Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability
Abstract
1. Introduction
2. Historical Background of Biochar and Its Derived Composites
3. Sources and Production Techniques of Biochar
3.1. Biochar Sources
3.2. Production Techniques
4. Application of Biochar and Its Modified Materials in Agriculture
4.1. Soil Amendments and Fertility Enhancement
4.2. Adsorbent for Contaminant Removal
4.3. Improvement in Crop Yield
4.4. Economic Benefits
5. Limitations, Challenges, and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CEC | Cation exchange capacity |
GHG | Greenhouse gas |
HTC | Hydrothermal |
MB | Modified biochar |
MBSC | Maize biochar plus pig manure |
MOF | Metal–organic framework |
WBSC | Wheat biochar plus pig manure |
References
- Azad, N.; Behmanesh, J.; Rezaverdinejad, V.; Abbasi, F.; Navabian, M. An Analysis of Optimal Fertigation Implications in Different Soils on Reducing Environmental Impacts of Agricultural Nitrate Leaching. Sci. Rep. 2020, 10, 7797. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Song, J.; Chen, D.; Zhang, Z.; Yu, Q.; Ren, G.; Han, X.; Wang, X.; Ren, C.; Yang, G.; et al. Biochar Combined with N Fertilization and Straw Return in Wheat-Maize Agroecosystem: Key Practices to Enhance Crop Yields and Minimize Carbon and Nitrogen Footprints. Agric. Ecosyst. Environ. 2023, 347, 108366. [Google Scholar] [CrossRef]
- Banik, C.; Bakshi, S.; Laird, D.A.; Smith, R.G.; Brown, R.C. Impact of Biochar-Based Slow-Release N-Fertilizers on Maize Growth and Nitrogen Recovery Efficiency. J. Environ. Qual. 2023, 52, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Pandian, K.; Vijayakumar, S.; Mustaffa, M.R.A.F.; Subramanian, P.; Chitraputhirapillai, S. Biochar—A Sustainable Soil Conditioner for Improving Soil Health, Crop Production and Environment under Changing Climate: A Review. Front. Soil Sci. 2024, 4, 1376159. [Google Scholar] [CrossRef]
- Afshar, M.; Mofatteh, S. Biochar for a Sustainable Future: Environmentally Friendly Production and Diverse Applications. Results Eng. 2024, 23, 102433. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of Pyrolysis Temperature on Soybean Stover- and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Viotti, P.; Marzeddu, S.; Antonucci, A.; Décima, M.A.; Lovascio, P.; Tatti, F.; Boni, M.R. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. Materials 2024, 17, 809. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar Stability in Soil: Meta-Analysis of Decomposition and Priming Effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; Ramos, M.L.G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef]
- dos Reis, R.A.; Fernández-Baldo, M.A.; Nunes, R.S.; Seabra, A.B. Metal-Organic Frameworks: An Overview of a Possible Solution for Modern Agriculture. Microporous Mesoporous Mater. 2025, 391, 113609. [Google Scholar] [CrossRef]
- Vaz, R.C.A.; Lopez, M.A.R.; Ferreira, G.M.D. Unlocking the Potential of MOF-Biochar Composites: Advanced Functional Materials for Adsorption, Catalysis, and Energy Storage. Mater. Today Chem. 2024, 42, 102383. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, S.; Rajabi, H.; Hadi Mosleh, M.; Sedighi, M. MOF Biochar Composites for Environmental Protection and Pollution Control. Bioresour. Technol. 2025, 418, 131982. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, T.; Hassan, A.A.; Bilal, M.; Hussain, T.; Rizwan, K. Metal-Organic Frameworks-Based Adsorbents: A Review from Removal Perspective of Various Environmental Contaminants from Wastewater. Chemosphere 2020, 259, 127369. [Google Scholar] [CrossRef]
- Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. Biochar Role in the Sustainability of Agriculture and Environment. Sustainbility 2021, 13, 1330. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing Sustainable Agriculture: A Comprehensive Review of Agronomic Practices and Their Impacts on Soil Attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The “Terra Preta” Phenomenon: A Model for Sustainable Agriculture in the Humid Tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating Physical and Chemical Properties of Highly Weathered Soils in the Tropics with Charcoal—A Review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Sayre, L.B. The Pre-History of Soil Science: Jethro Tull, the Invention of the Seed Drill, and the Foundations of Modern Agriculture. Phys. Chem. Earth 2010, 35, 851–859. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Taylor & Francis: Abingdon, UK, 2015. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Mazarji, M.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Bayero, M.T.; Fedorenko, A.; Mahmoodi, N.M.; Sillanpää, M.; Bauer, T.; Soldatov, A. Metal-organic frameworks (MIL-101) decorated biochar as a highly efficient bio-based composite for immobilization of polycyclic aromatic hydrocarbons and copper in real contaminated soil. J. Environ. Chem. Engineering 2022, 10, 108821. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Ca and Fe Modified Biochars as Adsorbents of Arsenic and Chromium in Aqueous Solutions. J. Environ. Manag. 2014, 146, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Chemerys, V.; Baltrėnaitė, E. Modified Biochar: A Review on Modifications of Biochar Towards Its Enhanced Adsorptive Properties; Environmental Protection Engineering: Vilnius, Lithuania, 2016. [Google Scholar]
- Gupta, D.K.; Gupta, C.K.; Dubey, R.; Fagodiya, R.K.; Sharma, G.; Keerthika, A.; Mohamed, M.B.N.; Dev, R.; Shukla, A.K. Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation. In Biochar Applications in Agriculture and Environment Management; Springer: Cham, Switherland, 2020; pp. 141–165. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W.; Busscher, W.J.; Johnson, M.G. Designing Relevant Biochars as Soil Amendments Using Lignocellulosic-Based and Manure-Based Feedstocks. J. Soils Sediments 2014, 14, 330–343. [Google Scholar] [CrossRef]
- Lin, Y.F.; Chen, J.L.; Baalousha, M.; Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M.; Mahmoud, A.M.; et al. Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal. Bioresour. Technol. 2009, 24, 2093–2101. [Google Scholar]
- Han, M.; Zhang, J.; Zhang, L.; Wang, Z. Effect of Biochar Addition on Crop Yield, Water and Nitrogen Use Efficiency: A Meta-Analysis. J. Clean. Prod. 2023, 420, 138425. [Google Scholar] [CrossRef]
- Martínez-Gómez, Á.; Poveda, J.; Escobar, C. Overview of the Use of Biochar from Main Cereals to Stimulate Plant Growth. Front. Plant Sci. 2022, 13, 912264. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Zhang, M.; Wan, Y.; Xie, Z.; Chen, B.; Li, W. Biochar Derived from Corn Straw Affected Availability and Distribution of Soil Nutrients and Cotton Yield. PLoS ONE 2018, 13, e0189924. [Google Scholar] [CrossRef]
- Kowalska, A.; Manning, L. The Future of Food and Agriculture and Challenges. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–180. [Google Scholar]
- Yadav, S.K.; Bag, R. Effect of Bamboo Biochar on Strength and Water Retention Properties of Low Plastic Clay and Silty Sand. Sci. Rep. 2023, 13, 6201. [Google Scholar] [CrossRef]
- Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Imran, M.; Crowley, D.E. Effect of Biochar Amendment on Soil Microbial Biomass, Abundance and Enzyme Activity in the Mash Bean Field. J. Biodivers. Environ. Sci. 2016, 8, 1–13. [Google Scholar]
