Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (990)

Search Parameters:
Keywords = Carbon immobilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

11 pages, 1936 KiB  
Communication
Diffusion of C-O-H Fluids in a Sub-Nanometer Pore Network: Role of Pore Surface Area and Its Ratio with Pore Volume
by Siddharth Gautam and David Cole
C 2025, 11(3), 57; https://doi.org/10.3390/c11030057 - 1 Aug 2025
Viewed by 199
Abstract
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only [...] Read more.
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only the diffusivity of molecules in the adsorbed layer is affected by confinement and the fractional population of these molecules is proportional to the S/V ratio. For materials with sub-nanometer pores, this might not be true, as the adsorbed layer can encompass the entire pore volume. Here, using molecular simulations, we explore the role played by S and S/V in determining the dynamical behavior of two carbon-bearing fluids—CO2 and ethane—confined in sub-nanometer pores of silica. S and V in a silicalite model representing a sub-nanometer porous material are varied by selectively blocking a part of the pore network by immobile methane molecules. Three classes of adsorbents were thus obtained with either all of the straight (labeled ‘S-major’) or zigzag channels (‘Z-major’) remaining open or a mix of a fraction of both types of channel blocked, resulting in half of the total pore volume being blocked (‘Half’). While the adsorption layers from opposite surfaces overlap, encompassing the entire pore volume for all pores except the intersections, the diffusion coefficient is still found to be reduced at high S/V, especially for CO2, albeit not so strongly as would be expected in the case of wider pores. This is because of the presence of channel intersections that provide a wider pore space with non-overlapping adsorption layers. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

18 pages, 1555 KiB  
Review
Immobilization of Cadmium, Lead, and Copper in Soil Using Bacteria: A Literature Review
by Saulius Vasarevičius and Vaida Paliulienė
Land 2025, 14(8), 1547; https://doi.org/10.3390/land14081547 - 28 Jul 2025
Viewed by 322
Abstract
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb [...] Read more.
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb2+), and copper (Cu2+) in contaminated soils. A total of 45 articles were analyzed, focusing on studies that reported heavy metal concentrations before and after bacterial treatment. The analysis revealed that bacterial genera such as Bacillus, Pseudomonas, and Enterobacter were most commonly used for the immobilization of these metals. Immobilization efficiencies ranged from 25% to over 98%, with higher efficiencies generally observed when microbial consortia or amendments (e.g., phosphate compounds and biochar) were applied. The main immobilization mechanisms included biosorption, bioprecipitation (such as carbonate-induced precipitation), bioaccumulation, and biomineralization, which convert mobile metal ions into more stable, less bioavailable forms. These findings highlight the promising role of microbial-assisted immobilization in mitigating heavy metal pollution and reducing ecological risks. Further laboratory and field studies are needed to optimize the use of these microbial strains under site-specific conditions to ensure effective and sustainable soil remediation practices. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

15 pages, 1398 KiB  
Article
Hydrochar as a Potential Soil Conditioner for Mitigating H+ Production in the Nitrogen Cycle: A Comparative Study
by Weijia Yu, Qingyue Zhang, Shengchang Huai, Yuwen Jin and Changai Lu
Agronomy 2025, 15(8), 1777; https://doi.org/10.3390/agronomy15081777 - 24 Jul 2025
Viewed by 294
Abstract
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and [...] Read more.
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and a soil column experiment were conducted to study the effect of rice straw hydrochar application on nitrification and NO3-N leaching in acidic red soil. Compared to the control and pyrochar treatments, respectively, hydrochar addition mitigated the net nitrification rate by 3.75–48.75% and 57.92–78.19%, in the early stage of urea fertilization. This occurred mainly because a greater amount of dissolved organic carbon (DOC) was released from hydrochar than the other treatments, which stimulated microbial nitrogen immobilization. The abundances of ammonia-oxidizing archaea and ammonia-oxidizing bacteria were dramatically elevated by 25.62–153.19% and 12.38–22.39%, respectively, in the hydrochar treatments because of DOC-driven stimulation. The cumulative leaching loss of NO3-N in soils amended with hydrochar was markedly reduced by 43.78–59.91% and 61.70–72.82% compared with that in the control and pyrochar treatments, respectively, because hydrochar promoted the soil water holding capacity by 2.70–9.04% and reduced the residual NO3-N content. Hydrochar application can dramatically diminish total H+ production from soil nitrification and NO3-N leaching. Thus, it could be considered an economical soil amendment for ameliorating soil acidification. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

