Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = Coulomb friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6394 KiB  
Article
Effect of Water Content and Cementation on the Shear Characteristics of Remolded Fault Gouge
by Weimin Wang, Hejuan Liu, Haizeng Pan and Shengnan Ban
Appl. Sci. 2025, 15(14), 7933; https://doi.org/10.3390/app15147933 - 16 Jul 2025
Viewed by 209
Abstract
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content [...] Read more.
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content and cementation. Sixty fault gouge samples are prepared using a mineral mixture of quartz, montmorillonite, and kaolinite, with five levels of water content (10–30%) and three cementation degrees (0%, 1%, 3%). Direct shear tests are conducted under four normal stress levels (100–400 kPa), and microstructural characteristics are examined using SEM. The results show that shear strength and cohesion exhibit a non-monotonic trend with water content, increasing initially and then decreasing, while the internal friction angle decreases continuously. Higher cementation degrees not only enhance shear strength and reduce the softening effect caused by water but also shift the failure mode from ductile sliding to brittle, cliff-type rupture. Moreover, clay content is found to modulate the degree—but not the trend—of strength parameter responses to water and cementation variations. Based on the observed mechanical behavior, a semi-empirical shear strength prediction model is developed by extending the classical Mohr–Coulomb criterion with water–cementation coupling terms. The model accurately predicts cohesion and internal friction angle as functions of water content and cementation degree, achieving strong agreement with experimental results (R2 = 0.8309 for training and R2 = 0.8172 for testing). These findings provide a practical and interpretable framework for predicting the mechanical response of fault gouge under complex geological conditions. Full article
Show Figures

Figure 1

26 pages, 7731 KiB  
Article
A Finite Element Approach to the Upper-Bound Bearing Capacity of Shallow Foundations Using Zero-Thickness Interfaces
by Yu-Lin Lee, Yu-Tang Huang, Chi-Min Lee, Tseng-Hsing Hsu and Ming-Long Zhu
Appl. Sci. 2025, 15(14), 7635; https://doi.org/10.3390/app15147635 - 8 Jul 2025
Viewed by 251
Abstract
This study presents a robust numerical framework for evaluating the upper-bound ultimate bearing capacity of shallow foundations in cohesive and C-phi soils using a self-developed finite element method. The model incorporates multi-segment zero-thickness interface elements to accurately simulate soil discontinuities and progressive failure [...] Read more.
This study presents a robust numerical framework for evaluating the upper-bound ultimate bearing capacity of shallow foundations in cohesive and C-phi soils using a self-developed finite element method. The model incorporates multi-segment zero-thickness interface elements to accurately simulate soil discontinuities and progressive failure mechanisms, based on the Mohr–Coulomb failure criterion. In contrast to optimization-based methods such as discontinuity layout optimization (DLO) or traditional finite element limit analysis (FELA), the proposed approach uses predefined failure mechanisms to improve computational transparency and efficiency. A variety of geometric failure mechanisms are analyzed, including configurations with triangular, circular, and logarithmic spiral slip surfaces. Particular focus is given to the transition zone, which is discretized into multiple blocks to enhance accuracy and convergence. The method is developed for two-dimensional problems under the assumption of elastic deformable-plastic behavior and homogeneous isotropic soil, with limitations in automatically detecting failure mechanisms. The proposed approach is validated against classical theoretical solutions, demonstrating excellent agreement. For friction angles ranging from 0° to 40°, the computed bearing capacity factors Nc and Nq show minimal deviation from the analytical results, with errors as low as 0.04–0.19% and 0.12–2.43%, respectively. The findings confirm the method’s effectiveness in capturing complex failure behavior, providing a practical and accurate tool for geotechnical stability assessment and foundation design. Full article
Show Figures

