Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = CeCl3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8194 KB  
Article
Effect of CeO2 on Microstructure and Properties of Cr3C2/Fe-Based Composite Coatings
by Zeyu Liu, Baowang Huang, Haijiang Shi, Xin Xu, Shuo Yu, Haiyang Long, Zhanshan Ma and Weichi Pei
Coatings 2026, 16(2), 187; https://doi.org/10.3390/coatings16020187 - 2 Feb 2026
Abstract
As a critical component of scraper conveyors, the middle trough operates under harsh conditions for extended periods, making it prone to failure and thus reducing the overall service life of the equipment. To address this issue and extend its service life, this study [...] Read more.
As a critical component of scraper conveyors, the middle trough operates under harsh conditions for extended periods, making it prone to failure and thus reducing the overall service life of the equipment. To address this issue and extend its service life, this study incorporated different amounts of CeO2 into Cr3C2/Fe-based composite coatings. It investigated the effects of CeO2 on the coating’s phase composition, microstructural evolution, wear resistance and corrosion resistance. Results show that CeO2 addition did not alter the coating’s phase composition. The composition remained α-Fe, M23C6 (M: Fe, Cr) and vanadium carbides. However, CeO2 promoted the transformation from columnar grains to equiaxed grains and refined the grains. With increasing CeO2 content, the composite coating’s mechanical properties gradually improved. The Ce2 coating exhibited the highest microhardness (923.08 HV0.5), the lowest friction coefficient (0.31) and the lowest wear rate (0.00217 mm3/N·m). Its dominant wear mechanisms were abrasive wear and mild adhesive wear. In 3.5% NaCl solution, the Ce2 coating showed the highest corrosion potential (−0.82 V) and the lowest corrosion current density (2.04 × 10−6 A/cm2), indicating excellent corrosion resistance. This study provides theoretical support for preparing high-performance Cr3C2/Fe-based composite coatings. It clarifies the key mechanism by which CeO2 regulates coating properties. The developed composite coating has broad application potential due to its excellent combined wear and corrosion resistance. It can be widely used for surface strengthening of vulnerable components in mining machinery such as scraper conveyors, offering important theoretical and technical support for improving the service life of scraper conveyor middle troughs. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

21 pages, 4280 KB  
Article
Geochemical and Textural Features of Apatites from Propylitic to Advanced Argillic Hydrothermal Alteration Zones in the Sharlo Dere Area, Chelopech Cu-Au Deposit, Bulgaria
by Radoslav Kalchev, Irena Peytcheva, David Chew, Atanas Hikov and Elitsa Stefanova
Minerals 2026, 16(2), 150; https://doi.org/10.3390/min16020150 - 29 Jan 2026
Viewed by 150
Abstract
Apatite is a widespread accessory mineral, which can provide information on the geochemical characteristics of magma and the conditions of hydrothermal alteration of the rocks in magmatic–hydrothermal deposits. This study aims to understand the relationships between the geochemical and textural features of apatites [...] Read more.
Apatite is a widespread accessory mineral, which can provide information on the geochemical characteristics of magma and the conditions of hydrothermal alteration of the rocks in magmatic–hydrothermal deposits. This study aims to understand the relationships between the geochemical and textural features of apatites from diorite porphyries that have undergone different degrees of hydrothermal alteration in the Sharlo Dere area, Chelopech epithermal Cu-Au deposit, Bulgaria. The apatites were characterized by laser ablation–inductively coupled plasma mass spectrometry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, electron probe microanalysis with wave-dispersive spectroscopy, optical cathodoluminescence and multi-element mapping. Magmatic apatites from “hematitic”, propylitic and propylitic-sericitic zones of alteration are distinguished by euhedral crystals with oscillatory zoning and brown luminescence in CL images. In quartz-sericitic alteration zones, apatite has a yellow CL response. Hydrothermally altered apatites in the diorite porphyries overprinted by advanced argillic alteration have corroded, irregular forms and pink-green luminescence. Apatite crystals of magmatic origin reveal high contents of chlorine, strontium, light rare earth elements (LREE), negative Eu anomalies and high LaN/SmN and CeN/YbN ratios. Hydrothermally altered or hydrothermal apatites are distinguished by their higher contents of Na2O, F, SO3, Y and middle rare earth elements (MREEs) and their low LaN/SmN and CeN/YbN ratios. The intensity of hydrothermal alteration affects the luminescence and major and trace element contents, including the rare earth element patterns in the apatites, implying apatite can be used as a geochemical indicator to study magmatic–hydrothermal ore deposits. Full article
Show Figures

