Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = Carbon felt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7389 KiB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 344
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

19 pages, 3483 KiB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 266
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 517
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

13 pages, 3678 KiB  
Communication
Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination
by Nemeshwaree Behary, May Kahoush, Mohammad Neaz Morshed, Jinping Guan and Vincent Nierstrasz
Catalysts 2025, 15(5), 472; https://doi.org/10.3390/catal15050472 - 10 May 2025
Viewed by 634
Abstract
The need for sustainable and efficient water decontamination methods has led to the increasing use of redox enzymes such as glucose oxidase (GOx). GOx immobilization on textile supports provides a promising alternative for catalyzing pollutant degradation in bio-Fenton (BF) and bio-electro-Fenton (BEF) systems. [...] Read more.
The need for sustainable and efficient water decontamination methods has led to the increasing use of redox enzymes such as glucose oxidase (GOx). GOx immobilization on textile supports provides a promising alternative for catalyzing pollutant degradation in bio-Fenton (BF) and bio-electro-Fenton (BEF) systems. However, challenges related to enzyme stability, reusability, and environmental impact remain a concern. This communication paper outlines innovative strategies developed to address these challenges, notably the use of ecotechnologies to achieve efficient GOx immobilization while maintaining biocatalytic activity. Plasma ecoprocesses, amino-bearing biopolymer-chitosan, as well as a bio-crosslinker genipin have been used efficiently on conductive carbon and non-conductive polyester-PET nonwovens. In certain cases, immobilized GOx can retain high catalytic activity after multiple cycles, making them an effective biocatalyst for organic dye degradation (Crystal Violet and Remazol Blue) via bio-Fenton reactions, including total heterogeneous bio-Fention system. Moreover, the conductive carbon felt-based bioelectrodes successfully supported simultaneous pollutant degradation and energy generation in a BEF system. This work highlights the potential of textile-based enzyme immobilization for sustainable wastewater treatment, bio-electrochemical energy conversion, and also for bacterial deactivation. Future research will focus on optimizing enzyme stability and enhancing BEF efficiency for large-scale applications. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

20 pages, 17600 KiB  
Article
Effects of the Intrinsic Structures of Graphite Felt and Carbon Cloth on the Working Condition of Iron-Chromium Redox Flow Batteries
by Jun Tian, Chuanyu Sun, Bowen Qu, Huan Zhang, Shuqi Liu, Meiqi Fei and Shuang Yan
Catalysts 2025, 15(4), 399; https://doi.org/10.3390/catal15040399 - 19 Apr 2025
Viewed by 417
Abstract
The design parameters of large-scale iron-chromium redox flow batteries (ICRFB) encompass a wide range of internal and external operational conditions, including electrodes, membranes, flow rate, and temperature, among others. Among these factors, the intrinsic structures of graphite felt (GF) and carbon cloth (CC) [...] Read more.
The design parameters of large-scale iron-chromium redox flow batteries (ICRFB) encompass a wide range of internal and external operational conditions, including electrodes, membranes, flow rate, and temperature, among others. Among these factors, the intrinsic structures of graphite felt (GF) and carbon cloth (CC) play a pivotal role in determining the overall working conditions of ICRFBs. This study systematically investigates the multifaceted relationship between the intrinsic structure of the GF and CC and their impact on the operational performance of ICRFBs. The fundamental difference between the two types of electrodes lies in the intrinsic structure space available in them for electrolyte penetration. A systematic analysis of the structure–activity relation between the electrodes and the initial internal resistance, as well as the operating temperature of the cell, was performed. Additionally, the influence of the electrode structure on critical parameters, including the flow rate, membrane selection (Nafion 212 and Nafion 115), and performance of electrodeposition catalysts (bismuth and indium), is examined in detail. Under varying operating conditions, the intrinsic structures of GF and CC turn out to be a crucial factor, providing a robust basis for electrode selection and performance optimization in large-scale ICRFB systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

11 pages, 3911 KiB  
Article
Enhanced Performance of a Microbial Fuel Cell Using Double Oxidant-Treated Carbon Felts
by Bhavi Pandya, Latesh Chaudhari and Naresh R. Vaghela
Electrochem 2025, 6(2), 12; https://doi.org/10.3390/electrochem6020012 - 30 Mar 2025
Viewed by 1323
Abstract
The aim of this study was to enhance and maintain bioelectricity generation from distillery spent wash using a microbial fuel cell (MFC). Electrode materials play a critical role in the generation of bioelectricity in MFCs. Utilizing double oxidant-treated carbon felts in MFC applications [...] Read more.
The aim of this study was to enhance and maintain bioelectricity generation from distillery spent wash using a microbial fuel cell (MFC). Electrode materials play a critical role in the generation of bioelectricity in MFCs. Utilizing double oxidant-treated carbon felts in MFC applications increased current density to 749.56 mA/m2 and increased peak power density to 125.23 mW/m2. Electrochemical impedance spectroscopy (EIS) analysis further verified the improved electrocatalytic activity observed in the oxidized carbon felt, consistent with the findings from cyclic voltammetry (CV) and polarization curves, thereby confirming the enhanced performance of the oxidized carbon felt electrode. Overall, the study highlights the significance of electrode morphology and surface modifications in influencing microbial adhesion, electron transport, and the overall efficiency of fuel cells using distillery spent wash as a substrate. Full article
Show Figures