Figure 1

20 pages, 2412 KiB  
Article
Strength Parameters and Failure Criterion of Granite After High-Temperature and Water-Cooling Treatment
by Jincai Yu, Cheng Cheng, Yuan Xie and Peng Chen
Appl. Sci. 2025, 15(13), 7481; https://doi.org/10.3390/app15137481 - 3 Jul 2025
Viewed by 319
Abstract
Granite is the main rock type in hot dry rock reservoirs, and hydraulic fracturing is always required during the process of geothermal production. It is necessary to understand the strength parameters and failure criterion of granite after high-temperature and water-cooling treatment. In this [...] Read more.
Granite is the main rock type in hot dry rock reservoirs, and hydraulic fracturing is always required during the process of geothermal production. It is necessary to understand the strength parameters and failure criterion of granite after high-temperature and water-cooling treatment. In this paper, laboratory uniaxial and triaxial compression experiments are carried out on granite samples after high-temperature and water-cooling treatment. Combined with some experimental data collected from pre-existing studies, the variation behaviors of cohesion (c), the internal friction angle (φ) and tensile strength σt are systematically studied considering the heating and cooling treatment. It is found that c and φ generally show two different types of variation behaviors with the increasing heating temperature. Tensile strength decreases in a similar way for the different granite samples with the increasing treatment temperature. Empirical equations are provided to describe these strength parameters. Finally, a modified Mohr–Coulomb failure criterion with a “tension cut-off” is established for the granite samples, considering the effects of high-temperature and water-cooling treatment. This study should be helpful for understanding the mechanical behavior of hot dry rock during hydraulic fracturing in geothermal production, and the proposed failure criterion can be applied for the numerical modeling of reservoirs. Full article
(This article belongs to the Special Issue Advances in Geotechnical and Geological Engineering)
Show Figures

Figure 1

15 pages, 1066 KiB  
Article
Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact
by Mirela Roxana Apsan, Ana Maria Mitu, Nicolae Pop, Tudor Sireteanu, Vicentiu Marius Maxim and Adrian Musat
J. Compos. Sci. 2025, 9(7), 338; https://doi.org/10.3390/jcs9070338 - 29 Jun 2025
Viewed by 374
Abstract
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in [...] Read more.
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in frictional contact with a rigid foundation for the quasistatic case. The manuscript proposes the finite element method approximation in space and the finite difference approximation in time. The problem of quasistatic frictional contact is described with a special finite element, which can analyze the state of the nodes in the contact area, and their modification, between open, sliding, and fixed contact states, in the analyzed time interval. This finite element also models the Coulomb friction law and controls the penetrability according to a power law. Moreover, the quasi-static case analyzed allows for the description of the load history using an incremental and iterative algorithm. The discrete problem will be a static and nonlinear one for each time increment, and in the case of sliding contact, the stiffness matrix becomes non-symmetric. The regularization of the non-differentiable term comes from the modulus of the normal contact stress, with a convex function and with the gradient in the sub-unit modulus. The non-penetration condition was achieved with the penalty method, and the linearization was conducted with the Newton–Raphson method. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