Figure 1

23 pages, 10699 KB  
Article
Apatite Geochemical Signatures of REE Ore-Forming Processes in Carbonatite System: A Case Study of the Weishan REE Deposit, Luxi Terrane
by Yi-Xue Gao, Shan-Shan Li, Chuan-Peng Liu, Ming-Qian Wu, Zhen Shang, Yi-Zhan Sun, Ze-Yu Yang and Kun-Feng Qiu
Minerals 2026, 16(1), 112; https://doi.org/10.3390/min16010112 - 21 Jan 2026
Viewed by 156
Abstract
The Weishan rare earth element (REE) deposit, located in western Shandong, North China Block, is a typical carbonatite REE deposit and constitutes the third largest light REE resource in China. Its mineralization is closely related to the multi-stage evolution of a carbonatite magma–hydrothermal [...] Read more.
The Weishan rare earth element (REE) deposit, located in western Shandong, North China Block, is a typical carbonatite REE deposit and constitutes the third largest light REE resource in China. Its mineralization is closely related to the multi-stage evolution of a carbonatite magma–hydrothermal system. However, the mechanisms governing REE enrichment, migration, and precipitation remain insufficiently constrained from a mineralogical perspective, which hampers the understanding of the ore-forming processes and the establishment of predictive exploration models. Apatite is a pervasively developed REE phase in the Weishan deposit which occurs in multiple generations, and thus represents an ideal recorder of the magmatic–hydrothermal evolution. In this study, different generations of apatite hosted in carbonatite orebodies from the Weishan deposit were investigated using cathodoluminescence (CL), electron probe microanalysis (EPMA), and in situ LA-ICP-MS trace element analysis. Three types of apatite were identified. In paragenetic sequence, Ap-1 occurs as polycrystalline aggregates coexisting with calcite, is enriched in Na, Sr, and LREEs, and shows high (La/Yb)N ratios, suggesting crystallization from an evolved carbonatite magma. Ap-2 and Ap-3 display typical replacement textures: both contain abundant dissolution pits and dissolution channels within the grains, which are filled by secondary minerals such as monazite and ancylite, and thus exhibit characteristic features of fluid-mediated dissolution–reprecipitation during the hydrothermal stage. Ap-2 is commonly associated with barite and strontianite, whereas Ap-3 is associated with pyrite and monazite and is characterized by relatively sharp grain boundaries with adjacent minerals. From Ap-1 to Ap-3, total REE contents decrease systematically, whereas Na, Sr, and P contents increase. All three apatite types lack Eu anomalies but display positive Ce anomalies. Discrimination diagrams involving LREE-Sr/Y and log(Ce)-log(Eu/Y) indicate that apatite in the Weishan REE deposit formed during the magmatic to hydrothermal evolution of a carbonatite, and that the dissolution of early magmatic apatite, followed by element remobilization and mineral reprecipitation, effectively records the progressive evolution of the ore-forming fluid. Full article
(This article belongs to the Special Issue Gold–Polymetallic Deposits in Convergent Margins)
Show Figures