- Ighalo, J.O.; Ohoro, C.R.; Ojukwu, V.E.; Oniye, M.; Shaikh, W.A.; Biswas, J.K.; Seth, C.S.; Mohan, G.B.M.; Chandran, S.A.; Rangabhashiyam, S. Biochar for Ameliorating Soil Fertility and Microbial Diversity: From Production to Action of the Black Gold. iScience 2025, 28, 111524. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Food Waste Biochar: A Sustainable Solution for Agriculture Application and Soil–Water Remediation. Carbon Res. 2024, 3, 41. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Int. J. Environ. Res. Public Health 2017, 14, 681. [Google Scholar] [CrossRef]
- Kara, R.S.; Pazarlar, S.; Okur, B.; Almaz, C.; Okur, N.; Matula, S.; Miháliková, M. Texture and Contamination-Level Dependent Effects of Calcium-Rich Deinking Paper Sludge Biochar on Soil Cd Availability, Enzymatic Activity, and Plant Stress Mitigation. Water. Air. Soil Pollut. 2024, 235, 454. [Google Scholar] [CrossRef]
- Gabhane, J.W.; Bhange, V.P.; Patil, P.D.; Bankar, S.T.; Kumar, S. Recent Trends in Biochar Production Methods and Its Application as a Soil Health Conditioner: A Review. SN Appl. Sci. 2020, 2, 1307. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar Increases Soil Microbial Biomass but Has Variable Effects on Microbial Diversity: A Meta-Analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, W.; Chu, H.; Zhou, T.; Niu, Z. Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues. BioResources 2018, 13, 3429–3446. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels 2011, 2, 89–124. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2018; pp. 1–564. [Google Scholar] [CrossRef]
- Knoef, H. (Ed.) Handbook Biomass Gasification, 2nd ed.; BTG Biomass Technology Group: Enschede, The Netherlands, 2012; ISBN 978-90-819385-0-1. [Google Scholar]
- Antal, M.J. The Art, Science and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Chun, Y.; Lee, S.K.; Yoo, H.Y.; Kim, S.W. Recent Advancements in Biochar Production According to Feedstock Classification, Pyrolysis Conditions, and Applications: A Review. BioResources 2021, 16, 6512–6547. [Google Scholar] [CrossRef]
- Thines, K.R.; Abdullah, E.C.; Mubarak, N.M.; Ruthiraan, M. Synthesis of Magnetic Biochar from Agricultural Waste Biomass to Enhancing Route for Waste Water and Polymer Application: A Review. Renew. Sustain. Energy Rev. 2017, 67, 257–276. [Google Scholar] [CrossRef]
- Chausali, N.; Saxena, J.; Prasad, R. Nanobiochar and Biochar Based Nanocomposites: Advances and Applications. J. Agric. Food Res. 2021, 5, 100191. [Google Scholar] [CrossRef]
- Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M.A.; Sarkhosh, A. Biochar Improves Soil Physical Characteristics and Strengthens Root Architecture in Muscadine Grape (Vitis rotundifolia L.). Chem. Biol. Technol. Agric. 2021, 8, 7. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars Improve Aggregate Stability, Water Retention, and Pore-Space Properties of Clayey Soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Lei, C.; Lu, T.; Qian, H.; Liu, Y. Machine Learning Models Reveal How Biochar Amendment Affects Soil Microbial Communities. Biochar 2023, 5, 89. [Google Scholar] [CrossRef]
- Liu, C.; Shang, S.; Wang, C.; Tian, J.; Zhang, L.; Liu, X.; Bian, R.; He, Q.; Zhang, F.; Chen, L.; et al. Biochar Amendment Increases Peanut Production Through Improvement of the Extracellular Enzyme Activities and Microbial Community Composition in Replanted Field. Plants 2025, 14, 922. [Google Scholar] [CrossRef]
- Luo, X.; Wang, D.; Liu, Y.; Qiu, Y.; Zheng, J.; Xia, G.; Elbeltagi, A.; Chi, D. Partial Substitution of Phosphorus Fertilizer with Iron-Modified Biochar Improves Root Morphology and Yield of Peanut under Film Mulching. Front. Plant Sci. 2024, 15, 1459751. [Google Scholar] [CrossRef]