21 pages, 2712 KiB  
Article
A Data-Driven Iterative Feedforward Tuning Strategy with a Variable-Gain Feedback Controller for Linear Servo Systems
by Jiaqian Fu and Shanhu Li
Energies 2025, 18(13), 3284; https://doi.org/10.3390/en18133284 - 23 Jun 2025
Viewed by 304
Abstract
Iterative feedforward tuning (IFFT) compensates for the dynamic tracking error in linear servo systems caused by reference trajectory and nonlinear friction. The feedback controller with infinite DC gain makes the steady-state tracking error zero. This paper analyzes the effect of the DC gain [...] Read more.
Iterative feedforward tuning (IFFT) compensates for the dynamic tracking error in linear servo systems caused by reference trajectory and nonlinear friction. The feedback controller with infinite DC gain makes the steady-state tracking error zero. This paper analyzes the effect of the DC gain of the feedback controller on IFFT and proposes an IFFT strategy with a variable-gain feedback controller. This strategy makes the dynamic tracking error due to Coulomb friction behave as a continuous and easy-to-construct window function, which makes the feedforward basis function vector consistent with the dimensionality of the dynamic tracking error. This strategy improves both the efficiency and accuracy of IFFT compared to IFFT using a fixed-gain feedback controller. The dynamic tracking error is compensated to the maximum extent possible, and the steady-state tracking error is zero. Theoretical verification and experimental results indicate the excellent iterative efficiency and accuracy of IFFT with a variable-gain feedback controller. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 2928 KiB  
Article
A New Look at the Stress State Across the Bohai Strait, China
by Zhihao Liang, Xianghui Qin, Guoxiang Yang, Yiran Zhao, Zixuan Gao, Yifan Chen and Chongyuan Zhang
Appl. Sci. 2025, 15(12), 6708; https://doi.org/10.3390/app15126708 - 15 Jun 2025
Viewed by 399
Abstract
The Bohai Strait is a special tectonic region in North China, characterized by strong fault activity and frequent seismic events. In this study, we analyzed the stress state across the Bohai Strait in detail by integrating the stress data derived from the hydraulic [...] Read more.
The Bohai Strait is a special tectonic region in North China, characterized by strong fault activity and frequent seismic events. In this study, we analyzed the stress state across the Bohai Strait in detail by integrating the stress data derived from the hydraulic fracturing measurements in four boreholes along the strait (i.e., Pingdu, Xiangli, Changdao, and Gaizhou from south to north) and evaluated its implications for seismicity. The results reveal that the gradient coefficients of the maximum (SH) and minimum horizontal stresses (Sh) with depth in Xiangli and Changdao are over 1.59 and 1.87 times the corresponding stresses of the North China Block. However, the SH and Sh in Pingdu and Gaizhou do not exceed 50.2% and 59.4% of those of the North China Block. The stress values increase as the distance approaches the interaction of the regional faults in the Bohai Strait. The SH orientation in the Bohai Strait region is N68.67 ± 9.30° E, consistent with the prevailing NEE–E-W regional stress direction. According to the Coulomb friction failure criterion, the friction coefficients of the four boreholes range from 0.24 to 0.52, lower than the theoretically critical limit for inducing fault slip in the upper crust (i.e., Byerlee’s law). The faults in the strait region are considered to be contemporarily stable but need to be further evaluated, considering more influencing factors. This study provides a new, instructive understanding of the variations in the stress state in the Bohai Strait region. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 3223 KiB  
Article
Passive Earth Pressure and Soil Arch Shape: A Two-Dimensional Analysis
by Pengqiang Yu, Kejia Wu, Dongsheng Li and Yang Liu
Appl. Sci. 2025, 15(11), 6345; https://doi.org/10.3390/app15116345 - 5 Jun 2025
Viewed by 376
Abstract
This paper introduces an analytical method for passive earth pressure calculation based on a rigorous stress field analysis within the sliding wedge. Unlike traditional horizontal layer methods, this approach directly solves for the stress state at any point within the wedge by analyzing [...] Read more.
This paper introduces an analytical method for passive earth pressure calculation based on a rigorous stress field analysis within the sliding wedge. Unlike traditional horizontal layer methods, this approach directly solves for the stress state at any point within the wedge by analyzing the equilibrium of 2D differential soil elements under appropriate boundary conditions, eliminating the need for a priori assumptions about the soil arch shape. The method yields the passive earth pressure distribution on the retaining structure and derives the soil arch shape analytically from major principal stress trajectories. This derived arch shape differs notably from conventional circular or parabolic assumptions, especially at higher soil–wall friction angles. Parametric studies show that the passive earth pressure coefficient increases with internal friction angle and surcharge. However, a key finding is the non-monotonic dependence of the passive earth pressure coefficient on the soil–wall friction angle, contrasting with many existing theories. Comparisons show predictions by the proposed method align well with experimental data, particularly offering a better representation of pressure distributions in the lower regions of retaining walls compared to Coulomb theory and other existing methods. Full article
(This article belongs to the Special Issue Latest Research on Geotechnical Engineering)
Show Figures

Figure 1

23 pages, 8232 KiB  
Article
Modeling of the 2007 Aysén Tsunami Generated by the Punta Cola and North Mentirosa Island Landslides
by Francisco Uribe, Mauricio Fuentes and Jaime Campos
Coasts 2025, 5(2), 19; https://doi.org/10.3390/coasts5020019 - 4 Jun 2025
Viewed by 494
Abstract
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the [...] Read more.
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the Mentirosa Island, the event resulted in 10 fatalities and the destruction of multiple salmon farms along the fjord. We employed the NHWAVE and FUNWAVE-TVD numerical software to conduct a series of simulations using various landslide configurations and two approaches to model landslide motion: a viscous flow and a solid slide governed by Coulomb friction. The numerical results indicate that the solid landslide model without basal friction provides the most accurate representation of the measured in situ run-up heights and generates the largest inundation areas. Furthermore, the simulation results show that the arrival time of the tsunami waves was approximately 600 s. Our findings indicate that the volume of the landslide is the most critical factor in determining tsunami wave heights. Additionally, the Coulomb friction angle is another significant parameter to consider in the modeling process. Full article
Show Figures