Figure 1

20 pages, 3861 KB  
Article
Picolinoyl N4-Phenylthiosemicarbazide-Modified ZnAl and ZnAlCe Layered Double Hydroxide Conversion Films on Hot-Dip Galvanized Steel for Enhancing Corrosion Protection in Saline Solution
by Thu Thuy Pham, Anh Son Nguyen, Chien Thang Pham, Hong Nhung Nguyen, Maurice Gonon, Lisa Dangreau, Xavier Noirfalise, Thuy Duong Nguyen, Thi Xuan Hang To and Marie-Georges Olivier
Metals 2026, 16(1), 115; https://doi.org/10.3390/met16010115 - 19 Jan 2026
Viewed by 184
Abstract
ZnAl and ZnAlCe layered double hydroxide (LDH) conversion layers modified with picolinoyl N4-phenylthiosemicarbazide (HL) are fabricated on hot-dip galvanized steel (HDG) to improve corrosion protection. X-ray diffraction (XRD) confirms that HL molecules are not intercalated within the LDH interlayers, whereas Fourier [...] Read more.
ZnAl and ZnAlCe layered double hydroxide (LDH) conversion layers modified with picolinoyl N4-phenylthiosemicarbazide (HL) are fabricated on hot-dip galvanized steel (HDG) to improve corrosion protection. X-ray diffraction (XRD) confirms that HL molecules are not intercalated within the LDH interlayers, whereas Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS) analyses reveal their surface adsorption. Moreover, scanning electron microscopy (FE-SEM) observations reveal that HL modification induces changes in surface morphology. After 168 h in 0.1 M NaCl, the LDH structure remains intact, and N and S signals are still detected, confirming the persistence of both the LDH layer and adsorbed HL molecules under corrosive conditions. During 168 h immersion in NaCl, electrochemical measurements indicate that the modified LDH layers exhibit higher corrosion resistance than the unmodified ones, with the ZnAlCe LDH/HL coating providing the most effective protection. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

26 pages, 4292 KB  
Article
Mechanism of Long-Term Corrosion Protection for Silicone Epoxy Coatings Reinforced by BN-PDA-CeO2 Ternary Composites in Harsh Environments
by Xianlian Mu, Tao Jin, Pengfei Xie, Rongcao Yu, Bin Li and Xin Yuan
Nanomaterials 2026, 16(2), 121; https://doi.org/10.3390/nano16020121 - 16 Jan 2026
Viewed by 233
Abstract
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was [...] Read more.
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was in situ grown on the surface of hexagonal boron nitride (h-BN) mediated by polydopamine (PDA) to prepare BN-PDA-CeO2 ternary nanocomposites, which were then incorporated into SE coatings to construct a multi-scale synergistic corrosion protection system. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirmed the successful preparation of the composites, where PDA inhibited the agglomeration of h-BN and CeO2 was uniformly loaded. Electrochemical tests showed that the corrosion inhibition efficiency of the extract of this composite for 2024 aluminum alloy reached 99.96%. After immersing the composite coating in 3.5 wt% NaCl solution for 120 days, the coating resistance (Rc) and charge transfer resistance (Rct) reached 8.5 × 109 Ω·cm2 and 1.2 × 1010 Ω·cm2, respectively, which were much higher than those of pure SE coatings and coatings filled with single/binary fillers. Density functional theory (DFT) calculations revealed the synergistic mechanisms: PDA enhanced interfacial dispersion (adsorption energy of −0.58 eV), CeO2 captured Cl (adsorption energy of −4.22 eV), and Ce3+ formed a passive film. This study provides key technical and theoretical support for the design of long-term corrosion protection coatings in harsh environments such as marine and petrochemical industries. Full article
(This article belongs to the Special Issue Research and Applications of Anti-Corrosion Nanocoatings)
Show Figures