Figure 1

17 pages, 2964 KiB  
Article
Performance Study of Graphite Oxide Polythiophene Composites for Microbial Fuel Cell
by Yuyang Wang, Yu Song, Zhijie Wang, Dongming Zhang, Xiangquan Kong, Su Ma, Ying Duan, Andrii Vyshnikin and Vitalii Palchykov
Coatings 2025, 15(4), 412; https://doi.org/10.3390/coatings15040412 - 30 Mar 2025
Viewed by 405
Abstract
Microbial fuel cell (MFC) is a bioelectrochemical device for biomass power generation, and the anode material determines the performance of the MFC. In this study, a novel anode material, which is a combination of graphite oxide/polythiophene (GO/Pth), was prepared on a carbon felt [...] Read more.
Microbial fuel cell (MFC) is a bioelectrochemical device for biomass power generation, and the anode material determines the performance of the MFC. In this study, a novel anode material, which is a combination of graphite oxide/polythiophene (GO/Pth), was prepared on a carbon felt (CF) substrate and exhibited excellent capacitive performance. The MFC equipped with the CF/GO/Pth anode achieved a significant increase in power density, reaching a maximum value of 2.9 W/m3, which is a 3.32-fold increase in power density compared to that of the CF anode. Meanwhile, the CF/GO/Pth anode stored charge Qt value was as high as 11,258.68 C/m2, which was 4.13 times higher than that of the CF anode (2727.66 C/m2). High-throughput analysis showed that the percentage of charge-producing bacteria on the surface of the CF/GO/Pth anode was more than 90%, which was significantly higher than that of the charge-producing bacteria attached to the CF anode. This further confirms the significant enhancement of MFC performance by materials such as GO and Pth coated on the CF surface. In this study, CF/GO/Pth anode materials were prepared to successfully enhance the power output and charge storage capacity of MFC, and they also showed broad application prospects in the degradation of polluted waste liquids. Full article
Show Figures

Figure 1

19 pages, 10969 KiB  
Article
Heat Shield Properties of Lightweight Ablator Series for Transfer Vehicle Systems with Different Laminated Structures Under High Enthalpy Flow Environments
by Masayuki Ohkage, Kei-ichi Okuyama, Soichiro Hori and Tsumugi Ishida
Aerospace 2025, 12(4), 281; https://doi.org/10.3390/aerospace12040281 - 27 Mar 2025
Viewed by 743
Abstract
The thermal protection system of a re-entry vehicle requires a high-heat-resistant heat shield to protect the spacecraft. Most of the ablative materials developed so far have high heat resistance but have technical issues such as long production times. In this study, we propose [...] Read more.
The thermal protection system of a re-entry vehicle requires a high-heat-resistant heat shield to protect the spacecraft. Most of the ablative materials developed so far have high heat resistance but have technical issues such as long production times. In this study, we propose a new ablative material (LATS/PEEK) consisting of PEEK and carbon felt as a material that can solve these problems. PEEK has excellent properties such as a short production time and its ability to be produced using 3D printer technology. In addition, PEEK can be molded with a variety of fusion bonding methods, so it is possible to mold the heat shield and structural components as a single structure. However, heating tests conducted in previous research have confirmed the expansion phenomenon of CF/PEEK produced by 3D printers. The expansion of the ablative material is undesirable because it changes the aerodynamic characteristics during re-entry flight. Therefore, the purpose of this research is to clarify the mechanism of the expansion phenomenon of the ablative material based on PEEK resin. Therefore, we conducted thermal gravimetric analysis (TGA) and thermomechanical analysis (TMA) and concluded that the expansion phenomenon during the heating test was caused by the pressure increase inside the ablative material due to pyrolysis gas. Based on this mechanism, we developed a new 3D LATS/PEEK with a structure that can actively release pyrolysis gas, and we conducted a heating test using an arc-heating wind tunnel. As a result, it was found that 3D LATS/PEEK had less expansion and deformation during the heating test than CF/PEEK manufactured using a 3D printer. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