33 pages, 5344 KiB  
Review
Graphene–Bacteriophage Hybrid Nanomaterials for Specific and Rapid Electrochemical Detection of Pathogenic Bacteria
by José M. Campiña, António F. Silva and Carlos M. Pereira
Biosensors 2025, 15(7), 467; https://doi.org/10.3390/bios15070467 - 19 Jul 2025
Viewed by 494
Abstract
Efficient and rapid detection of bacterial pathogens is crucial for food safety and effective disease control. While conventional methods such as PCR and ELISA are accurate, they are time-consuming, costly, and often require specialized infrastructure. Recently, electrochemical biosensors integrating graphene nanomaterials with bacteriophages—termed [...] Read more.
Efficient and rapid detection of bacterial pathogens is crucial for food safety and effective disease control. While conventional methods such as PCR and ELISA are accurate, they are time-consuming, costly, and often require specialized infrastructure. Recently, electrochemical biosensors integrating graphene nanomaterials with bacteriophages—termed graphages—have emerged as promising platforms for pathogen detection, offering fast, specific, and highly responsive detection. This review critically examines all electrochemical biosensors reported to date that utilize graphene–phage hybrids. Key aspects addressed include the types of graphene nanomaterials and bacteriophages used, immobilization strategies, electrochemical transduction mechanisms, and sensor metrics—such as detection limits, linear ranges, and ability to perform in real matrices. Particular attention is given to the role of phage orientation, surface functionalization, and the use of receptor binding proteins. Finally, current limitations and opportunities for future research are outlined, including prospects for genetic engineering and sensor miniaturization. This review serves as a comprehensive reference for researchers developing phage-based biosensors, especially those interested in integrating carbon nanomaterials for improved electroanalytical performance. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Figure 1

14 pages, 11910 KiB  
Article
Electrochemical Immunosensor Using COOH-Functionalized 3D Graphene Electrodes for Sensitive Detection of Tau-441 Protein
by Sophia Nazir, Muhsin Dogan, Yinghui Wei and Genhua Pan
Biosensors 2025, 15(7), 465; https://doi.org/10.3390/bios15070465 - 19 Jul 2025
Viewed by 581
Abstract
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised [...] Read more.
Early diagnosis of Alzheimer’s disease (AD) is essential for effective treatment; however current diagnostic methods are often complex, costly, and unsuitable for point-of-care testing. Graphene-based biosensors offer an alternative due to their affordability, versatility, and high conductivity. However, graphene’s conductivity can be compromised when its carbon lattice is oxidized to introduce functional groups for biomolecule immobilization. This study addresses this challenge by developing an electrochemical immunosensor using carboxyl-modified commercial graphene foam (COOH-GF) electrodes. The conductivity of graphene is preserved by enabling efficient COOH modification through π–π non-covalent interactions, while antibody immobilization is optimized via EDC-NHS carbodiimide chemistry. The immunosensor detects tau-441, an AD biomarker, using differential pulse voltammetry (DPV), achieving a detection range of 1 fM–1 nM, with a limit of detection (LOD) of 0.14 fM both in PBS and human serum. It demonstrates high selectivity against other AD-related proteins, including tau-217, tau-181, amyloid beta (Aβ1-40 and Aβ1-42), and 1% BSA. These findings underscore its potential as a highly sensitive, cost-effective tool for early AD diagnosis. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