Figure 1

18 pages, 5149 KB  
Article
Structure Driven Tuning of the Catalytic Performance of PtCe-Modified Zeolite ZSM-5 in the CO Oxidation
by Marina Shilina, Irina Krotova, Konstantin Maslakov, Stanislava Petrova, Olga Udalova and Tatiana Rostovshchikova
Molecules 2026, 31(1), 156; https://doi.org/10.3390/molecules31010156 - 1 Jan 2026
Viewed by 230
Abstract
The catalytic oxidation of CO is of great technological importance for the treatment of vehicle and industrial exhaust gases. PtCe-catalysts of low-temperature CO oxidation were prepared by the impregnation of ZSM-5 zeolite (Z) with aqueous solutions of H2PtCl6 and Ce(NO [...] Read more.
The catalytic oxidation of CO is of great technological importance for the treatment of vehicle and industrial exhaust gases. PtCe-catalysts of low-temperature CO oxidation were prepared by the impregnation of ZSM-5 zeolite (Z) with aqueous solutions of H2PtCl6 and Ce(NO3)3, varying the order of metal deposition and thermal treatment conditions. The relationships between structure transformations and catalyst performance were established based on the SEM, TEM, EDX, DRIFT, and X-ray photoelectron spectroscopies data. For the Ce/Pt/Z sample, in which cerium was deposited after platinum, the 100% CO conversion temperature was only 120 °C. The inverse deposition sequence of metals (Pt/Ce/Z catalyst) resulted in CO oxidation at a higher temperature that can be decreased to 110 °C by redox treatment. The prepared catalysts were also active in the CO oxidation in excess hydrogen (PROX) but were not selective enough. However, the activity of PtCe-modified ZSM-5 enhanced greatly in the repeated cycles of CO oxidation (TOX) after testing in PROX. It is suggested that enhancing the interaction between Pt and Ce is a key factor in tuning the catalyst performance. The 0.2 wt.% Pt catalysts showed the best performance and provided complete CO conversion at 95 °C, which is a pronounced result for low-loaded Pt catalysts. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 23508 KB  
Article
Petrogenesis of Himalayan Leucogranites: A Perspective from Zircon Trace Elements
by Weirui Lu, Zeming Zhang, Jia Yuan, Yang Zhang, Qiang Li, Yu An and Di Zhan
Minerals 2025, 15(12), 1306; https://doi.org/10.3390/min15121306 - 15 Dec 2025
Viewed by 419
Abstract
Magmatic zircon trace element compositions and their variation trends provide valuable insights into the nature and evolutionary processes of magmatic rocks. The Himalayan orogen contains widespread leucogranites. Despite extensive studies on these granites, the features and petrogenetic implications of trace element composition of [...] Read more.
Magmatic zircon trace element compositions and their variation trends provide valuable insights into the nature and evolutionary processes of magmatic rocks. The Himalayan orogen contains widespread leucogranites. Despite extensive studies on these granites, the features and petrogenetic implications of trace element composition of zircons from the leucogranites remain poorly constrained. In this study, we present a comprehensive dataset comprising new cathodoluminescence (CL) images, U-Pb ages, and trace element compositions of zircons from the Himalayan leucogranites, and compare them to the previously reported trace element data of zircon from I-type granites. Our results show that zircons from the Himalayan leucogranites have high Hf, U, Y, P, Th, Sc, and heavy rare earth element contents (HREE), and low Nb, Ta, Ti, and light rare earth element contents (LREE), and can be divided into two types. Type I (low-U) zircons exhibit well-developed oscillatory zoning, and the U concentrations are mostly <5000 ppm. Type II (high-U) zircons display mottled or spongy textures and possess elevated U contents that are mostly >5000 ppm. Zircons from the Himalayan leucogranites have higher contents of U, Hf, Nb, Ta, and elevated U/Yb ratios, but lower Th/U, Eu/Eu*, Ce/Ce*, LREE/HREE, and Ce/U values than those from I-type granitic zircons. Furthermore, zircons in the Himalayan leucogranites have gradually decreasing Th, Ti, Th/U, Eu/Eu*, and Ce/Ce*, and increasing U, Nb, Ta, and (Yb/Gd)N with increasing Hf. These geochemical features suggest the magmas involved in the genesis of leucogranites originated from the partial melting of metasedimentary sources under relatively reduced conditions, and underwent a high degree of magmatic fractionation. Full article
Show Figures