- Fakhar, A.; Galgo, S.J.C.; Canatoy, R.C.; Rafique, M.; Sarfraz, R.; Farooque, A.A.; Khan, M.I. Advancing Modified Biochar for Sustainable Agriculture: A Comprehensive Review on Characterization, Analysis, and Soil Performance. Biochar 2025, 7, 8. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Brar, S.K.; Surampalli, R.Y. Development of Biochar-Based Green Functional Materials Using Organic Acids for Environmental Applications. J. Clean. Prod. 2020, 244, 118841. [Google Scholar] [CrossRef]
- Uchimiya, M.; Bannon, D.I.; Wartelle, L.H. Retention of Heavy Metals by Carboxyl Functional Groups of Biochars in Small Arms Range Soil. J. Agric. Food Chem. 2012, 60, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-Coated Corncob Biochar and Its Application in Lead Stabilization in a Soil Washing Residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Tao, W.; Zhang, X.; Xu, Z.; Xu, C. The Biological Effects of Biochar on Soil’s Physical and Chemical Characteristics: A Review. Sustainability 2025, 17, 2214. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Azadi, N.; Raiesi, F. Sugarcane Bagasse Biochar Modulates Metal and Salinity Stresses on Microbial Functions and Enzyme Activities in Saline Co-Contaminated Soils. Appl. Soil Ecol. 2021, 167, 104043. [Google Scholar] [CrossRef]
- Drosos, M.; Orlando, M.; Cozzolino, V.; Scopa, A.; Piccolo, A. Deriving the Shannon Index from the Soil Molecular Humeome Serves as a Descriptor of Soil Organic Matter Stability under Different Cropping Systems. Chem. Biol. Technol. Agric. 2023, 10, 105. [Google Scholar] [CrossRef]
- Sun, J.; Drosos, M.; Mazzei, P.; Savy, D.; Todisco, D.; Vinci, G.; Pan, G.; Piccolo, A. The Molecular Properties of Biochar Carbon Released in Dilute Acidic Solution and Its Effects on Maize Seed Germination. Sci. Total Environ. 2017, 576, 858–867. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, Y.G.; Gu, Y.L.; Xu, Y.; Zeng, G.M.; Hu, X.J.; Liu, S.B.; Wang, X.; Liu, S.M.; Li, J. Biochar-Based Nano-Composites for the Decontamination of Wastewater: A Review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Majewska, M.; Hanaka, A. Biochar in the Bioremediation of Metal-Contaminated Soils. Agronomy 2025, 15, 273. [Google Scholar] [CrossRef]
- Ghaedi, S.; Rajabi, H.; Hadi Mosleh, M.; Spencer, B.F.; Sedighi, M. Assessing the Efficiency and Reusability of Zirconium-Based MOF-Biochar Composite for the Removal of Pb (II) and Cd (II) in Single and Multi-Ionic Systems. J. Environ. Manag. 2025, 380, 125122. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.A.; Gevaerd, A.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar Obtained from Spent Coffee Grounds: Evaluation of Adsorption Properties and Its Application in a Voltammetric Sensor for Lead (II) Ions. Microchem. J. 2021, 165, 106114. [Google Scholar] [CrossRef]
- Chen, Z.S.; Liu, T.; Dong, J.F.; Chen, G.; Li, Z.; Zhou, J.L.; Chen, Z. Sustainable Application for Agriculture Using Biochar-Based Slow-Release Fertilizers: A Review. ACS Sustain. Chem. Eng. 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Jiang, X.; Denef, K.; Stewart, C.E.; Cotrufo, M.F. Controls and Dynamics of Biochar Decomposition and Soil Microbial Abundance, Composition, and Carbon Use Efficiency during Long-Term Biochar-Amended Soil Incubations. Biol. Fertil. Soils 2016, 52, 1–14. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Qiu, Y.; Che, L.; Xue, C. Performance and Mechanisms of Emerging Animal-Derived Biochars for Immobilization of Heavy Metals. Sci. Total Environ. 2019, 646, 1281–1289. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Krasucka, P.; Duan, W.; Pan, B.; Siatecka, A.; Oleszczuk, P. Ecotoxicological Characterization of Engineered Biochars Produced from Different Feedstock and Temperatures. Sci. Total Environ. 2023, 861, 160640. [Google Scholar] [CrossRef]
