Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = CeO2-ZrO2 nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9184 KiB  
Article
Ceria–Zirconia-Supported Pt as an Efficient Catalyst for the Sustainable Synthesis of Hydroxylamines and Primary Amines via the Hydrogenation of Oximes Under Ambient Conditions
by Elena Redina, Inna Ivanova, Olga Tkachenko, Gennady Kapustin, Igor Mishin and Leonid Kustov
Molecules 2025, 30(9), 1926; https://doi.org/10.3390/molecules30091926 - 26 Apr 2025
Viewed by 836
Abstract
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing [...] Read more.
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing C-N bonds, such as nitro compounds, nitriles, and oximes. Among these, oximes are the most readily accessible substrates easily derived from ketones and aldehydes. However, oximes are much harder to reduce compared to nitro compounds and nitriles. The catalytic heterogeneous hydrogenation of oximes often requires harsh conditions and catalysts with high precious metal loadings, while hydroxylamines are hard to be obtained by this method. In this work, we showed that Pt supported on a porous ceria–zirconia solid solution enables the selective and atom-efficient synthesis of both hydroxylamines and amines through the hydrogenation of oximes, achieving yields of up to 99% under ambient reaction conditions in a “green” THF:H2O solvent system. The high activity of the 1% Pt/CeO2-ZrO2 catalyst (TOF > 500 h−1) is due to low-temperature hydrogen activation on Pt nanoparticles with the formation of a hydride, Pt-H. The strong influence of electron-donating and electron-withdrawing groups on the hydrogenation of aromatic oximes implies the nucleophilic attack of hydridic hydrogen from Pt to the electrophilic carbon of protonated oximes. Full article
(This article belongs to the Special Issue Advanced Heterogeneous Catalysis)
Show Figures

Graphical abstract

14 pages, 1837 KiB  
Article
The Effect of Support and Reduction Methods on Catalyst Performance in the Selective Oxidation of 1,2-Propanediol
by Xin Li, Zhiqing Wang, Xiong Xiong, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(4), 304; https://doi.org/10.3390/catal15040304 - 24 Mar 2025
Viewed by 606
Abstract
The oxidation of 1,2-propanediol (1,2-PDO) under alkaline heterogeneous catalysis can be optimized to produce lactic acid, a valuable commodity chemical. In this study, Pd nanoparticles supported on various metal oxides (CeO2, CuO, ZrO2, ZnO, SnO2) were synthesized [...] Read more.
The oxidation of 1,2-propanediol (1,2-PDO) under alkaline heterogeneous catalysis can be optimized to produce lactic acid, a valuable commodity chemical. In this study, Pd nanoparticles supported on various metal oxides (CeO2, CuO, ZrO2, ZnO, SnO2) were synthesized via a wet-chemistry method. Furthermore, CeO2-supported Pd nanoparticle catalysts were prepared using different reduction methods. The catalytic performance for the selective oxidation of 1,2-PDO was evaluated using a range of characterization techniques. Under optimal conditions (120 °C, 1.0 MPa O2 pressure, 2 h reaction time, and a NaOH/1,2-PDO molar ratio of 3.0), a high lactic acid yield of 62.7% was achieved. Single-factor experiments revealed that lactic acid selectivity decreased with prolonged reaction time. Conversely, increasing temperature, NaOH concentration, and O2 pressure initially enhanced lactic acid selectivity, but further increases resulted in a decline. Physicochemical characterization revealed that different supports and reduction methods affect the basicity of the catalyst, which subsequently influences the selectivity of the target product, lactic acid. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