Figure 1

14 pages, 1834 KB  
Article
Tunable Luminescence in Sb3+-Doped Cs3LnCl6 Perovskites for Wide-Coverage Emission and Anti-Counterfeiting Applications
by Lianao Zhang, Le Chen, Sai Xu, Yongze Cao, Xizhen Zhang, Hongquan Yu, Yuefeng Gao and Baojiu Chen
Nanomaterials 2025, 15(23), 1790; https://doi.org/10.3390/nano15231790 - 27 Nov 2025
Viewed by 514
Abstract
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a [...] Read more.
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a series of Sb3+-doped Cs3LnCl6 (Ln: Yb, La, Eu, Ho, Ce, Er, Tb, Sm, Y) nanocrystals were synthesized via a hot-injection method to study the role of Sb3+ doping. Sb3+ incorporation induces strong broadband self-trapped exciton (STE) emission from Jahn–Teller-distorted [SbCl6]3− units and enables efficient energy transfer from STEs to rare-earth ions. As a result, the photoluminescence intensity and spectral tunability are improved, accompanied by bandgap narrowing and enhanced light absorption. Different lanthanide hosts exhibit distinct luminescence behaviors: La-based materials show dominant STE emission, while Tb-, Er-, Yb-, Ho-, and Sm-based systems display STE-mediated energy transfer and enhanced f-f emission. In Eu- and Ce-based hosts, unique mechanisms involving Eu2+/Eu3+ conversion and Ce3+ → STE energy transfer are observed. Moreover, composition-dependent emissions in Sb3+-doped Cs3Tb/EuCl6 enable a dual-mode color and spectral encoding strategy for optical anti-counterfeiting. This study highlights the versatile role of Sb3+ in tuning electronic structures and energy transfer, offering new insights for designing high-performance rare-earth halide materials for advanced optoelectronic applications. Full article
Show Figures

Figure 1

20 pages, 4746 KB  
Article
The Efficiency and Mechanism of FeOCl/Ce-Catalyzed Persulfate for the Degradation of Caffeine Under Visible Light
by Zhao Bai, Mingyue Hu, Minrui Li, Weidong Wu, Chi Zhou and Yuru Wang
Molecules 2025, 30(22), 4381; https://doi.org/10.3390/molecules30224381 - 13 Nov 2025
Viewed by 523
Abstract
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis [...] Read more.
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis method and systematically characterized their physicochemical properties. The results show that Ce doping significantly lowers the bandgap energy of the photocatalyst, enhances its visible light absorption ability, and effectively suppresses the recombination of photogenerated electron–hole pairs, thereby markedly improving photocatalytic performance under visible light. Analyses including XRD, EDS, XPS, and FT-IR confirm that Ce is incorporated into the FeOCl matrix and modulates the radial growth behavior of FeOCl without altering its intrinsic crystal structure. Morphological observations reveal that FeOCl/Ce exhibits a uniform nanosheet layered structure, with larger particles formed by the aggregation of smaller nanosheets. The nitrogen adsorption–desorption isotherm of FeOCl/Ce shows characteristics of Type IV with a relatively small BET surface area. The broadened optical absorption edge of FeOCl/Ce and the results of PL spectra and I-T curves further confirm its enhanced visible light absorption capacity and reduced electron–hole recombination compared to pure FeOCl. At an initial caffeine (CAF) concentration of 10 μM, FeOCl/Ce dose of 0.5 g/L, PS concentration of 1 mM, and initial pH of 5.06, the FeOCl/Ce-catalyzed PS system under visible light irradiation can degrade 91.2% of CAF within 30 min. An acidic environment is more favorable for CAF degradation, while the presence of SO42−, Cl, and NO3 inhibits the process performance to varying degrees, possibly due to competitive adsorption on the photocatalyst surface or quenching of reactive species. Cyclic stability tests show that FeOCl/Ce maintains good catalytic performance over multiple runs. Mechanistic analysis indicates that OH and holes are the dominant reactive species for CAF degradation, while PS mainly acts as an electron acceptor to suppress electron–hole recombination. Overall, the FeOCl/Ce photocatalytic system demonstrates high efficiency, good stability, and visible light responsiveness in CAF degradation, with potential applications for removing CAF and other emerging organic pollutants from aquatic environments. Full article
Show Figures