- Meng, J.; Tao, M.; Wang, L.; Liu, X.; Xu, J. Changes in Heavy Metal Bioavailability and Speciation from a Pb-Zn Mining Soil Amended with Biochars from Co-Pyrolysis of Rice Straw and Swine Manure. Sci. Total Environ. 2018, 633, 300–307. [Google Scholar] [CrossRef]
- Ni, B.J.; Huang, Q.S.; Wang, C.; Ni, T.Y.; Sun, J.; Wei, W. Competitive Adsorption of Heavy Metals in Aqueous Solution onto Biochar Derived from Anaerobically Digested Sludge. Chemosphere 2019, 219, 351–357. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N. Facile Synthesis of Porous Carbons from Silica-Rich Rice Husk Char for Volatile Organic Compounds (VOCs) Sorption. Bioresour. Technol. 2019, 282, 294–300. [Google Scholar] [CrossRef]
- Wang, J.; Kang, Y.; Duan, H.; Zhou, Y.; Li, H.; Chen, S.; Tian, F.; Li, L.; Drosos, M.; Dong, C.; et al. Remediation of Cd2+ in Aqueous Systems by Alkali-Modified (Ca) Biochar and Quantitative Analysis of Its Mechanism. Arab. J. Chem. 2022, 15, 103750. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Green, T.R. Quantifying and Modeling Management Effects on Soil Properties. In Modeling Processes and Their Interactions in Cropping Systems: Challenges for the 21st Century; Wiley: Hoboken, NJ, USA, 2022; pp. 333–358. [Google Scholar] [CrossRef]
- Weidner, E.; Karbassiyazdi, E.; Altaee, A.; Jesionowski, T.; Ciesielczyk, F. Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A Review. ACS Omega 2022, 7, 27062–27078. [Google Scholar] [CrossRef] [PubMed]
- Trakal, L.; Michálková, Z.; Beesley, L.; Vítková, M.; Ouředníček, P.; Barceló, A.P.; Ettler, V.; Číhalová, S.; Komárek, M. AMOchar: Amorphous Manganese Oxide Coating of Biochar Improves Its Efficiency at Removing Metal(Loid)s from Aqueous Solutions. Sci. Total Environ. 2018, 625, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Minkina, T.; Ahmed, B.; Singh, V.K.; Mandzhieva, S.; Sushkova, S.; Bauer, T.; Verma, K.K.; Shan, S.; van Hullebusch, E.D.; et al. Nano-Biochar: A Novel Solution for Sustainable Agriculture and Environmental Remediation. Environ. Res. 2022, 210, 112891. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Zhang, R.; Xing, Y. Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar. Int. J. Environ. Res. Public Health 2022, 19, 3247. [Google Scholar] [CrossRef]
- Ghaedi, S.; Rajabi, H.; Hadi Mosleh, M.; Babakhani, P.; Sedighi, M. UiO-67 Metal-Organic Framework Loaded on Hardwood Biochar for Sustainable Management of Environmental Boron Contaminations. J. Environ. Chem. Eng. 2024, 12, 114511. [Google Scholar] [CrossRef]
- Laeim, H.; Molahalli, V.; Prajongthat, P.; Pattanaporkratana, A.; Pathak, G.; Phettong, B.; Hongkarnjanakul, N.; Chattham, N. Porosity Tunable Metal-Organic Framework (MOF)-Based Composites for Energy Storage Applications: Recent Progress. Polymers 2025, 17, 130. [Google Scholar] [CrossRef]
- Mohan, B.; Sharma, H.K.; Ručman, S.; Singjai, P.; Pombeiro, A.J.L. Contaminants Removal and Monitoring: The Role of Hybrid MOFs in Agricultural Advancement and Soil Amendment. Adv. Sustain. Syst. 2024, 9, 2400637. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Kumar, S.; Rathore, S.S.; Yadav, D.; Yadav, S.K.; Yadav, V.; Ansari, M.A.; Das, A.; Rajanna, G.A.; et al. Biochar Implications in Cleaner Agricultural Production and Environmental Sustainability. Environ. Sci. Adv. 2023, 2, 1042–1059. [Google Scholar] [CrossRef]
