4 h imaging may be unnecessary in the absence of symptoms. Conclusions: PTX is frequent after CT-guided lung biopsy but is often asymptomatic and self-limiting. The absence of clinically significant findings among asymptomatic patients supports a shift toward symptom-based monitoring. Implementing this strategy may help reduce unnecessary post-biopsy imaging and optimize healthcare resource utilization without compromising patient safety. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

15 pages, 3765 KiB  
Article
Diagnostic Performance of Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source Computed Tomography in Patients with Intermediate Pretest Probability of Coronary Artery Disease
by Sung Min Ko, Sung-Jin Cha, Hyunjung Kim, Pil-Hyun Jeon, Sang-Hyun Jeon, Sung Gyun Ahn and Jung-Woo Son
J. Cardiovasc. Dev. Dis. 2025, 12(7), 264; https://doi.org/10.3390/jcdd12070264 - 9 Jul 2025
Viewed by 209
Abstract
(1) Background: Our aim was to evaluate the diagnostic performance of combined coronary computed tomography angiography (CCTA) and dynamic CT myocardial perfusion imaging (CT-MPI) for detecting hemodynamically significant coronary artery disease (CAD) in patients with intermediate pretest probability. (2) Methods: Patients with an [...] Read more.
(1) Background: Our aim was to evaluate the diagnostic performance of combined coronary computed tomography angiography (CCTA) and dynamic CT myocardial perfusion imaging (CT-MPI) for detecting hemodynamically significant coronary artery disease (CAD) in patients with intermediate pretest probability. (2) Methods: Patients with an intermediate pretest probability of CAD were retrospectively enrolled. All patients underwent CCTA and dynamic CT-MPI using a third-generation dual-source CT scanner prior to invasive coronary angiography (ICA). Anatomically significant stenosis was defined as ≥50% luminal narrowing on both CCTA and ICA. Fractional flow reserve (FFR) was performed during ICA in selected cases. Hemodynamically significant CAD was defined per vessel as FFR ≤ 0.80, angiographic stenosis ≥70%, or having undergone revascularization. The diagnostic performance of CCTA alone and CCTA combined with CT-MPI was compared against this reference standard. (3) Results: Seventy-four patients (mean age, 66.8 ± 11.1 years; 59 men) were included. The median coronary calcium score was 508.5 Agatston units (interquartile range: 147–1173). ICA and CCTA detected anatomically significant stenoses in 137 (61.7%) and 146 (65.8%) coronary vessels, respectively, and in 62 (83.8%) and 71 (95.9%) patients, respectively. Hemodynamically significant stenosis was present in 56 patients (76%) and 99 vessels (45%). On a per-vessel basis, CCTA alone yielded a sensitivity of 96.7%, specificity of 60.3%, positive predictive value (PPV) of 64.4%, and negative predictive value (NPV) of 96.1%. Combined CCTA and CT-MPI demonstrated a sensitivity of 90.1%, specificity of 84.3%, PPV of 82.7%, and NPV of 91.1%. The area under the receiver operating characteristic curve improved from 0.787 (95% confidence interval: 0.73–0.84) for CCTA to 0.872 (95% confidence interval: 0.82–0.91) for the combined approach (p < 0.05). The median total radiation dose for both CCTA and CT-MPI was 8.05 mSv (interquartile range: 6.71–11.0). (4) Conclusions: In patients with intermediate pretest probability of CAD, combining CCTA with dynamic CT-MPI significantly enhances the diagnostic performance for identifying hemodynamically significant coronary stenosis compared to CCTA alone. Full article
Show Figures

Figure 1

Back to TopTop