Figure 1

22 pages, 827 KB  
Review
Integrating Circular Economy Principles in Petroleum Produced Water Management: Toward Sustainable Resource Recovery and Waste Minimization
by Abdelaziz Khlaifat, Sherif Fakher, Fady Hany Ezzat, Mohammad Alalaween and John Galiotos
Processes 2025, 13(11), 3604; https://doi.org/10.3390/pr13113604 - 7 Nov 2025
Viewed by 1880
Abstract
Oil production generates approximately 250 million barrels of produced water (PW) daily, nearly three times the volume of oil, with salinity levels reaching up to 300,000 ppm. Improper management of this wastewater causes significant environmental degradation, including soil salinization and aquatic toxicity. To [...] Read more.
Oil production generates approximately 250 million barrels of produced water (PW) daily, nearly three times the volume of oil, with salinity levels reaching up to 300,000 ppm. Improper management of this wastewater causes significant environmental degradation, including soil salinization and aquatic toxicity. To address these impacts, this study applies circular economy (CE) principles to PW management through flash vaporization and resource recovery. Implementing this approach enables 85–90% water recovery and reduces salinity to below 1000 ppm, allowing reuse for irrigation. Simultaneously, residual brine processed via evaporation ponds yields 15–25% potash (KCl) and 30–40% halite (NaCl), thereby transforming waste into valuable products. As a result, the integrated CE process can reduce wastewater disposal by 80%, cut greenhouse gas emissions by 25–30%, and lower treatment costs by 20–35%, while generating additional revenue of $150–300 per ton of recovered potash. These outcomes demonstrate that adopting CE strategies in PW management not only mitigates environmental degradation but also strengthens economic resilience and resource efficiency. The framework offers a scalable pathway for achieving the UN Sustainable Development Goals (SDG 6 and 12) and advancing sustainability within the oil and gas industry. Full article
Show Figures

Figure 1

14 pages, 1602 KB  
Article
Frame and Utterance Emotional Alignment for Speech Emotion Recognition
by Seounghoon Byun and Seok-Pil Lee
Future Internet 2025, 17(11), 509; https://doi.org/10.3390/fi17110509 - 5 Nov 2025
Viewed by 888
Abstract
Speech Emotion Recognition (SER) is important for applications such as Human–Computer Interaction (HCI) and emotion-aware services. Traditional SER models rely on utterance-level labels, aggregating frame-level representations through pooling operations. However, emotional states can vary across frames within an utterance, making it difficult for [...] Read more.
Speech Emotion Recognition (SER) is important for applications such as Human–Computer Interaction (HCI) and emotion-aware services. Traditional SER models rely on utterance-level labels, aggregating frame-level representations through pooling operations. However, emotional states can vary across frames within an utterance, making it difficult for models to learn consistent and robust representations. To address this issue, we propose two auxiliary loss functions, Emotional Attention Loss (EAL) and Frame-to-Utterance Alignment Loss (FUAL). The proposed approach uses a Classification token (CLS) self-attention pooling mechanism, where the CLS summarizes the entire utterance sequence. EAL encourages frames of the same emotion to align closely with the CLS while separating frames of different classes, and FUAL enforces consistency between frame-level and utterance-level predictions to stabilize training. Model training proceeds in two stages: Stage 1 fine-tunes the wav2vec 2.0 backbone with Cross-Entropy (CE) loss to obtain stable frame embeddings, and stage 2 jointly optimizes CE, EAL and FUAL within the CLS-based pooling framework. Experiments on the IEMOCAP four-class dataset demonstrate that our method consistently outperforms baseline models, showing that the proposed losses effectively address representation inconsistencies and improve SER performance. This work advances Artificial Intelligence by improving the ability of models to understand human emotions through speech. Full article
Show Figures