Figure 1

27 pages, 12274 KiB  
Article
Mechanical Properties and Microstructure Damage of Limestone Concrete Under Triaxial Stress
by Kaide Liu, Songxin Zhao, Dingbo Wang, Wenping Yue, Chaowei Sun, Yu Xia and Qiyu Wang
Buildings 2025, 15(11), 1924; https://doi.org/10.3390/buildings15111924 - 2 Jun 2025
Cited by 1 | Viewed by 433
Abstract
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show [...] Read more.
This study takes limestone crushed stone concrete as the research object and systematically investigates its mechanical property changes and microstructural damage characteristics under different confining pressures using triaxial compression tests, scanning electron microscope (SEM) tests, and digital image processing techniques. The results show that, in terms of macro-mechanical properties, as the confining pressure increases, the peak strength increases by 192.66%, the axial peak strain increases by 143.66%, the elastic modulus increases by 133.98%, and the ductility coefficient increases by 54.61%. In terms of microstructure, the porosity decreases by 64.35%, the maximum pore diameter decreases by 75.69%, the fractal dimension decreases by 19.56%, and the interfacial transition zone cracks gradually extend into the aggregate interior. The optimization of the microstructure makes the concrete more compact, reduces stress concentration, and thereby enhances the macro-mechanical properties. Additionally, the failure characteristics of the specimens shift from diagonal shear failure to compressive flow failure. According to the Mohr–Coulomb strength criterion, the calculated cohesion is 6.96 MPa, the internal friction angle is 38.89°, and the breakage angle is 25.53°. A regression analysis established a quantitative relationship between microstructural characteristics and macro-mechanical properties, revealing the significant impact of microstructural characteristics on macro-mechanical properties. Under low confining pressure, early volumetric expansion and rapid volumetric strain occur, with microcracks mainly concentrated at the aggregate interface that are relatively wide. Under high confining pressure, volumetric expansion is delayed, volumetric strain increases slowly, and microcracks extend into the interior of the aggregate, becoming finer and more dispersed. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

23 pages, 14922 KiB  
Article
Strain Rate Effects on Characteristic Stresses and Dynamic Strength Criterion in Granite Under Triaxial Quasi-Static Compression
by Lu Liu, Jinhui Ouyang, Wencheng Yang and Sijing Wang
Appl. Sci. 2025, 15(11), 6214; https://doi.org/10.3390/app15116214 - 31 May 2025
Viewed by 512
Abstract
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures [...] Read more.
To investigate the effects of the strain rate and confinement on characteristic stresses and strength criterion in granite under static to quasi-static loading, triaxial compression tests were systematically conducted across strain rates of 10−6 to 10−2 s−1 and confining pressures of 0–40 MPa. Stress–strain curves, characteristic stresses, macro-fracture patterns, and dynamic strength criterion were analyzed. The experimental results indicate the following: (1) crack damage stress (σcd) and peak stress (σp) show strong linear correlations with logarithmic strain rate, while crack initiation stress (σci) exhibits weaker rate dependence; (2) linear regression establishes characteristic stress ratios σci = 0.58σp and σcd = 0.85σp; (3) macroscopic fractures transition from Y-shaped shear patterns under low confinement and strain rate conditions to X-shaped shear failures at higher confinement and strain rate; (4) the Mohr–Coulomb criterion effectively characterizes dynamic strength evolution in granite, with cohesion increasing 22% across tested strain rates while internal friction angle remains stable at around 50°; (5) variations in microcrack activity intensity during rock deformation stages result in the dynamic increase factor for characteristic stresses (CSDIF) of σci being lower than σcd and σp. More importantly, σcd and σp exhibit CSDIF reductions as confining pressure increases. This differential behavior is explained by confinement-enhanced shear fracturing dominance during crack propagation stages, combined with the lower strain rate sensitivity of shear versus tensile fracture toughness. Full article
Show Figures