13 pages, 5055 KiB  
Article
Band-Gap Engineering of High-Entropy Fluorite Metal Oxide Nanoparticles Facilitated by Pr3+ Incorporation by Gel Combustion Synthesis
by Mariappan Anandkumar, Kannan Pidugu Kesavan, Shanmugavel Sudarsan, Olga Vladimirovna Zaitseva, Ahmad Ostovari Moghaddam, Daria Valerevna Iarushina and Evgeny Alekseevich Trofimov
Gels 2025, 11(2), 117; https://doi.org/10.3390/gels11020117 - 6 Feb 2025
Cited by 2 | Viewed by 1143
Abstract
Tailoring the bandgap of a material is necessary for improving its optical properties. Here, the optical bandgap of high-entropy oxide Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ (HEO) nanoparticles was modified using Pr3+. Various concentrations of [...] Read more.
Tailoring the bandgap of a material is necessary for improving its optical properties. Here, the optical bandgap of high-entropy oxide Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ (HEO) nanoparticles was modified using Pr3+. Various concentrations of Pr3+ (x = 0, 0.01, 0.02, 0.05, 0.075, 0.1, 0.15) were incorporated into the host high-entropy oxide using a gel combustion synthesis. After the gel combustion step, the powders were heat-treated at various temperatures (650 °C, 800 °C, 950 °C) for 2 h. The obtained Pr3+-incorporated HEO powders were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV–visible spectroscopy. The results indicate that, when the samples are calcined at 950 °C, a single-phase cubic fluorite structure is obtained without any phase separation or impurity. The optical absorbance red-shifts to higher wavelengths when the concentration of Pr3+ is increased. This reduces the bandgap of the material from 3.15 eV to 1.87 eV for Pr3+ concentrations of x = 0 (HEO-0) and x = 0.15 (HEO-6), respectively. The obtained HEOs can be suitable candidates for photocatalytic applications due to their absorbance in the visible region. Full article
(This article belongs to the Special Issue Advanced Metal Gels: Synthesis and Applications)
Show Figures

Figure 1

47 pages, 26240 KiB  
Review
The Structures and Compositions Design of the Hollow Micro–Nano-Structured Metal Oxides for Environmental Catalysis
by Jingxin Xu, Yufang Bian, Wenxin Tian, Chao Pan, Cai-e Wu, Leilei Xu, Mei Wu and Mindong Chen
Nanomaterials 2024, 14(14), 1190; https://doi.org/10.3390/nano14141190 - 12 Jul 2024
Cited by 3 | Viewed by 2023
Abstract
In recent decades, with the rapid development of the inorganic synthesis and the increasing discharge of pollutants in the process of industrialization, hollow-structured metal oxides (HSMOs) have taken on a striking role in the field of environmental catalysis. This is all due to [...] Read more.
In recent decades, with the rapid development of the inorganic synthesis and the increasing discharge of pollutants in the process of industrialization, hollow-structured metal oxides (HSMOs) have taken on a striking role in the field of environmental catalysis. This is all due to their unique structural characteristics compared to solid nanoparticles, such as high loading capacity, superior pore permeability, high specific surface area, abundant inner void space, and low density. Although the HSMOs with different morphologies have been reviewed and prospected in the aspect of synthesis strategies and potential applications, there has been no systematic review focusing on the structures and compositions design of HSMOs in the field of environmental catalysis so far. Therefore, this review will mainly focus on the component dependence and controllable structure of HSMOs in the catalytic elimination of different environmental pollutants, including the automobile and stationary source emissions, volatile organic compounds, greenhouse gases, ozone-depleting substances, and other potential pollutants. Moreover, we comprehensively reviewed the applications of the catalysts with hollow structure that are mainly composed of metal oxides such as CeO2, MnOx, CuOx, Co3O4, ZrO2, ZnO, Al3O4, In2O3, NiO, and Fe3O4 in automobile and stationary source emission control, volatile organic compounds emission control, and the conversion of greenhouse gases and ozone-depleting substances. The structure–activity relationship is also briefly discussed. Finally, further challenges and development trends of HSMO catalysts in environmental catalysis are also prospected. Full article
(This article belongs to the Collection Metallic and Metal Oxide Nanohybrids and Their Applications)
Show Figures

Figure 1

16 pages, 7377 KiB  
Article
Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells
by Miguel Morales, Mohammad Rezayat, Sandra García-González, Antonio Mateo and Emilio Jiménez-Piqué
Nanomaterials 2024, 14(7), 603; https://doi.org/10.3390/nano14070603 - 28 Mar 2024
Cited by 3 | Viewed by 1955
Abstract
The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni–zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2−δ [...] Read more.
The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni–zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2−δ (ruthenium–zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol–gel synthesis method, and subsequently, nanoparticles of Ru (1.0–2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs. Full article
(This article belongs to the Special Issue Advances in Nanoscale Electrocatalysts)
Show Figures