Graphical abstract

17 pages, 2820 KB  
Article
Oxford Nanopore Technologies [ONT] Sequencing: Clinical Validation in Genetically Heterogeneous Disorders
by Mario Urtis, Chiara Paganini, Viviana Vilardo, Antonio Tescari, Samantha Minetto, Claudia Cavaliere, Andrea Pilotto, Carmela Giorgianni, Alessia Cattaneo, Marilena Tagliani, Maurizia Grasso, Alexandra Smirnova, Payam Ebadi, Valentina Barzon, Valentina Favalli, Andrea Bimbocci, Marta Baragli, Alberto Magi, Alessandra Renieri and Eloisa Arbustini
Genes 2025, 16(11), 1325; https://doi.org/10.3390/genes16111325 - 3 Nov 2025
Viewed by 2799
Abstract
Background/Objectives: Short-read-sequencing (SRS) is currently the standard for genetic testing in inherited human diseases. Intrinsic limitations include PCR dependency, restricted read length, and challenges in identifying structural variants (SVs), copy number variations (CNVs), and intronic small variants (SNVs/indels). Long-read-sequencing (LRS) enables the [...] Read more.
Background/Objectives: Short-read-sequencing (SRS) is currently the standard for genetic testing in inherited human diseases. Intrinsic limitations include PCR dependency, restricted read length, and challenges in identifying structural variants (SVs), copy number variations (CNVs), and intronic small variants (SNVs/indels). Long-read-sequencing (LRS) enables the sequencing of long DNA molecules, detection of deep intronic variants, rapid testing of few samples, and improved resolution of SVs, CNVs, and SNVs/indels. We therefore aimed to validate Oxford Nanopore Technologies (ONT) LRS for potential clinical application. Methods: We evaluated the ONT’s ability to detect pathogenic/likely pathogenic (P/LP) variants previously identified by SRS and confirmed via Sanger sequencing, Multiplex-Ligation-dependent-Probe-Amplification (MLPA), or quantitative-PCR (qPCR). In total, 509 samples were analyzed, including 393 with P/LP variants and 116 negative controls. We used CE-IVD panels HEVA pro, CARDIO pro, BRaCA panel, and ClinEX pro (4Bases-CH). Sequencing was performed on MinION, GridION, and PromethION-2 platforms. Data were analyzed using the 4eVAR pipeline. Results: ONT successfully identified all P/LP variants across the panels (sensitivity 100%); identified a previously missed CNV in ENG gene; precisely defined the breakpoints of a del(13q) (unsuspected and diagnosed as BRCA2 del ex2–14); improved the coverage profiles in difficult-to-map regions (e.g., ex1 TGFBR1, PSM2CL); expanded the coverage of out-of-target deep intronic regions; and allowed for the set-up of fast-track tests (<24 h) for urgent clinical needs. Conclusions: Our findings demonstrate that ONT LRS provides diagnostic performance comparable to SRS, with significant advantages in resolving complex and previously undetectable variants. Ongoing developments are further increasing read length, expanding detectable targets, and potential clinical applications. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

22 pages, 5907 KB  
Article
Fe–Ce Bimetallic MOFs for Water Environment Remediation: Efficient Removal of Fluoride and Phosphate
by Jinyun Zhao, Yuhuan Su, Jiangyan Song, Ruilai Liu, Fangfang Wu, Jing Xu, Tao Xu, Jilin Mu, Hao Lin and Jiapeng Hu
Nanomaterials 2025, 15(21), 1623; https://doi.org/10.3390/nano15211623 - 24 Oct 2025
Viewed by 850
Abstract
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of [...] Read more.
Fe–Ce-MOFs with a rice-grain-like morphology were successfully obtained via hydrothermal synthesis, where ferric chloride (FeCl3) and cerium nitrate [Ce(NO3)3] served as the metal precursors and terephthalic acid (PTA) acted as the organic coordinating ligand. The effects of the Fe:Ce molar ratio, (Fe/Ce):PTA ratio, reaction duration, and synthesis temperature on adsorption performance of the Fe–Ce-MOFs were systematically studied. A comprehensive evaluation was conducted on the removal of fluoride and phosphate ions from aqueous solution. Under optimized conditions, the maximum adsorption capacities of Fe–Ce-MOFs for fluoride and phosphate reached 183.82 mg g−1 and 110.74 mg g−1, respectively. Adsorption data correlated strongly with the Langmuir isotherm, were best represented by the pseudo-second-order kinetic model, and were identified as a spontaneous and endothermic reaction. After three regeneration cycles, the adsorbent still maintained high removal efficiencies for fluoride (85.17%) and phosphate (47.34%) removal. In practical wastewater treatment, removal efficiencies of 92.04% for fluoride and 93.87% for phosphate were achieved. Mechanistic studies revealed that fluoride removal was dominated by electrostatic attraction and hydroxyl–fluoride ion exchange, whereas phosphate removal was attributed to the generation of inner-sphere complexes involving PO43− and Fe/Ce active sites. This study not only elucidates the synergistic mechanism of fluoride and phosphate elimination by Fe–Ce-MOFs but also provides theoretical guidance and application prospects for the development of highly efficient and stable bimetallic MOF-based adsorbents for environmental remediation. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