Figure 1

23 pages, 1322 KiB  
Article
Comparative Analysis of ALE Method Implementation in Time Integration Schemes for Pile Penetration Modeling
by Ihab Bendida Bourokba, Abdelmadjid Berga, Patrick Staubach and Nazihe Terfaya
Math. Comput. Appl. 2025, 30(3), 58; https://doi.org/10.3390/mca30030058 - 22 May 2025
Viewed by 516
Abstract
This study investigates the full penetration simulation of piles from the ground surface, focusing on frictional contact modeling without mesh distortion. To overcome issues related to mesh distortion and improve solution convergence, the Arbitrary Lagrangian–Eulerian (ALE) adaptive mesh technique was implemented within both [...] Read more.
This study investigates the full penetration simulation of piles from the ground surface, focusing on frictional contact modeling without mesh distortion. To overcome issues related to mesh distortion and improve solution convergence, the Arbitrary Lagrangian–Eulerian (ALE) adaptive mesh technique was implemented within both explicit and implicit time integration schemes. The numerical model was validated against field experiments conducted at Bothkennar, Scotland, using the Imperial College instrumented displacement pile (ICP) in soft clay, where the soil behavior was effectively represented using the modified Cam-Clay model and the Mohr–Coulomb model. The primary objectives of this study are to evaluate the ALE method performance in handling mesh distortion; analyze the effects of soil–pile interface friction, pile dimensions, and various dilation angles on pile resistance; and compare the effectiveness of explicit and implicit time integration schemes in terms of stability, computational efficiency, and solution accuracy. The ALE method effectively modeled pile penetration in Bothkennar clay, validating the numerical model against field experiments. Comparative analysis revealed the explicit time integration method as more robust and computationally efficient, particularly for complex soil–pile interactions with higher friction coefficients. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

20 pages, 2949 KiB  
Article
Optimal Design Methodology of Maxwell–Coulomb Friction Damper
by Chun-Nam Wong and Wai-On Wong
Vibration 2025, 8(2), 25; https://doi.org/10.3390/vibration8020025 - 19 May 2025
Viewed by 469
Abstract
The optimal design methodology for a Maxwell–Coulomb friction damper is proposed to minimize the resonant vibration of dynamic structures. The simple Coulomb friction damper has the problem of zero or little damping effect of the vibration of the spring–mass dynamic system at resonance. [...] Read more.
The optimal design methodology for a Maxwell–Coulomb friction damper is proposed to minimize the resonant vibration of dynamic structures. The simple Coulomb friction damper has the problem of zero or little damping effect of the vibration of the spring–mass dynamic system at resonance. This problem is solved in the case of the Maxwell–Coulomb friction damper, which is formed by combining a Coulomb friction damper with a spring element in series. However, the design and analysis of the Maxwell–Coulomb friction damper become much more complicated. The optimal design methodology for this nonlinear damper is proposed in this article. The nonlinear equations of motion of the proposed damper are modelled, and its hysteresis loop can be constructed by combining four different cases of stick–slide motion. Motion responses of the turbine blade with the proposed damper are solved by a central difference solver. Optimal paths of damping and stiffness ratios are determined by the central difference Newton search method. The optimal experimental design is ascertained using a prototype damper test. Close correlation with its numerical simulations is observed in our hysteresis loop comparison. The performance of the proposed damper is also compared to that of a viscous damper in the seismic response design of adjacent single-story buildings. Full article
(This article belongs to the Special Issue Vibration Damping)
Show Figures

Figure 1

18 pages, 6607 KiB  
Article
Total Model-Free Robust Control of Non-Affine Nonlinear Systems with Discontinuous Inputs
by Quanmin Zhu, Jing Na, Weicun Zhang and Qiang Chen
Processes 2025, 13(5), 1315; https://doi.org/10.3390/pr13051315 - 25 Apr 2025
Cited by 2 | Viewed by 426
Abstract
Taking the plant as a total uncertainty in a black box with measurable inputs and attainable outputs, this paper presents a constructive control design of agnostic nonlinear dynamic systems with discontinuous input (such as hard nonlinearities in the forms of dead zones, friction, [...] Read more.
Taking the plant as a total uncertainty in a black box with measurable inputs and attainable outputs, this paper presents a constructive control design of agnostic nonlinear dynamic systems with discontinuous input (such as hard nonlinearities in the forms of dead zones, friction, and backlashes). This study expands the model-free sliding mode control (MFSMC), based on the Lyapunov differential inequality, to a total model-free robust control (TMFRC) for this class of piecewise systems, which does not use extra adaptive online data fitting modelling to deal with plant uncertainties and input discontinuities. The associated properties are analysed to justify the constraints and provide assurance for system stability analysis. Numerical examples in control of a non-affine nonlinear plant with three hard nonlinear inputs—a dead zone, Coulomb and viscous friction, and backlash—are used to test the feasibility of the TMFRC. Furthermore, real experimental tests on a permanent magnet synchronous motor (PMSM) are also given to showcase the control’s applicability and offer guidance for implementation. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

