Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Citrobacter Rodentium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2766 KiB  
Article
Lactobacillus plantarum and Galacto-Oligosaccharides Synbiotic Relieve Irritable Bowel Syndrome by Reshaping Gut Microbiota and Attenuating Mast Cell Hyperactivation
by Qi Yao, Wenbo Zhang, Yuze Wang, Le Shi, Yixiao Zhao, Jiarui Liang, Yu Zhao, Jiawei Kang, Xudong Zheng, Rui Guo, Tian Yuan, Yongbo She and Zhigang Liu
Nutrients 2025, 17(10), 1670; https://doi.org/10.3390/nu17101670 - 14 May 2025
Cited by 1 | Viewed by 1066
Abstract
Background: Irritable bowel syndrome (IBS) significantly impairs the lifestyle and quality of life of the global population. However, the underlying pathophysiological mechanisms remain largely elusive. While conventional pharmacological approaches show limited therapeutic efficacy, emerging microbiota-targeted dietary interventions present promising alternatives. Objectives: The present [...] Read more.
Background: Irritable bowel syndrome (IBS) significantly impairs the lifestyle and quality of life of the global population. However, the underlying pathophysiological mechanisms remain largely elusive. While conventional pharmacological approaches show limited therapeutic efficacy, emerging microbiota-targeted dietary interventions present promising alternatives. Objectives: The present study aimed to elucidate the molecular mechanisms by which a synbiotic mitigates IBS and associated colonic dysfunctions in C57BL/6 mice. Methods: The mouse model was induced by a Citrobacter rodentium (C. rodentium) infection combined with water avoidance stress (WAS). Galacto-oligosaccharides (GOS) were identified as the optimal carbon source for the growth of Lactobacillus plantarum ZYC501 (L. plantarum ZYC501), leading to the establishment of the synbiotic formulation. Results: The 32-day synbiotic intervention, consisting of L. plantarum ZYC501 (1 × 109 CFU/day) and GOS (10 g/L, w/w), significantly alleviated colonic transit dysfunction, visceral hypersensitivity, and anxiety-like behaviors in IBS mice. The synbiotic treatment significantly inhibited the expression levels of histamine, mast cell tryptase, and prostaglandin E2 (PGE2) (p < 0.05). The synbiotic also suppressed colonic inflammation by reducing the levels of lipopolysaccharide (LPS), TNF-α, and IL-6 (p < 0.05). Moreover, the synbiotic increased the expression of MUC2 and the production of short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate (p < 0.05). In terms of gut microbiota modulation, the synbiotic reshaped the gut microbiota composition, increasing the abundance of Lactobacillus and Akkermansia while decreasing the levels of Helicobacter and Saccharibacteria. Correlation analysis further revealed a strong association among SCFAs, colonic inflammation, and the gut microbiota. Conclusions: In conclusion, the synbiotic composed of L. plantarum ZYC501 and GOS effectively alleviates IBS and associated colonic dysfunctions by modulating the gut microbiota, reducing mast cell hyperactivity, and enhancing colonic barrier integrity. These findings provide a theoretical basis for developing gut microbiota-targeted dietary interventions for the management of IBS and improvement in gut health. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Graphical abstract