- Sokolova, M.V.; Fath, B.D.; Buonocore, E.; Franzese, P.P. Assessment of Regulating Ecosystem Services Generated by Green Infrastructure: A Case Study of Bolzano, Italy. Urban Clim. 2025, 60, 102324. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How Does Biochar Influence Soil N Cycle? A Meta-Analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, X.; He, Y.; Liu, R.; Yao, Y.; Zhou, G.; Chen, H.; Zhou, L.; Fu, Y.; Bai, S.H. Co-Application of Biochar and Organic Amendments on Soil Greenhouse Gas Emissions: A Meta-Analysis. Sci. Total Environ. 2023, 897, 166171. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Wang, L.; Man, Z.; He, Y.; Wang, W.; Lin, F.; Zhu, J.; Liu, D.; Xiao, H.; Wang, K. In Situ Synthesis of Porous Metal-Organic Frameworks NH2-UiO-66 on Tea Stem Biochar and Application in Odours Adsorption. Environ. Pollut. 2024, 353, 124168. [Google Scholar] [CrossRef]
- Knoblauch, C.; Priyadarshani, S.H.R.; Haefele, S.M.; Schröder, N.; Pfeiffer, E.M. Impact of Biochar on Nutrient Supply, Crop Yield and Microbial Respiration on Sandy Soils of Northern Germany. Eur. J. Soil Sci. 2021, 72, 1885–1901. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, T.; Xu, X.; Sun, J.; Pan, G.; Cheng, K. A Global Assessment of the Long-Term Effects of Biochar Application on Crop Yield. Curr. Res. Environ. Sustain. 2024, 7, 100247. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of Biochar-Based Controlled Release Nitrogen Fertilizer on Nitrogen-Use Efficiency of Oilseed Rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar Effects on Yield of Cereal and Legume Crops Using Meta-Analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Berihun, T.; Tolosa, S.; Tadele, M.; Kebede, F. Effect of Biochar Application on Growth of Garden Pea (Pisum sativum L.) in Acidic Soils of Bule Woreda Gedeo Zone Southern Ethiopia. Int. J. Agron. 2017, 2017, 6827323. [Google Scholar] [CrossRef]
- Maghsoodi, M.R.; Najafi, N.; Reyhanitabar, A.; Oustan, S. Hydroxyapatite Nanorods, Hydrochar, Biochar, and Zeolite for Controlled-Release Urea Fertilizers. Geoderma 2020, 379, 114644. [Google Scholar] [CrossRef]
- Pandian, K.; Subramaniayan, P.; Gnasekaran, P.; Chitraputhirapillai, S. Effect of Biochar Amendment on Soil Physical, Chemical and Biological Properties and Groundnut Yield in Rainfed Alfisol of Semi-Arid Tropics. Arch. Agron. Soil Sci. 2016, 62, 1293–1310. [Google Scholar] [CrossRef]
- Sial, T.A.; Lan, Z.; Wang, L.; Zhao, Y.; Zhang, J.; Kumbhar, F.; Memon, M.; Lashari, M.S.; Shah, A.N. Effects of Different Biochars on Wheat Growth Parameters, Yield and Soil Fertility Status in a Silty Clay Loam Soil. Molecules 2019, 24, 1798. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.L.; González-Egido, S.; González-Lucas, M.; González-Pernas, F.M. Medium-Term Effects and Economic Analysis of Biochar Application in Three Mediterranean Crops. Energies 2023, 16, 4131. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, T.; Xiao, H.; Gao, M. Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize–Chinese Cabbage Rotation System. Agriculture 2022, 12, 1030. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Cheng, X.; Chen, C.; Zhang, L.; Wang, Z. Design Strategies and Advantages of Metal-Organic Frameworks@ Lignocellulose-Based Composite Aerogel for CO2 Capture: A Review. Sep. Purif. Technol. 2025, 356, 129878. [Google Scholar] [CrossRef]
- Singh, S.; Sivaram, N.; Nath, B.; Khan, N.A.; Singh, J.; Ramamurthy, P.C. Metal Organic Frameworks for Wastewater Treatment, Renewable Energy and Circular Economy Contributions. NPJ Clean Water 2024, 7, 124. [Google Scholar] [CrossRef]
- Ahmed, N.N.; Pokharel, R.; Miesel, J.; Saffron, C.M. Assessing Feedstock Availability and Economic Feasibility of Utilizing Forest Biomass for Biochar Production in Stationary and Portable Systems in Michigan. GCB Bioenergy 2025, 17, e70030. [Google Scholar] [CrossRef]