26 pages, 10465 KiB  
Article
Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
by Jacek Kostrzewa, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska and Paweł Popielski
Materials 2025, 18(14), 3384; https://doi.org/10.3390/ma18143384 - 18 Jul 2025
Viewed by 366
Abstract
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high [...] Read more.
Recycling washed mineral waste, generated as a byproduct of the mechanical wastewater treatment process, can be a beneficial alternative to widely used natural sand in construction. Studies on material from the Warsaw agglomeration, available in quantities sufficient for construction applications, demonstrated its high usability in specific hydrotechnical applications. Key laboratory tests for material characterization included physical, permeability, mechanical, and chemical property analyses. The tested waste corresponds to uniformly graded medium sands (uniformity coefficient: 2.20) and weakly calcareous (calcium carbonate content: 2.25–3.29%) mineral soils with organic content ranging from 0.24% to 1.49%. The minimum heavy metal immobilization level reached 91.45%. At maximum dry density of the soil skeleton (1.78/1.79 g/cm3) and optimal moisture content (11.34/11.95%), the hydraulic conductivity reached 4.38/7.71 m/d. The mechanical parameters of washed mineral waste included internal friction angle (34.4/37.8°) and apparent cohesion (9.37/14.98 kPa). The values of the determined parameters are comparable to those of natural sands used as construction aggregates. As a result, washed mineral waste has a high potential for use as an alternative material to natural sand in the analyzed hydrotechnical applications, particularly for flood embankment construction, by applicable technical standards and construction guidelines. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 466
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

18 pages, 1777 KiB  
Review
Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability
by Md. Muzammal Hoque, Biplob Kumar Saha, Antonio Scopa and Marios Drosos
C 2025, 11(3), 50; https://doi.org/10.3390/c11030050 - 11 Jul 2025
Viewed by 870
Abstract
Due to soil nutrient depletion and rising food demand from an increasing global population, it is essential to find sustainable ways to boost crop yields, improve soil health, and address the environmental issues induced by agriculture. The most appropriate approach is to consider [...] Read more.
Due to soil nutrient depletion and rising food demand from an increasing global population, it is essential to find sustainable ways to boost crop yields, improve soil health, and address the environmental issues induced by agriculture. The most appropriate approach is to consider sustainable amendments, such as biochar and its derivatives, which are vital constituents of soil health due to their affordability, low reactivity, large surface area, and reduced carbon footprint. In this context, biochar and its derivatives in farming systems focus on improving soil structure, nutrient holding capacity, microbial activities, and the perpetuation of soil fertility. Despite its benefits, biochar, if it is used in high concentration, can sometimes become highly toxic, causing soil erosion due to reducing surface area, increasing pH levels, and altering soil properties. This review highlights the production methods and sources of feedstocks, emphasizing their important contribution to the soil’s physicochemical and biological properties. Furthermore, it critically evaluates the environmental applications and their impacts, providing data built upon the literature on contaminant removal from soil, economic factors, heavy metal immobilization, carbon sequestration, and climate resilience. This review emphasizes the main challenges and future prospects for biochar use in comparison to modified biochar (MB) to propose the best practices for sustainable farming systems. Full article
(This article belongs to the Special Issue Carbons for Health and Environmental Protection (2nd Edition))
Show Figures

Graphical abstract

15 pages, 2630 KiB  
Article
Mechanistic Insights into Full Solid-Waste Activators for Enhancing the Performance of Blast Furnace Slag–Fly Ash Cementitious Composites
by Huiying Zhang, Yongchun Li, Dingbang Wei, Xu Wu and Yapeng Wang
Materials 2025, 18(14), 3275; https://doi.org/10.3390/ma18143275 - 11 Jul 2025
Viewed by 345
Abstract
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS [...] Read more.
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)–fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH)2 in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes. Full article
Show Figures