20 pages, 4928 KiB  
Article
Further Evaluation of Enterohemorrhagic Escherichia coli Gold Nanoparticle Vaccines Utilizing Citrobacter rodentium as the Model Organism
by Sarah Bowser, Angela Melton-Celsa, Itziar Chapartegui-González and Alfredo G. Torres
Vaccines 2024, 12(5), 508; https://doi.org/10.3390/vaccines12050508 - 8 May 2024
Cited by 3 | Viewed by 2379
Abstract
Enterohemorrhagic E. coli (EHEC) is a group of pathogenic bacteria that is associated with worldwide human foodborne diarrheal illnesses and the development of hemolytic uremic syndrome, a potentially deadly condition associated with Shiga toxins (Stxs). Currently, approved vaccines for human prophylaxis against infection [...] Read more.
Enterohemorrhagic E. coli (EHEC) is a group of pathogenic bacteria that is associated with worldwide human foodborne diarrheal illnesses and the development of hemolytic uremic syndrome, a potentially deadly condition associated with Shiga toxins (Stxs). Currently, approved vaccines for human prophylaxis against infection do not exist, and one barrier preventing the successful creation of EHEC vaccines is the absence of dependable animal models, including mice, which are naturally resistant to EHEC infection and do not manifest the characteristic signs of the illness. Our lab previously developed gold nanoparticle (AuNP)-based EHEC vaccines, and assessed their efficacy using Citrobacter rodentium, which is the mouse pathogen counterpart of EHEC, along with an Stx2d-producing strain that leads to more consistent disease kinetics in mice, including lethality. The purpose of this study was to continue evaluating these vaccines to increase protection. Here, we demonstrated that subcutaneous immunization of mice with AuNPs linked to the EHEC antigens EscC and intimin (Eae), either alone or simultaneously, elicits functional robust systemic humoral responses. Additionally, vaccination with both antigens together showed some efficacy against Stx2d-producing C. rodentium while AuNP-EscC successfully limited infection with non-Stx2d-producing C. rodentium. Overall, the collected results indicate that our AuNP vaccines have promising potential for preventing disease with EHEC, and that evaluation of novel vaccines using an appropriate animal model, like C. rodentium described here, could be the key to finally developing an effective EHEC vaccine that can progress into human clinical trials. Full article
(This article belongs to the Special Issue Bacterial Vaccine: Mucosal Immunity and Implications)
Show Figures

Figure 1

13 pages, 8592 KiB  
Article
Inhibitory Effect of Lactococcus and Enterococcus faecalis on Citrobacter Colitis in Mice
by Ullah Naveed, Chenxi Jiang, Qingsong Yan, Yupeng Wu, Jinhui Zhao, Bowen Zhang, Junhong Xing, Tianming Niu, Chunwei Shi and Chunfeng Wang
Microorganisms 2024, 12(4), 730; https://doi.org/10.3390/microorganisms12040730 - 3 Apr 2024
Cited by 3 | Viewed by 1559
Abstract
Probiotics are beneficial for intestinal diseases. Research shows that probiotics can regulate intestinal microbiota and alleviate inflammation. Little research has been done on the effects of probiotics on colitis in mice. The purpose of this study was to investigate the inhibitory effect of [...] Read more.
Probiotics are beneficial for intestinal diseases. Research shows that probiotics can regulate intestinal microbiota and alleviate inflammation. Little research has been done on the effects of probiotics on colitis in mice. The purpose of this study was to investigate the inhibitory effect of the strains isolated and screened from the feces of healthy piglets on the enteritis of rocitrobacter. The compound ratio of isolated Lactobacillus L9 and Enterococcus faecalis L16 was determined, and the optimal compound ratio was selected according to acid production tests and bacteriostatic tests in vitro. The results showed that when the ratio of Lactobacillus L9 to Enterococcus faecalis L16 was 4:1, the pH value was the lowest, and the antibacterial diameter was the largest. Then, in animal experiments, flow cytometry was used to detect the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria. The results showed that the number of T lymphocytes in the spleen and mesenteric lymph nodes of mice immunized with complex lactic acid bacteria significantly increased, which could improve the cellular immunity of mice. The microbiota in mouse feces were sequenced and analyzed, and the results showed that compound lactic acid bacteria could increase the diversity of mouse microbiota. It stabilized the intestinal microbiota structure of mice and resisted the damage of pathogenic bacteria. The combination of lactic acid bacteria was determined to inhibit the intestinal colitis induced by Citrobacter, improve the cellular immune response of the body, and promote the growth of animals. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond, 2nd Edition)
Show Figures