- Polyakov, V.; Bauer, T.; Kirichkov, M.; Butova, V.; Gritsai, M.; Minkina, T.; Soldatov, A.; Kravchenko, E. MOF-Biochar Nanocomposite for Sustainable Remediation of Contaminated Soil. Environ. Sci. Pollut. Res. 2025, 32, 5533–5550. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wang, H.; Li, J.; Fang, S.; Li, G. Magnetic Fe3O4/Bamboo-Based Activated Carbon/UiO-66 Composite as an Environmentally Friendly and Effective Adsorbent for Removal of Bisphenol A. Chemosphere 2023, 340, 139696. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of Sewage Sludge Biochar on Plant Metal Availability after Application to a Mediterranean Soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Shackley, S.; Hammond, J.; Gaunt, J.; Ibarrola, R. The Feasibility and Costs of Biochar Deployment in the UK. Carbon Manag. 2011, 2, 335–356. [Google Scholar] [CrossRef]
Impact Area | Impacts of Biochar | Impacts of MB Derivatives | Details | References |
---|---|---|---|---|
Soil structure | + | Improves structure; porosity ↑ by 14–64%, bulk density ↓ by 3–31% | [48,49,50] | |
Water retention | + | 20% biochar in sandy soil nearly doubles water retention, reduces erosion and loss | [48,49,50] | |
Soil fertility | + | +/− | Enhances fertility, though some organic molecules (e.g., heterocyclic N) may induce toxicity | [40,62,63] |
Nutrient cycling (C/N, P) | + | + | Biochar: C/N ↑ by 20.9–33.8%, P ↑ by 14.7–23.5%; MB: C/N ↑ by 17.4–39.0%, P ↑ by 23.5–32.3% | [53] |
Microbial biomass | + | + | Enhances microbial biomass, with low-grade nutrient-rich organics at low temperature | [40] |
Enzymatic activity | +(3.7–5.5%) | ++(6.4–10.1%) | Biochar increases activity; MB (biochar-compost mix) has a better impact | [53] |
Hydrolase/non-hydrolase ratio | +(11.4–15.9%) | ++(20.5–25.0%) | Enhances microbial metabolic processes | [53] |
Soil microbial diversity (α-diversity) | + | + | Microporosity, pH, and carbonates boost diversity and richness | [40,61] |
Microbial community shift | + | Basidiomycota ↑ and Actinobacteria ↓—benefits plant–beneficial fungi | [52] | |
Nitrogen cycling/emissions | + | + | Nitrification ↑ 40.8%, N2O emissions ↓ 12.7% | [40] |
Soil pH balance | + | + | Alkaline pH helps in acidic soils | [55,56,57,58,59,60] |
CEC | + | + | Boosts nutrient retention capacity | [55,56,57,58,59,60] |
Oil quality | − | + | Raw biochar: no effect; MB (WBSC/MBSC): ↑ oleic acid by 45%, ↓ linoleic acid by 79% | [53] |
Crop yield (peanut) | ± | + | MB (iron-MB) ↑ yield by up to 33.2% under mulching | [54] |
Soil toxicity | − | − | Certain organic molecules in some biochar sources may cause toxicity | [62,63] |
Surface area and porosity | + | ++ | Biochar: moderate; MB: higher than biochar | [10,67] |
Heavy metal adsorption (Pb, Cd, Cr, As) | + | + | Biochar: effective via functional groups and surface area; MB: enhanced due to magnetic composites | [64,65,66,74,75,76] |
Reduction of metal uptake in plants | + | + | Biochar: reduces Cd (38%), Pb (39%), Cu (25%), Zn (17%); MB: not explicitly quantified, but enhances uptake | [68] |
Soil amendment and pollutant immobilization | + | + | Biochar: proven benefits; MB: improved when combined with MOFs or chitosan | [10,13,81,82,83,84] |
Source-specific efficiency (rice husk) | + | ++ | Biochar: varies depending on feedstock; MB: enhances efficiency when used with modified biochar | [69,70,71,72,73] |
Adsorption of organic pollutants (dyes, pesticides) | + | ++ | Biochar: moderate to effective; MB: more selective and stable with composites | [10,13,81,82,83,84] |
Structural stability | + | + | Biochar: moderate; MB: improves via MOFs and chemical modifiers | [10,13,81,82,83,84] |
Environmental safety | +/− | +/− | Biochar: generally safe; MB: requires more assessment for nanomaterials | [48,77,78,79,80,81] |
Cost and scalability | − | + | Biochar: low-cost, scalable; MB: higher cost due to synthesis complexity | [10,67,81] |
Ease of separation from environment | + | + | Biochar: low (non-magnetic); MB: easy separation due to magnetism | [74,75] |