Figure 1

18 pages, 2162 KiB  
Article
Simultaneous Decontamination for Ammonia Nitrogen and Phosphate Efficiently by Crystal Morphology MgO-Coated Functional Biochar Derived from Sludge and Sunflower Stalk
by Zhiwei Li, Jingxin Huang, Weizhen Zhang, Hao Yu and Yin Wang
Toxics 2025, 13(7), 577; https://doi.org/10.3390/toxics13070577 - 9 Jul 2025
Viewed by 378
Abstract
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed [...] Read more.
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed temperature-dependent adsorption performance, with optimal nutrient removal achieved at 600 °C pyrolysis. The Mg-MBC600 composite exhibited enhanced physicochemical properties, including a specific surface area of 156.08 m2/g and pore volume of 0.1829 cm3/g, attributable to magnesium-induced structural modifications. Advanced characterization confirmed the homogeneous dispersion of MgO nanoparticles (~50 nm) across carbon matrices, forming active sites for chemisorption via electron-sharing interactions. The maximum adsorption capacities of Mg-MBC600 for nitrogen and phosphorus reached 84.92 mg/L and 182.27 mg/L, respectively. Adsorption kinetics adhered to the pseudo-second-order model, indicating rate-limiting chemical bonding mechanisms. Equilibrium studies demonstrated hybrid monolayer–multilayer adsorption. Solution pH exerted dual-phase control: acidic conditions (pH 3–5) favored phosphate removal through Mg3(PO4)2 precipitation, while neutral–alkaline conditions (pH 7–8) promoted NH4+ adsorption via MgNH4PO4 crystallization. XPS analysis verified that MgO-mediated chemical precipitation and surface complexation dominated nutrient immobilization. This approach establishes a circular economy framework by converting waste biomass into multifunctional adsorbents, simultaneously addressing sludge management challenges and enabling eco-friendly wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Study of Waste Management: Life Cycle Assessment)
Show Figures

Figure 1

22 pages, 3178 KiB  
Article
Soil and Root Responses in Hazelnut Rhizosphere to Inoculate Rhizobacteria Immobilized via JetCutter Technology
by Solange V. Benítez, Rocío Carrasco, Antonio Roldán, Fuensanta Caravaca, Manuel Campoy, Joaquín Cofré, José Ortiz, Juan D. Giraldo and Mauricio Schoebitz
Horticulturae 2025, 11(7), 808; https://doi.org/10.3390/horticulturae11070808 - 8 Jul 2025
Viewed by 678
Abstract
Plant growth-promoting rhizobacteria (PGPR) have significant potential for enhancing soil quality and plant growth; however, their agricultural application is limited by challenges such as immobilization and desiccation vulnerability. Background: This study addressed PGPR solid formulation by applying JetCutter-assisted immobilization technology to PGPR strains [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) have significant potential for enhancing soil quality and plant growth; however, their agricultural application is limited by challenges such as immobilization and desiccation vulnerability. Background: This study addressed PGPR solid formulation by applying JetCutter-assisted immobilization technology to PGPR strains isolated from the rhizosphere of hazelnut (Corylus avellana). Methods: Four immobilized PGPR strains were evaluated under controlled greenhouse conditions: Serratia proteamaculans, Pseudomonas mohnii, Pseudomonas baetica, and Bacillus safensis. Their effects on root development, gas exchange parameters, dissolved organic carbon (DOC), and soil enzymatic activities (phosphatase, urease, protease, and β-glucosidase) were assessed. Principal component analysis (PCA) was used to identify the top-performing strain. Results: Treatment with encapsulated bacteria resulted in a 27% increase in DOC compared to controls (p < 0.05), while phosphatase and urease activities increased by 35% and 28%, respectively. Root length and volume improved by 18% and 22%, respectively, with PCA identifying P. baetica as the most effective strain. Conclusions: Immobilized Gram-negative PGPR strains enhanced root development and soil biochemical activity in hazelnuts, whereas B. safensis enhanced photosynthesis but had minimal impact on soil properties. These results highlight functional differences and support the use of PGPR immobilization to promote early plant establishment. Full article
Show Figures