Figure 1

13 pages, 941 KiB  
Article
Differential Correlation of Transcriptome Data Reveals Gene Pairs and Pathways Involved in Treatment of Citrobacter rodentium Infection with Bioactive Punicalagin
by Damarius S. Fleming, Fang Liu and Robert W. Li
Molecules 2023, 28(21), 7369; https://doi.org/10.3390/molecules28217369 - 31 Oct 2023
Cited by 2 | Viewed by 1619
Abstract
This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract [...] Read more.
This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract punicalagin against intracellular parasites. The study compared transcriptomic reads of two distinct conditions. Condition A was treated with punicalagin (PA) and challenged with Citrobacter rodentium, while condition B (CM) consisted of a group that was challenged and given mock treatment of PBS. To understand the effect of punicalagin on transcriptomic changes between conditions, a differential correlation analysis was conducted. The analysis examined the regulatory connections of genes expressed between different treatment conditions by statistically querying the relationship between correlated gene pairs and modules in differing conditions. The results indicated that punicalagin treatment had strong positive correlations with the over-enriched gene ontology (GO) terms related to oxidoreductase activity and lipid metabolism. However, the GO terms for immune and cytokine responses were strongly correlated with no punicalagin treatment. The results matched previous studies that showed punicalagin to have potent antioxidant and antiparasitic effects when used to treat parasitic infections in mice and livestock. Overall, the results indicated that punicalagin enhanced the effect of tissue-resident genes. Full article
(This article belongs to the Special Issue Bioactive Compounds against Parasite, Bacteria and Related Diseases)
Show Figures

Graphical abstract

19 pages, 7802 KiB  
Article
Ginkgo biloba Extract Preventively Intervenes in Citrobacter Rodentium-Induced Colitis in Mice
by Tingting Chen, Yiqiang Chen, Kaiyuan Li, Zhuo Chen, Qingyu Zhao, Yimeng Fan, Ying Liu, Suxia Zhang and Zhihui Hao
Nutrients 2023, 15(8), 2008; https://doi.org/10.3390/nu15082008 - 21 Apr 2023
Cited by 3 | Viewed by 3272
Abstract
Inflammatory bowel disease (IBD) represents a highly recurrent gastrointestinal disorder and global public health issue. However, it lacks effective and safe strategies for its control. Although Ginkgo biloba extract (GBE) has been suggested to exhibit preventive and therapeutic activity for the control of [...] Read more.
Inflammatory bowel disease (IBD) represents a highly recurrent gastrointestinal disorder and global public health issue. However, it lacks effective and safe strategies for its control. Although Ginkgo biloba extract (GBE) has been suggested to exhibit preventive and therapeutic activity for the control of IBD, whether its activity is associated with its ability to modulate intestinal microbiota remains to be addressed. To investigate the effect of GBE on controlling IBD, a Citrobacter Rodentium (CR)-induced mouse colitis model was used, and then histopathological examinations, biochemical assays, immunohistochemistry, and immunoblotting were performed to detect histological changes, cytokines, and tight junction (TJ) proteins in the intestine samples. We also studied 16s rRNA to detect changes in intestinal microbiota and used GC-MS to determine the microbiota-related metabolites short chain fatty acids (SCFAs). The results of our studies revealed that pre-treatment with GBE was sufficient for protecting the animals from CR-induced colitis. As a mechanism for GBE activity, GBE treatment was able to modulate the intestinal microbiota and increase the SCFAs capable of decreasing the pro-inflammatory factors and up-regulating the anti-inflammatory factors while elevating the intestinal-barrier-associated proteins to maintain the integrity of the intestines. Accordingly, our results led to a strong suggestion that GBE should be seriously considered in the preventive control of CR-induced colitis and in the development of effective and safe therapeutic strategies for controlling IBD. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

18 pages, 4570 KiB  
Article
Barley Leaf Ameliorates Citrobacter-rodentium-Induced Colitis through Arginine Enrichment
by Yu Feng, Daotong Li, Chen Ma, Xiaosong Hu and Fang Chen
Nutrients 2023, 15(8), 1890; https://doi.org/10.3390/nu15081890 - 14 Apr 2023
Cited by 3 | Viewed by 2383
Abstract
Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective [...] Read more.
Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective metabolites. Our results demonstrated that dietary supplementation with BL significantly enriched arginine and that arginine intervention significantly ameliorated CR-induced colitis symptoms such as reduced body weight, shortened colon, wrinkled cecum, and swollen colon wall in mice; in addition, arginine intervention dramatically ameliorated CR-induced histopathological damage to the colon. The gut microbial diversity analysis showed that arginine intervention significantly decreased the relative abundance of CR and significantly increased the relative abundance of Akkermansia, Blautia, Enterorhabdus, and Lachnospiraceae, which modified the CR-induced intestinal flora disorder. Notably, arginine showed a dose-dependent effect on the improvement of colitis caused by CR. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