27 pages, 35081 KiB  
Article
Carbon Felt/Nickel Oxide/Polyaniline Nanocomposite as a Bifunctional Anode for Simultaneous Power Generation and Energy Storage in a Dual-Chamber MFC
by Yuyang Wang, Zhijie Wang, Dongming Zhang, Xiangquan Kong, Yu Song, Su Ma, Ying Duan, Andrii Vyshnikin and Vitalii Palchykov
Coatings 2025, 15(3), 356; https://doi.org/10.3390/coatings15030356 - 19 Mar 2025
Cited by 2 | Viewed by 432
Abstract
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with [...] Read more.
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with a CF/NiO/PANI bioanode has a peak power density of 1988.31 ± 50.96 mW/m2, which is 3.8 times higher than that of the MFC with a bare CF electrode, having a peak power density of 518.29 ± 27.07 mW/m2. Charge–discharge cycle tests show that the storage charge capacity of the CF/NiO/PANI bioanode is 3304.64 C/m2, which is 10.5 times greater than that of the bare CF anode. The electrochemical, morphological, and chemical properties of the prepared anodes are characterized using techniques such as SEM, EDS, FTIR, XPS, and XRD. Notably, high-throughput sequencing reveals that electrogenic bacteria account for 79.2% of the total microbial population on the CF/NiO/PANI multilayer capacitive bioelectrode. The synergistic effects of the composite materials result in the formation of a richer biofilm on the electrode surface, providing more active sites and enhancing capacitive characteristics. This innovative approach significantly improves the output power and peak current of MFCs, while also endowing the electrode with dual functions of simultaneous power generation and energy storage. Full article
Show Figures

Figure 1

15 pages, 2084 KiB  
Article
Free-Standing and Binder-Free Porous Carbon Cloth (C-Felt) Anodes for Lithium-Ion Full Batteries
by Venroy Watson, Yaw D. Yeboah, Mark H. Weatherspoon and Egwu Eric Kalu
Batteries 2025, 11(3), 111; https://doi.org/10.3390/batteries11030111 - 14 Mar 2025
Viewed by 951
Abstract
A priority area for low-cost LIBs is the commercial production of electrodes with a high cycle life and efficiency in an environmentally benign fashion and a cost-effective manner. We demonstrate the use of undoped/untreated, flexible, stand-alone, mesh-like carbon cloth (C-felt) as a potential [...] Read more.
A priority area for low-cost LIBs is the commercial production of electrodes with a high cycle life and efficiency in an environmentally benign fashion and a cost-effective manner. We demonstrate the use of undoped/untreated, flexible, stand-alone, mesh-like carbon cloth (C-felt) as a potential alternative anode to commonly used graphite composite anodes (GRAs) in LIBs. The performances of commercial GRAs (9 m2/g) and C-felt (102 m2/g) were compared as anodes vs. LiFePO4 (14.5 m2/g) cathodes in the full battery. Half-cell test results determined appropriate mass ratios of 2:1 for GRAs (LiFePO4/GRA) and 1:1 for C-felt (LiFePO4/C-felt). At a 0.3 C discharge rate, the 1:1 ratio yielded a specific discharge capacity of 104 mAh/g, in contrast to 87 mAh/g for the 2:1 ratio for a full cell in the 100th cycle, corresponding to a retention of 82% for the 1:1 LiFePO4/C-felt full cell and 70% for the 2:1 LiFePO4/GRA full cell from their first specific discharge capacities. By varying the ratio of C-felt anode to LiFePO4 cathode in a full cell and expressing the specific capacity in the 100th cycle as a function of the fraction of C-felt present (at a fixed amount of LiFePO4), a maximum specific capacity was achieved at a fraction of C-felt equal to 0.542 or (1:1.18) LiFePO4/C-felt or 106 mAh/g. This corresponds closely to the experimentally determined value and supports (1:1) LiFePO4/C-felt full cell as an optimum ratio that can outperform the (2:1) LiFePO4/GRA full cell in our test conditions. Hence, we present C-felt anode as a potential cost-effective, lightweight anode material for low-cost LIBs. Full article
Show Figures