Figure 1

14 pages, 4287 KiB  
Article
Influence of Oxide Coating Layers on the Stability of Gold Catalysts for Furfural Oxidative Esterification to Methyl Furoate
by Juan Su, Nannan Zhan, Yuan Tan, Xiangting Min, Yan Xiao and Botao Qiao
Catalysts 2024, 14(3), 192; https://doi.org/10.3390/catal14030192 - 12 Mar 2024
Cited by 1 | Viewed by 2026
Abstract
The use of gold nanoparticles (Au NPs) as catalysts has gained widespread attention in various reactions due to their high activity and selectivity under mild reaction conditions. However, one major challenge in utilizing these catalysts is their tendency to aggregate, leading to catalyst [...] Read more.
The use of gold nanoparticles (Au NPs) as catalysts has gained widespread attention in various reactions due to their high activity and selectivity under mild reaction conditions. However, one major challenge in utilizing these catalysts is their tendency to aggregate, leading to catalyst deactivation and hindering their amplification and industrial application. To overcome this issue, herein, we used a method by coating the surface of Au NPs with a thin layer of SiO2, which resulted in the formation of a superior catalyst denoted as Au@SiO2/ZA. Characterization studies revealed that the SiO2 layer is coated on the surface of Au NPs and effectively prevents the aggregation and growth of the gold particles during the reaction process, which makes the catalyst display excellent stability in furfural (FF) oxidative esterification to methyl furoate (MF). Moreover, the stabilization strategy is not limited to SiO2 alone. It can also be extended to other oxides such as ZrO2, CeO2, and TiO2. We believe this work will provide a good reference for the design and development of an efficient and stable gold catalyst for the oxidative esterification reaction. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

16 pages, 3865 KiB  
Article
Enhancing DMC Production from CO2: Tuning Oxygen Vacancies and In Situ Water Removal
by Kaiying Wang, Shiguang Li, Miao Yu and Xinhua Liang
Energies 2024, 17(4), 839; https://doi.org/10.3390/en17040839 - 9 Feb 2024
Cited by 6 | Viewed by 2226
Abstract
The direct synthesis of dimethyl carbonate (DMC) from methanol and CO2 presents an attractive route to turn abundant CO2 into value-added chemicals. However, insufficient DMC yields arise due to the inert nature of CO2 and the limitations of reaction equilibrium. [...] Read more.
The direct synthesis of dimethyl carbonate (DMC) from methanol and CO2 presents an attractive route to turn abundant CO2 into value-added chemicals. However, insufficient DMC yields arise due to the inert nature of CO2 and the limitations of reaction equilibrium. Oxygen vacancies are known to facilitate CO2 activation and improve catalytic performance. In this work, we have demonstrated that tuning oxygen vacancies in catalysts and implementing in situ water removal can enable highly efficient DMC production from CO2. CexZryO2 nanorods with abundant oxygen vacancies were synthesized via a hydrothermal method. In liquid-phase DMC synthesis, the Ce10Zr1O2 nanorods exhibited a 1.7- and 1.4-times higher DMC yield compared to CeO2 nanoparticles and undoped CeO2 nanorods, respectively. Zr doping yielded a CeZr solid solution with increased oxygen vacancies, promoting CO2 adsorption and activation. In addition, adding 2-cyanopyridine as an organic dehydrating agent achieved an outstanding 87% methanol conversion and >99% DMC selectivity by shifting the reaction equilibrium to the desired product. Moreover, mixing CeO2 nanoparticles with hydrophobic fumed SiO2 in gas-phase DMC synthesis led to a doubling of DMC yield. This significant increase was attributed to the faster diffusion of water molecules away from the catalyst surface, facilitated by the hydrophobic SiO2. This study illustrates an effective dual strategy of enhancing oxygen vacancies and implementing in situ water removal to boost DMC production from CO2. The strategy can also be applied to other reactions impacted by water accumulation. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Graphical abstract