15 pages, 3146 KiB  
Article
Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis
by Weike Qian, Mingyang Li, Leilei Yu, Fengwei Tian, Jianxin Zhao and Qixiao Zhai
Biomedicines 2023, 11(4), 1048; https://doi.org/10.3390/biomedicines11041048 - 29 Mar 2023
Cited by 22 | Viewed by 8055
Abstract
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal [...] Read more.
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal flora homeostasis under conditions of gut dysbiosis and underlying mechanisms remain unclear. This study examined the effects of taurine on the intestinal flora and homeostasis of healthy mice and mice with dysbiosis caused by antibiotic treatment and pathogenic bacterial infections. The results showed that taurine supplementation could significantly regulate intestinal microflora, alter fecal bile acid composition, reverse the decrease in Lactobacillus abundance, boost intestinal immunity in response to antibiotic exposure, resist colonization by Citrobacter rodentium, and enhance the diversity of flora during infection. Our results indicate that taurine has the potential to shape the gut microbiota of mice and positively affect the restoration of intestinal homeostasis. Thus, taurine can be utilized as a targeted regulator to re-establish a normal microenvironment and to treat or prevent gut dysbiosis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota in Health and Diseases)
Show Figures

Figure 1

15 pages, 3661 KiB  
Review
Genotoxins: The Mechanistic Links between Escherichia coli and Colorectal Cancer
by Ya Wang and Kai Fu
Cancers 2023, 15(4), 1152; https://doi.org/10.3390/cancers15041152 - 10 Feb 2023
Cited by 26 | Viewed by 5352
Abstract
Emerging evidence indicates bacterial infections contribute to the formation of cancers. Bacterial genotoxins are effectors that cause DNA damage by introducing single- and double-strand DNA breaks in the host cells. The first bacterial genotoxin cytolethal distending toxin (CDT) was a protein identified in [...] Read more.
Emerging evidence indicates bacterial infections contribute to the formation of cancers. Bacterial genotoxins are effectors that cause DNA damage by introducing single- and double-strand DNA breaks in the host cells. The first bacterial genotoxin cytolethal distending toxin (CDT) was a protein identified in 1987 in a pathogenic strain in Escherichia coli (E. coli) isolated from a young patient. The peptide-polyketide genotoxin colibactin is produced by the phylogenetic group B2 of E. coli. Recently, a protein produced by attaching/effacing (A/E) pathogens, including enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) and their murine equivalent Citrobacter rodentium (CR), has been reported as a novel protein genotoxin, being injected via the type III secretion system (T3SS) into host cells and harboring direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. These E. coli-produced genotoxins impair host DNA, which results in senescence or apoptosis of the target cells if the damage is beyond repair. Conversely, host cells can survive and proliferate if the genotoxin-induced DNA damage is not severe enough to kill them. The surviving cells may accumulate genomic instability and acquire malignant traits. This review presents the cellular responses of infection with the genotoxins-producing E. coli and discusses the current knowledge of the tumorigenic potential of these toxins. Full article
(This article belongs to the Special Issue Bacterial, Viral and Parasitic Pathogens and Colorectal Cancer)
Show Figures