18 pages, 5563 KB  
Article
Research on Ultrasonic-Assistance Microarc Plasma Polishing Method for 4H-SiC
by Feilong Liu, Jiayi Yue, Jianhua Shi, Shujuan Li, Yanfei Zhang and Zhenchao Yang
Crystals 2025, 15(10), 902; https://doi.org/10.3390/cryst15100902 - 17 Oct 2025
Viewed by 580
Abstract
Silicon carbide (SiC) is widely used in high-power, high-frequency, and high-temperature electronic devices due to its excellent physical and chemical properties. However, its high hardness and chemical inertness make it difficult to achieve efficient and damage-free ultra-smooth surface processing with traditional polishing methods. [...] Read more.
Silicon carbide (SiC) is widely used in high-power, high-frequency, and high-temperature electronic devices due to its excellent physical and chemical properties. However, its high hardness and chemical inertness make it difficult to achieve efficient and damage-free ultra-smooth surface processing with traditional polishing methods. This paper proposes a novel ultrasonic-assistance microarc plasma polishing (UMPP) method for high-quality and high-efficiency polishing of 4H-SiC. This study introduces a novel Ultrasonic-assisted Microarc Plasma Polishing (UMPP) method for achieving high-efficiency, high-quality surface finishing of 4H-SiC. The technique innovatively combines ultrasonic vibration with microarc plasma oxidation in a neutral NaCl electrolyte to overcome the limitations of conventional polishing methods. The UMPP process first generates a soft, porous oxide layer (primarily SiO2) on the SiC surface through plasma discharge, which is then gently removed using soft CeO2 abrasives. The key finding is that ultrasonic assistance synergistically enhances the oxidation process, leading to a thicker and more porous oxide layer that is more easily removed. Experimental results demonstrate that UMPP achieves a remarkably high material removal rate (MRR) of 21.7 μm/h while simultaneously delivering an ultra-smooth surface with a roughness (Ra) of 0.54 nm. Compared to the process without ultrasonic assistance, UMPP provides a 21.9% increase in MRR and a 28% reduction in Ra. This work establishes UMPP as a highly promising and efficient polishing strategy for hard and inert materials like SiC, offering a superior combination of speed and surface quality that is difficult to achieve with existing techniques. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 3608 KB  
Article
Study on Electrochemical Corrosion Behavior of Plasma Sprayed Al2O3-3%TiO2 Coatings Doped with CeO2 for Long-Term Immersion
by Jiahang Yan, Yu Zhang, Pengyu Dai, Lin Zhao, Xin Wang and Xiaohong Yi
Materials 2025, 18(19), 4532; https://doi.org/10.3390/ma18194532 - 29 Sep 2025
Viewed by 604
Abstract
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was [...] Read more.
The long-term corrosion behavior of Al2O3-3%TiO2 (AT3) coatings doped with1%, 5% and 8% CeO2 prepared by plasma spraying was studied in 5% NaCl solution. The results showed that the protective performance of CeO2-doped coatings was significantly higher than that of undoped coatings, primarily due to the reduction in coating porosity caused by the addition of rare-earth elements. Among the doped coatings, the 5% CeO2-doped coating exhibited the best protective performance. The addition of rare-earth oxides CeO2 reduced the content of γ-Al2O3 in the coating, but when the concentration of CeO2 increased to 8%, the Ce element was rich in the gap of the coating. Excessive CeO2 enriched in the gaps and coexisted more with Ti, and prevented the formation of the AlTi phase, which affected the performance of the coating. Electrochemical and XPS results revealed that an appropriate amount of Ce atoms or CeO2 particles could fill the pores of the coating. During long-term immersion, Ce (IV) was converted to Ce (III), which demonstrated that Ce atoms have high chemical activity in coatings. The thermodynamic calculation results show that more CeO2 particles improved the adsorption of corrosive ions. It indicated that the content of doped rare-earth oxides exceeding 5% would be utilized as an active material in the corrosive process. Full article
Show Figures

Figure 1

Back to TopTop