16 pages, 7643 KiB  
Article
Combustion Synthesis of Zirconium-Doped Ceria Nanocatalyst
by Katarina Mužina, Stanislav Kurajica, Helena Bach-Rojecky, Filip Brleković and Marina Duplančić
Crystals 2024, 14(2), 108; https://doi.org/10.3390/cryst14020108 - 23 Jan 2024
Cited by 1 | Viewed by 2487
Abstract
Zirconium-doped ceria is a promising and extensively researched catalytic material with notable use in three-way catalytic converters, the oxidation of volatile organic compounds and solid oxide fuel cells. In this work, pure and zirconium-doped ceria nanoparticles (Ce1−xZrxO2, [...] Read more.
Zirconium-doped ceria is a promising and extensively researched catalytic material with notable use in three-way catalytic converters, the oxidation of volatile organic compounds and solid oxide fuel cells. In this work, pure and zirconium-doped ceria nanoparticles (Ce1−xZrxO2, where x = 0, 0.1, 0.2, and 0.3) were prepared by combustion synthesis using glycine as the fuel and cerium and zirconium nitrate as oxidants. The obtained powders were characterized using X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential thermal and thermogravimetric analysis, UV–Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The combustion temperature increases with the increase in zirconium content in the samples, but the XRD patterns exclusively show ceria diffraction peaks. The crystallite sizes are in the range from 25.2 to 11.7 nm, and do not vary substantially after thermal treatment, indicating the good thermal stability of the prepared nanocatalysts. XPS analysis showed that the surface amount of zirconium is lower than the nominal and that the ceria sample with 10 mol. % of zirconium has a higher amount of oxygen vacancies than the 30 mol. % Zr-doped sample. The 10 mol. % Zr-doped sample displays the best catalytic activity in the BTEX (benzene, toluene, ethylbenzene, and o-xylene) oxidation process. Full article
(This article belongs to the Special Issue Metal Oxides: Crystal Structure, Synthesis and Characterization)
Show Figures

Figure 1

17 pages, 14517 KiB  
Article
Construction of Oxygen Vacancies of Zr-Doped CeO2 with Enhanced Dye Adsorption Performance
by NingTao Luo, Lei Fan, YunQiang Chen and WeiGuang Lan
Crystals 2023, 13(12), 1641; https://doi.org/10.3390/cryst13121641 - 27 Nov 2023
Cited by 4 | Viewed by 1955
Abstract
Congo red (CR), a highly pigmented anionic dye, is highly toxic and resistant to degradation. The discharge of CR wastewater into the natural environment can lead to ecological destruction and harm to human health. CeO2 as an adsorbent possesses the advantages of [...] Read more.
Congo red (CR), a highly pigmented anionic dye, is highly toxic and resistant to degradation. The discharge of CR wastewater into the natural environment can lead to ecological destruction and harm to human health. CeO2 as an adsorbent possesses the advantages of excellent acid and alkali resistance, biocompatibility, stable physical and chemical properties, and nontoxic by-products. The impact of Zr doping on the adsorption performance of nano-CeO2 was investigated. XPS and Raman characterisation revealed that Zr doping effectively enhanced the oxygen vacancy ratio at the active sites for CR adsorption on the surface of nano-CeO2. When the doping amount of Zr was 3%, the nanoparticles with the best adsorption properties were obtained, and the adsorption amount of CR at room temperature was as high as 3642.05 mg/g, which was approximately three times the adsorption amount of undoped CeO2. This excellent adsorption property shows good prospects for the removal of anionic dyes from wastewater. Full article
(This article belongs to the Special Issue Design and Properties of Functional Nanocatalysts)
Show Figures

Figure 1

22 pages, 4559 KiB  
Article
Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications
by Johan Stanley, Eleftheria Xanthopoulou, Matjaž Finšgar, Lidija Fras Zemljič, Panagiotis A. Klonos, Apostolos Kyritsis, Savvas Koltsakidis, Dimitrios Tzetzis, Dimitra A. Lambropoulou, Diana Baciu, Theodore A. Steriotis, Georgia Charalambopoulou and Dimitrios N. Bikiaris
Polymers 2023, 15(23), 4502; https://doi.org/10.3390/polym15234502 - 23 Nov 2023
Cited by 7 | Viewed by 2668
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce–bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) [...] Read more.
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce–bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites’ structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0–5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9–22% for Gram-positive bacterial strains and 5–16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF. Full article
Show Figures