Figure 1

22 pages, 1952 KiB  
Article
Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro
by Azam A. Sher, Mia E. VanAllen, Husnain Ahmed, Charles Whitehead-Tillery, Sonia Rafique, Julia A. Bell, Lixin Zhang and Linda S. Mansfield
Microorganisms 2023, 11(1), 193; https://doi.org/10.3390/microorganisms11010193 - 12 Jan 2023
Cited by 9 | Viewed by 7477
Abstract
Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal Escherichia coli LM715-1 carrying a chromosomal red [...] Read more.
Many antibiotic-resistant bacteria carry resistance genes on conjugative plasmids that are transferable to commensals and pathogens. We determined the ability of multiple enteric bacteria to acquire and retransfer a broad-host-range plasmid RP4. We used human-derived commensal Escherichia coli LM715-1 carrying a chromosomal red fluorescent protein gene and green fluorescent protein (GFP)-labeled broad-host-range RP4 plasmid with ampR, tetR, and kanR in in vitro matings to rifampicin-resistant recipients, including Escherichia coli MG1655, Dec5α, Vibrio cholerae, Pseudomonas putida, Pseudomonas aeruginosa, Klebsiella pneumoniae, Citrobacter rodentium, and Salmonella Typhimurium. Transconjugants were quantified on selective media and confirmed using fluorescence microscopy and PCR for the GFP gene. The plasmid was transferred from E. coli LM715-1 to all tested recipients except P. aeruginosa. Transfer frequencies differed between specific donor–recipient pairings (10−2 to 10−8). Secondary retransfer of plasmid from transconjugants to E. coli LM715-1 occurred at frequencies from 10−2 to 10−7. A serial passage plasmid persistence assay showed plasmid loss over time in the absence of antibiotics, indicating that the plasmid imposed a fitness cost to its host, although some plasmid-bearing cells persisted for at least ten transfers. Thus, the RP4 plasmid can transfer to multiple clinically relevant bacterial species without antibiotic selection pressure. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

14 pages, 2384 KiB  
Article
Garlic-Derived Metabolites Exert Antioxidant Activity, Modulate Gut Microbiota Composition and Limit Citrobacter rodentium Infection in Mice
by Ling Zhu, Audrey I. S. Andersen-Civil, Josue L. Castro-Meija, Dennis S. Nielsen, Alexandra Blanchard, John E. Olsen, Stig M. Thamsborg and Andrew R. Williams
Antioxidants 2022, 11(10), 2033; https://doi.org/10.3390/antiox11102033 - 15 Oct 2022
Cited by 4 | Viewed by 2874
Abstract
The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear, and whether PTS-PTSO can promote gut health by [...] Read more.
The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear, and whether PTS-PTSO can promote gut health by altering the microbiota and exert protection against enteric pathogens needs further investigation. Here, we explored the antioxidant activity of PTS-PTSO in murine macrophages in vitro, and in an in vivo model of bacterial infection with the bacterial pathogen Citrobacter rodentium. PTS-PTSO attenuated reactive oxygen species in lipopolysaccharide-stimulated macrophages in a nuclear factor erythroid factor 2-related factor 2 (Nrf2)-dependent manner, decreased nitric oxide levels both in macrophages in vitro and in the sera of mice fed PTS-PTSO, and had putatively beneficial effects on the commensal gut microbiota. Importantly, PTS-PTSO decreased faecal C. rodentium counts, concomitant with upregulation of Nrf2-related genes in colon tissue. Thus, PTS-PTSO mediates Nrf2-mediated antioxidant activity and modulates gut microbiota, which may protect the host against C. rodentium colonization. Our results provide further insight into how PTS-PTSO and related bioactive dietary compounds may reduce enteric infections. Full article
Show Figures