Synergy with phytoremediation | + | + | Biochar supports plant-based remediation; MB enhances through targeted contaminant removal | [48,77,78,79,80,81] |
CO2 Sequestration | + | + | Biochar sequesters up to 1.8 Gt CO2 eq/year; MB enhances carbon stability through improving structure | [15,27,84,85,86] |
Reduction in GHG Emissions | + | + | Biochar reduces human-induced GHG emissions by up to 12%; MB captures CH4 and N2O more effectively | [60,85,86,87,88,89] |
CH4 and N2O adsorption Capacity | ± | + | Biochar has limited adsorption; MB has higher GHG adsorption due to surface area and modifications | [10,85] |
Long-term carbon storage | + | + | Both store carbon in stable forms; MB is more resistant to degradation | [15,27,84] |
Global warming potential (GWP100) when combined with organics | − | − | Combining with organic amendments may increase GWP by 26.1% due to CO2, CH4, and N2O emissions | [10,90] |
General crops | + | ↑ 16% average yield increase using biochar | [92] | |
Rice | + | ↑ 28% (biochar), ↑ 67% (biochar) | [89,93,96] | |
Maize | + | + | ↑ 28% (biochar), +3% (Lantana biochar), ↑ 84.58% (dry yield), ↑ 86.99 g/plant (MB) | [89,93,95,99,100] |
Wheat | + | + | ↑ 13.5% (biochar), improves yield via milk tea biochar + 2% fertilizer | [89,93,98] |
Soybean | + | ↑ 11% (biochar) | [89,93] | |
Grapes | + | ↑ 66% (biochar) | [94] | |
Radish | + | ↑ 12% yield (poultry manure biochar) | [54] | |
Groundnut | + | ↑ 24% dry yield, +29% pod yield (biochar) | [97] | |
Peanut | + | + | ↑ 22% (woodchip biochar), +23% (WBSC), +18% (MBSC), +33.2% (iron-MB) | [53,54] |
Corn | + | ↑ 84.58% (biochar, dry yield) | [99] | |
Chinese cabbage | + | ↑ 498.88 g/plant (MB fertilizer) | [100] | |
Crop yield improvement | + | ↑ Biochar increases corn yields by 55–80% over 3 years | [24,99] | |
Profitability | + | + | ↑ Biochar: EUR 8000 ha−1 profit; + MB-based: up to 40% operational savings in industrial use | [99,105] |
Investment cost | − | − | Biochar: EUR 200 ha−1 initial investment; MOFs: high initial cost | [99,105] |
Biochar production efficiency | + | − | Stationary units yield 10–71% surplus (biochar); portable units fall short 4–50% (biochar/MB) | [102,103] |
Market growth potential | + | + | ↑Biochar: USD 3B global market expected by 2025; ↑ MOFs: strong upscale market potential | [102,103,105] |
Soil efficiency | + | ↑ Biochar improves soil by 15–25%; MOF impact not specified | [24] | |
Waste management cost reduction | + | ↑ Biochar cuts waste management costs by 30%; MOF impact not specified | [24] | |
Pollutant adsorption efficiency | − | ++ | Biochar: basic adsorption; ↑ MOFs enhance removal from 50% to 80% | [82,104] |
Operational cost savings (remediation) | − | + | Biochar: not specified; ↑ MOFs can reduce operational costs up to 40% in pollution treatment | [105] |
Parameters | Short Description | References |
---|---|---|
Limitations |
| [24,107] |
Challenges |
| [13,107] |
Future directions |
| [13,87,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, M.M.; Saha, B.K.; Scopa, A.; Drosos, M. Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability. C 2025, 11, 50. https://doi.org/10.3390/c11030050
Hoque MM, Saha BK, Scopa A, Drosos M. Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability. C. 2025; 11(3):50. https://doi.org/10.3390/c11030050
Chicago/Turabian StyleHoque, Md. Muzammal, Biplob Kumar Saha, Antonio Scopa, and Marios Drosos. 2025. "Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability" C 11, no. 3: 50. https://doi.org/10.3390/c11030050
APA StyleHoque, M. M., Saha, B. K., Scopa, A., & Drosos, M. (2025). Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability. C, 11(3), 50. https://doi.org/10.3390/c11030050