Figure 1

19 pages, 3468 KiB  
Article
Au-Deposited Ce0.5Zr0.5O2 Nanostructures for Photocatalytic H2 Production under Visible Light
by Shaeel Ahmed Al Thabaiti, Zaheer Khan, Khloud Saeed Al-Thubaiti, Salem Mohamed Bawaked, Soad Zahir Al-Sheheri, Mohamed Mokhtar, Maqsood Ahmad Malik and Katabathini Narasimharao
Catalysts 2023, 13(10), 1340; https://doi.org/10.3390/catal13101340 - 4 Oct 2023
Cited by 1 | Viewed by 1518
Abstract
Pure Ce0.5Zr0.5O2 and Au (0.1–1.0 wt.%)-deposited Ce0.5Zr0.5O2 nanomaterials were synthesized via hydrothermal and non-aqueous precipitation methods using gold acetate as a chloride-free Au precursor. The synthesized nanostructures exhibited enhanced photocatalytic activity for hydrogen [...] Read more.
Pure Ce0.5Zr0.5O2 and Au (0.1–1.0 wt.%)-deposited Ce0.5Zr0.5O2 nanomaterials were synthesized via hydrothermal and non-aqueous precipitation methods using gold acetate as a chloride-free Au precursor. The synthesized nanostructures exhibited enhanced photocatalytic activity for hydrogen production via aqueous bioethanol photoreforming under visible light. Different characterization tools such as powder XRD, HRTEM, FT-IR, DR UV-vis, XPS and N2 gas adsorption were used to analyze the physicochemical properties of the synthesized photocatalysts. The band gap value was lowered from 3.25 eV to 2.86 eV after Au nanoparticles were deposited on the surface of Ce0.5Zr0.5O2. The 1.0 wt.% Au-deposited Ce0.5Zr0.5O2 sample exhibited the highest photocatalytic activity for H2 production (3210 μmol g−1) due to its low band gap, the presence of more oxygen vacancies and its porous character. The EIS results reveal that the deposition of 1.0 wt.% Au nanoparticles is responsible for the highest charge separation efficiency with an increased lifetime of photogenerated e/h+ species compared to the other samples. In addition, the presence of plasmonic Au is responsible for the effectiveness of the electron trap in improving the rate of H2 formation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 2806 KiB  
Article
Impact of Ce/Zr Ratio in the Nanostructured Ceria and Zirconia Composites on the Selective CO2 Adsorption
by Gloria Issa, Martin Kormunda, Oyundari Tumurbaatar, Ágnes Szegedi, Daniela Kovacheva, Daniela Karashanova and Margarita Popova
Nanomaterials 2023, 13(17), 2428; https://doi.org/10.3390/nano13172428 - 26 Aug 2023
Cited by 7 | Viewed by 2144
Abstract
High surface-area, mesoporous CeO2, ZrO2, and Ce-Zr composite nanoparticles were developed using the hydrothermal template-assisted synthesis method. Samples were characterized using XRD, N2 physisorption, TEM, XPS, and FT-IR spectroscopic methods. The CO2 adsorption ability of the obtained materials [...] Read more.
High surface-area, mesoporous CeO2, ZrO2, and Ce-Zr composite nanoparticles were developed using the hydrothermal template-assisted synthesis method. Samples were characterized using XRD, N2 physisorption, TEM, XPS, and FT-IR spectroscopic methods. The CO2 adsorption ability of the obtained materials was tested under dynamic and equilibrium conditions. A high CO2 adsorption capacity in CO2/N2 flow or CO2/N2/H2O was determined for all studied adsorbents depending on their composition flow. A higher CO2 adsorption was registered for Ce-Zr composite nanomaterials due to the presence of strong O2− base sites and enriched surface oxygen species. The role of the Ce/Zr ratio is the process of the formation of highly active and selective adsorption sites is discussed. The calculated heat of adsorption revealed the processes of chemisorption and physisorption. Experimental data could be appropriately described by the Yoon–Nelson kinetic model. The composites reused in five adsorption/desorption cycles showed a high stability with a slight decrease in CO2 adsorption capacities in dry flow and in the presence of water vapor. Full article
(This article belongs to the Special Issue Nanostructured Mesoporous and Zeolite-Based Materials)
Show Figures