Figure 1

18 pages, 4685 KiB  
Article
ZnT2 Is Critical for TLR4-Mediated Cytokine Expression in Colonocytes and Modulates Mucosal Inflammation in Mice
by Katherine McGourty, Ramya Vijayakumar, Tong Wu, Annie Gagnon and Shannon L. Kelleher
Int. J. Mol. Sci. 2022, 23(19), 11467; https://doi.org/10.3390/ijms231911467 - 28 Sep 2022
Cited by 4 | Viewed by 3292
Abstract
A wide range of microbial pathogens can enter the gastrointestinal tract, causing mucosal inflammation and infectious colitis and accounting for most cases of acute diarrhea. Severe cases of infectious colitis can persist for weeks, and if untreated, may lead to major complications and [...] Read more.
A wide range of microbial pathogens can enter the gastrointestinal tract, causing mucosal inflammation and infectious colitis and accounting for most cases of acute diarrhea. Severe cases of infectious colitis can persist for weeks, and if untreated, may lead to major complications and death. While the molecular pathogenesis of microbial infections is often well-characterized, host-associated epithelial factors that affect risk and severity of infectious colitis are less well-understood. The current study characterized functions of the zinc (Zn) transporter ZnT2 (SLC30A2) in cultured HT29 colonocytes and determined consequences of ZnT2 deletion in mice on the colonic response to enteric infection with Citrobacter rodentium. ZnT2 in colonocytes transported Zn into vesicles buffering cytoplasmic Zn pools, which was important for Toll-like receptor 4 (TLR4) expression, activation of pathogen-stimulated NF-κβ translocation and cytokine expression. Additionally, ZnT2 was critical for lysosome biogenesis and bacterial-induced autophagy, both promoting robust host defense and resolution mechanisms in response to enteric pathogens. These findings reveal that ZnT2 is a novel regulator of mucosal inflammation in colonocytes and is critical to the response to infectious colitis, suggesting that manipulating the function of ZnT2 may offer new therapeutic strategies to treat specific intestinal infections. Full article
(This article belongs to the Special Issue Immune Modulation of Mucosal Inflammation 2.0)
Show Figures

Figure 1

16 pages, 4487 KiB  
Article
Barley Leaf Ameliorates Citrobacter rodentium-Induced Colitis through Preventive Effects
by Yu Feng, Daotong Li, Chen Ma, Meiling Tian, Xiaosong Hu and Fang Chen
Nutrients 2022, 14(18), 3833; https://doi.org/10.3390/nu14183833 - 16 Sep 2022
Cited by 5 | Viewed by 2672
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) have been increasing globally and progressively in recent decades. Barley leaf (BL) is a nutritional supplement that is shown to have health-promoting effects on intestinal homeostasis. Our previous study demonstrated that BL could significantly [...] Read more.
The incidence and prevalence of inflammatory bowel disease (IBD) have been increasing globally and progressively in recent decades. Barley leaf (BL) is a nutritional supplement that is shown to have health-promoting effects on intestinal homeostasis. Our previous study demonstrated that BL could significantly attenuate Citrobacter rodentium (CR)-induced colitis, but whether it exerts a prophylactic or therapeutic effect remains elusive. In this study, we supplemented BL before or during CR infestation to investigate which way BL acts. The results showed that BL supplementation prior to infection significantly reduced the disease activity index (DAI) score, weight loss, colon shortening, colonic wall swelling, and transmissible murine colonic hyperplasia. It significantly reduced the amount of CR in the feces and also markedly inhibited the extraintestinal transmission of CR. Meanwhile, it significantly reduced the levels and expression of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFNγ), and interleukin-1β (IL1β). In addition, pretreatment with BL improved CR-induced gut microbiota dysbiosis by reducing the content of Proteobacteria, while increasing the content of Lactobacillus. In contrast, the effect of BL supplementation during infestation on the improvement of CR-induced colitis was not as good as that of pretreatment with BL. In conclusion, BL protects against CR-caused colitis in a preventive manner. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Figure 1

24 pages, 3310 KiB  
Article
Transcriptional Profiling of the Small Intestine and the Colon Reveals Modulation of Gut Infection with Citrobacter rodentium According to the Vitamin A Status
by Zhi Chai, Yafei Lyu, Qiuyan Chen, Cheng-Hsin Wei, Lindsay M. Snyder, Veronika Weaver, Aswathy Sebastian, István Albert, Qunhua Li, Margherita T. Cantorna and Catharine Ross
Nutrients 2022, 14(8), 1563; https://doi.org/10.3390/nu14081563 - 8 Apr 2022
Cited by 2 | Viewed by 5370
Abstract
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal [...] Read more.
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host’s VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl secretion and disrupted HCO3 metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA. Full article
(This article belongs to the Special Issue Recent Retinoid Research: Implications for Human Health)
Show Figures