14 pages, 11366 KiB  
Article
A Lithiophilic Artificial Li3P Interphase with High Li-Ion Conductivity via Solid-State Friction for Lithium Metal Anodes
by Haoling Liu, Wen Pan, Bo Xiao, Yunke Jin, Kun Li, An Wang, Huimiao Li, Zhibin Wu, Yuejiao Chen, Shaozhen Huang, Lin Mei and Libao Chen
Materials 2025, 18(9), 1930; https://doi.org/10.3390/ma18091930 - 24 Apr 2025
Viewed by 500
Abstract
Interfacial modification strategies for lithium metal anodes have emerged as a promising method to improve cycling stability, suppress lithium dendrite growth, and increase Coulombic efficiency. However, the reported chemical synthesis methods lead to side reactions and side products, which hinder their electrochemical performance. [...] Read more.
Interfacial modification strategies for lithium metal anodes have emerged as a promising method to improve cycling stability, suppress lithium dendrite growth, and increase Coulombic efficiency. However, the reported chemical synthesis methods lead to side reactions and side products, which hinder their electrochemical performance. In this study, we propose a novel and facile red phosphorus-assisted solid-state friction method to in situ fabricate a uniform Li3P interphase directly on the surface of lithium metal. Interestingly, the as-formed artificial Li3P interphase with high ionic conductivity and lithium affinity features significantly enhanced interfacial stability and electrochemical kinetics. The symmetric cells based on Li@P with the Li3P interphase achieved a prolonged lifespan, over 1000 h, at 1 mA/cm2 with low polarization. When paired with a high-loading LiFePO4 cathode (10.5 mg/cm2), the Li@P||LiFePO4 full cell retained 88.9% of its capacity after stable cycling for 550 cycles at 2 C and further demonstrated the excellent performance and stability of the Li@P‖LiCoO2 full pouch cell. This study provides an efficient and scalable strategy for stabilizing lithium metal anodes, expanding new ideas for the development of next-generation high-energy-density batteries. Full article
Show Figures

Graphical abstract

25 pages, 6836 KiB  
Article
Mechanical Modeling and Dynamic Characteristics of a Three-Directional Vibration Absorber
by Zhangbin Wu, Mao Chen, Qiuyu Li, Canhui Li, Yunzhe Qiu, Zi Ye and Guangming Xue
Appl. Sci. 2025, 15(8), 4420; https://doi.org/10.3390/app15084420 - 17 Apr 2025
Viewed by 490
Abstract
Vibration is a prevalent phenomenon in mechanical systems, often adversely affecting equipment performance and operational stability. To address this issue, this study proposes a novel three-directional vibration absorber, which provides stiffness in three orthogonal directions. The mechanical properties of the isolator are theoretically [...] Read more.
Vibration is a prevalent phenomenon in mechanical systems, often adversely affecting equipment performance and operational stability. To address this issue, this study proposes a novel three-directional vibration absorber, which provides stiffness in three orthogonal directions. The mechanical properties of the isolator are theoretically analyzed, focusing on its load-bearing capacity and working stroke, which are influenced by the initial configuration angle of the spring assembly. The dynamic characteristics of the proposed isolator are evaluated by comparing its peak dynamic displacement and force transmissibility rate with those of a conventional linear vibration isolator. The results indicate that under low excitation amplitudes, the three-directional isolator achieves a lower peak force transmissibility but exhibits a higher dynamic displacement peak compared to the linear isolator. Furthermore, a dynamic model incorporating Coulomb friction damping is developed to assess its impact on the system’s dynamic response. The findings reveal that increasing the equivalent Coulomb friction factor effectively reduces the dynamic response amplitude and force transmission rate below the resonance frequency but exacerbates these parameters beyond the resonance point. Finally, experimental studies were conducted on the isolator prototype. The results show that the static theoretical model can well reflect the static characteristics of the isolator and the dynamic theoretical model can effectively fit the dynamic test curves of the isolator. This research provides a theoretical foundation for the further optimization and practical application of three-directional vibration isolators. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

Back to TopTop