Figure 1

21 pages, 403 KiB  
Review
Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review
by Roman Dziembaj, Marcin Molenda and Lucjan Chmielarz
Catalysts 2023, 13(8), 1165; https://doi.org/10.3390/catal13081165 - 29 Jul 2023
Cited by 8 | Viewed by 3201
Abstract
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species [...] Read more.
Non-stoichiometric CeO2−y, especially in the form of nanocrystal aggregates, exhibits exceptional catalytic activity in redox reactions. It significantly improves the activity of transition metals and their oxides dispersed on/or in it, also acting as an oxygen buffer. Particularly, active oxygen species (O2n−, O) are generated at the M/CeO2−y nanoparticle interface, as well as in the surface layer of their solid-state solutions MxCe1−xO2−y. The crystal structure of CeO2, ZrO2 and (Ce, Zr)O2 and its defects are discussed in connection with the resulting specific catalytic activity. All the methods (simple precipitation and co-precipitation from mother liquors, sol–gel methods, precipitation from nanoemulsions, hydrothermal and solvothermal techniques, combustion and flame spray pyrolysis, precipitation using molecular and solid-state matrices, 3D printing and mechanochemical methods) used for the synthesis of these nanomaterials are comprehensively reviewed, describing the rules of individual procedures and preparation details. Methods of deposition of metal catalysts and their oxides on CeO2 nanoparticles, such as impregnation, washcoating and precipitation deposition, were also discussed. This review contains more than 160 references to representative papers wherein the reader can find further details on individual syntheses of effective ceria-based catalysts for redox reactions. Full article
13 pages, 2055 KiB  
Article
Single-Atom Alloy Pd1Ag10/CeO2–ZrO2 as a Promising Catalyst for Selective Alkyne Hydrogenation
by Pavel V. Markov, Galina O. Bragina, Nadezhda S. Smirnova, Galina N. Baeva, Igor S. Mashkovsky, Evgeny Y. Gerasimov, Andrey V. Bukhtiyarov, Yan. V. Zubavichus and Alexander Y. Stakheev
Inorganics 2023, 11(4), 150; https://doi.org/10.3390/inorganics11040150 - 1 Apr 2023
Cited by 8 | Viewed by 2751
Abstract
The effect of support on the performance of Pd1Ag10/Al2O3 and Pd1Ag10/CeO2–ZrO2 catalysts in the selective hydrogenation of diphenylacetylene (DPA) was studied. Characterization of the catalyst by DRIFTS-CO and HRTEM [...] Read more.
The effect of support on the performance of Pd1Ag10/Al2O3 and Pd1Ag10/CeO2–ZrO2 catalysts in the selective hydrogenation of diphenylacetylene (DPA) was studied. Characterization of the catalyst by DRIFTS-CO and HRTEM revealed the formation of a PdAg single-atom alloy (SAA) structure on the surface of PdAg nanoparticles, with Pd1 sites isolated by Ag atoms. It was found that the use of CeO2–ZrO2 as a carrier makes it possible to increase the activity of the Pd1Ag10 catalyst by a factor of three without loss of selectivity compared to the reference Pd1Ag10/Al2O3. According to the HRTEM data, this catalytic behavior can be explained by an increase in the dispersion of Pd1Ag10/CeO2–ZrO2 compared to its Pd1Ag10/Al2O3 counterpart. As evidenced by DRIFTS-CO data, the high selectivity of the Pd1Ag10/CeO2–ZrO2 sample presumably stems from the stability of the structure of isolated Pd1 sites on the surface of SAA Pd1Ag10/CeO2–ZrO2. Full article
(This article belongs to the Special Issue Single Atom Alloys: Modern Trends in Preparation and Application)
Show Figures

Figure 1

23 pages, 4860 KiB  
Review
Synthesis, Structural and Sensor Properties of Nanosized Mixed Oxides Based on In2O3 Particles
by Mariya I. Ikim, Genrikh N. Gerasimov, Vladimir F. Gromov, Olusegun J. Ilegbusi and Leonid I. Trakhtenberg
Int. J. Mol. Sci. 2023, 24(2), 1570; https://doi.org/10.3390/ijms24021570 - 13 Jan 2023
Cited by 10 | Viewed by 2658
Abstract
The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules on [...] Read more.
The paper considers the relationship between the structure and properties of nanostructured conductometric sensors based on binary mixtures of semiconductor oxides designed to detect reducing gases in the environment. The sensor effect in such systems is determined by the chemisorption of molecules on the surface of catalytically active particles and the transfer of chemisorbed products to electron-rich nanoparticles, where these products react with the analyzed gas. In this regard, the role is evaluated of the method of synthesizing the composites, the catalytic activity of metal oxides (CeO2, SnO2, ZnO), and the type of conductivity of metal oxides (Co3O4, ZrO2) in the sensor process. The effect of oxygen vacancies present in the composites on the performance characteristics is also considered. Particular attention is paid to the influence of the synthesis procedure for preparing sensitive layers based on CeO2–In2O3 on the structure of the resulting composites, as well as their conductive and sensor properties. Full article
(This article belongs to the Special Issue Sensor Chemical Reactions in Nanocomposites)
Show Figures

Figure 1

Back to TopTop