Graphical abstract

14 pages, 3070 KiB  
Article
Immunosensor Enhanced with Silver Nanocrystals for On-Chip Prostate-Specific Antigen Detection
by Timothy A. Okhai, Kefilwe V. Mokwebo, Marlon Oranzie, Usisipho Feleni and Lukas W. Snyman
Biosensors 2025, 15(7), 428; https://doi.org/10.3390/bios15070428 - 3 Jul 2025
Viewed by 367
Abstract
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy [...] Read more.
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R2 of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

33 pages, 13987 KiB  
Review
Insights into Carbon-Based Aerogels Toward High-Performance Lithium–Sulfur Batteries: A Review of Strategies for Sulfur Incorporation Within Carbon Aerogel Frameworks
by Yue Gao, Dun Liu, Yi Zhao, Dongdi Yang, Lugang Zhang, Fei Sun and Xiaoxiao Wang
Gels 2025, 11(7), 516; https://doi.org/10.3390/gels11070516 - 2 Jul 2025
Viewed by 616
Abstract
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and [...] Read more.
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and sluggish reaction kinetics, hinder the commercialization of LSBs. To solve these problems, various carbon-based aerogels with developed surface morphology, tunable pores, and electrical conductivity have been examined for immobilizing sulfur, mitigating its volume variation and enhancing its electrochemical kinetics. In this paper, an extensive generalization about the effective preparation methods of carbon-based aerogels comprising the combined method of carbonization with the gelation of precursors and drying processes (ambient pressure drying, freeze-drying, and supercritical drying) is proposed. And we summarize various carbon carbon-based aerogels, mainly including graphene aerogels (Gas) and carbon nanofiber (CNF) and carbon nanotube (CNT) aerogels as cathodes, separators, and interlayers in LSBs. In addition, the mechanism of action of carbon-based aerogels in LSBs is described. Finally, we conclude with an outlook section to provide some insights into the application of carbon-based aerogels in electrochemical energy storage devices. Based on the discussion and proposed recommendations, we provide more approaches on nanomaterials in high-performance liquid or state LSBs with high electrochemical performance in the future. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

29 pages, 1529 KiB  
Review
Leveraging Biochar Amendments to Enhance Food Security and Plant Resilience Under Climate Change
by Shakal Khan Korai, Punhoon Khan Korai, Muhammad Abuzar Jaffar, Muhammad Qasim, Muhammad Usama Younas, Muhammad Shabaan, Usman Zulfiqar, Xiaoshan Wang and Arkadiusz Artyszak
Plants 2025, 14(13), 1984; https://doi.org/10.3390/plants14131984 - 28 Jun 2025
Cited by 1 | Viewed by 619
Abstract
Climate change poses significant risks to food security and contributes to widespread soil degradation. Effective strategies are urgently needed to mitigate its impacts and ensure stable crop production and food quality. Biochar has shown strong potential to reduce greenhouse gas emissions, enhance carbon [...] Read more.
Climate change poses significant risks to food security and contributes to widespread soil degradation. Effective strategies are urgently needed to mitigate its impacts and ensure stable crop production and food quality. Biochar has shown strong potential to reduce greenhouse gas emissions, enhance carbon sequestration, and immobilize soil contaminants such as heavy metals and organic pollutants. These benefits can lead to increased crop yields, improved nutritional quality, and reduced uptake of harmful substances by plants. This review summarizes the possible mechanisms through which biochar influences the biochar–soil–plant interface, aiming to provide a comprehensive understanding of its multifaceted roles. Although positive effects of biochar on crop production are frequently reported, neutral or even negative outcomes have also been observed. Such adverse effects may be attributed to the presence of volatile organic compounds, free radicals, or heavy metals in certain biochars that inhibit plant growth. Additionally, biochar application has been found to reduce plant infections caused by pathogens, likely due to the presence of organic compounds that act as microbial inhibitors. A deeper understanding of the mechanisms by which biochar affects plant growth is essential for its effective use as a tool to combat climate change and enhance food security. Full article
(This article belongs to the Special Issue Biochar Effects on Soil and Plant Health)
Show Figures

Figure 1

Back to TopTop