Graphical abstract

7 pages, 1416 KiB  
Article
Repurposing Avasimibe to Inhibit Bacterial Glycosyltransferases
by Md Kamrul Hasan, Samir El Qaidi, Peter McDonald, Anuradha Roy and Philip R. Hardwidge
Pathogens 2022, 11(3), 370; https://doi.org/10.3390/pathogens11030370 - 17 Mar 2022
Viewed by 2872
Abstract
We are interested in identifying and characterizing small molecule inhibitors of bacterial virulence factors for their potential use as anti-virulence inhibitors. We identified from high-throughput screening assays a potential activity for avasimibe, a previously characterized acyl-coenzyme A: cholesterol acyltransferase inhibitor, in inhibiting the [...] Read more.
We are interested in identifying and characterizing small molecule inhibitors of bacterial virulence factors for their potential use as anti-virulence inhibitors. We identified from high-throughput screening assays a potential activity for avasimibe, a previously characterized acyl-coenzyme A: cholesterol acyltransferase inhibitor, in inhibiting the NleB and SseK arginine glycosyltransferases from Escherichia coli and Salmonella enterica, respectively. Avasimibe inhibited the activity of the Citrobacter rodentium NleB, E. coli NleB1, and S. enterica SseK1 enzymes, without affecting the activity of the human serine/threonine N-acetylglucosamine (O-GlcNAc) transferase. Avasimibe was not toxic to mammalian cells at up to 200 µM and was neither bacteriostatic nor bactericidal at concentrations of up to 125 µM. Doses of 10 µM avasimibe were sufficient to reduce S. enterica abundance in RAW264.7 macrophage-like cells, and intraperitoneal injection of avasimibe significantly reduced C. rodentium survival in mice, regardless of whether the avasimibe was administered pre- or post-infection. We propose that avasimibe or related derivates created using synthetic chemistry may have utility in preventing or treating bacterial infections by inhibiting arginine glycosyltransferases that are important to virulence. Full article
Show Figures

Figure 1

25 pages, 5746 KiB  
Article
Dietary Interventions Ameliorate Infectious Colitis by Restoring the Microbiome and Promoting Stem Cell Proliferation in Mice
by Ishfaq Ahmed, Kafayat Yusuf, Badal C. Roy, Jason Stubbs, Shrikant Anant, Thomas M. Attard, Venkatesh Sampath and Shahid Umar
Int. J. Mol. Sci. 2022, 23(1), 339; https://doi.org/10.3390/ijms23010339 - 29 Dec 2021
Cited by 9 | Viewed by 4622
Abstract
Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and [...] Read more.
Decreases in short-chain-fatty-acids (SCFAs) are linked to inflammatory bowel disease (IBD). Yet, the mechanisms through which SCFAs promote wound healing, orchestrated by intestinal stem cells, are poorly understood. We discovered that, in mice with Citrobacter rodentium (CR)-induced infectious colitis, treatment with Pectin and Tributyrin diets reduced the severity of colitis by restoring Firmicutes and Bacteroidetes and by increasing mucus production. RNA-seq in young adult mouse colon (YAMC) cells identified higher expression of Lgr4, Lgr6, DCLK1, Muc2, and SIGGIR after Butyrate treatment. Lineage tracing in CR-infected Lgr5-EGFP-IRES-CreERT2/ROSA26-LacZ (Lgr5-R) mice also revealed an expansion of LacZ-labeled Lgr5(+) stem cells in the colons of both Pectin and Tributyrin-treated mice compared to control. Interestingly, gut microbiota was required for Pectin but not Tributyrin-induced Lgr5(+) stem cell expansion. YAMC cells treated with sodium butyrate exhibited increased Lgr5 promoter reporter activity due to direct Butyrate binding with Lgr5 at −4.0 Kcal/mol, leading to thermal stabilization. Upon ChIP-seq, H3K4me3 increased near Lgr5 transcription start site that contained the consensus binding motif for a transcriptional activator of Lgr5 (SPIB). Thus, a multitude of effects on gut microbiome, differential gene expression, and/or expansion of Lgr5(+) stem cells seem to underlie amelioration of colitis following dietary intervention. Full article
Show Figures

Figure 1

Back to TopTop