Figure 1

46 pages, 10972 KiB  
Review
Polymer Nanocomposite Ablatives—Part III
by Joseph H. Koo, Kaelyn Wagner, Louis A. Pilato and Hao Wu
J. Compos. Sci. 2025, 9(3), 127; https://doi.org/10.3390/jcs9030127 - 10 Mar 2025
Viewed by 952
Abstract
Previous reviews by authors indicate the continuing development and improvement of thermal protective systems through the introduction of polymer nanocomposites into polymer matrix composites. These materials perform as thermal protective systems for a variety of aerospace applications, such as thermal protection systems (TPSs), [...] Read more.
Previous reviews by authors indicate the continuing development and improvement of thermal protective systems through the introduction of polymer nanocomposites into polymer matrix composites. These materials perform as thermal protective systems for a variety of aerospace applications, such as thermal protection systems (TPSs), solid rocket motor (SRM) nozzles, internal insulation of SRMs, leading edges of hypersonic vehicles, and missile launch structures. A summary of the most recent global technical research is presented. Polymeric resin systems continue to emphasize phenolic resins and other materials. New high-temperature organic resins based on phthalonitrile and polysiloxane are described and extend the increased temperature range of resin matrix systems. An important technical development relates to the transformation of the resin matrix, primarily phenolic resin, into an aerogel or a nanoporous material that penetrates uniformly within the reinforcing fiber configuration with a corresponding particle size of <100 nm. Furthermore, many of the current papers consider the use of low-density carbon fiber or quartz fiber in the use of low-density felts with high porosity to mimic NASA’s successful use of rigid low-density carbon/phenolic known as phenolic impregnated carbon ablator (PICA). The resulting aerogel composition with low-density non-wovens or felts possesses durability and low density and is extremely effective in providing insulation and preventing heat transfer with low thermal conductivity within the aerogel-modified thermal protective system, resulting in multiple features, such as low-density TPSs, increased thermal stability, improved mechanical properties, especially compressive strength, lower thermal conductivity, improved thermal insulation, reduced ablation recession rate and mass loss, and lower backside temperature. The utility of these TPS materials is being expanded by considering them for infrastructures and ballistics besides aerospace applications. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

13 pages, 1618 KiB  
Article
Painted Electrode with Activated Coconut Carbon for Microbial Fuel Cell
by Paweł P. Włodarczyk and Barbara Włodarczyk
Energies 2025, 18(6), 1350; https://doi.org/10.3390/en18061350 - 10 Mar 2025
Viewed by 754
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based [...] Read more.
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based materials. Therefore, a carbon-based material (by-product of coconut processing) was selected for testing in this study. The anode was prepared by bonding activated coconut carbon with carbon paint on a glass electrode. The aim of this study was to analyze the feasibility of using an electrode prepared in this manner as a surface layer on the anode of an MFC. The performance of an electrode coated only with carbon paint was also evaluated. These two electrodes were compared with a carbon felt electrode, which is commonly used as an anode material in MFCs. In this research, the MFC was fed with a by-product of yeast production, namely a molasses decoction from yeast processing. Measurements were conducted in a standard two-chamber glass MFC with a glass membrane separating the chambers. During the experiment, parameters such as start-up time, cell voltage during MFC start-up, output cell voltage, and power density curves were analyzed. The carbon paint-coated electrode with the activated coconut carbon additive demonstrated operating parameters similar to those of the carbon felt electrode. The results indicate that it is possible to produce electrodes (on a base of by-product of coconut processing) for MFCs using a painting method; however, to achieve a performance comparable to carbon felt, the addition of activated coconut carbon is necessary. This study demonstrates the feasibility of forming a biocompatible layer on various surfaces. Incorporating activated coconut carbon does not complicate the anode fabrication process, as fine ACC grains can be directly applied to the wet carbon paint layer. Additionally, the use of carbon paint as a conductive layer for the active anode in MFCs offers versatility in designing electrodes of various shapes, enabling them to be coated with a suitable active and conductive layer to promote biofilm formation. Moreover, the findings of this study confirm that waste-derived materials can be effectively utilized as electrode components in MFC anodes. The results validate the chosen research approach and emphasize the potential for further investigations in this field, contributing to the development of cost-efficient electrodes derived from by-products for MFC applications. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 2965 KiB  
Article
NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery
by Dan Mei, Bowen Liu, Haiqing Ma, Zhaoguo Zhang, Fan Wu, Yanan Chen, Jawad Ali, Futang Xing and Liangbin Xiong
Molecules 2025, 30(6), 1219; https://doi.org/10.3390/molecules30061219 - 8 Mar 2025
Viewed by 1036
Abstract
Polysulfide-ferricyanide redox flow batteries (PFRFBs) are gaining significant attention in long-duration energy storage for their abundant availability and environmental benignity. However, the sluggish kinetics of the polysulfide redox reactions have tremendously constrained their performances. To address this issue, we developed a NiMoS catalyst-modified [...] Read more.
Polysulfide-ferricyanide redox flow batteries (PFRFBs) are gaining significant attention in long-duration energy storage for their abundant availability and environmental benignity. However, the sluggish kinetics of the polysulfide redox reactions have tremendously constrained their performances. To address this issue, we developed a NiMoS catalyst-modified carbon felt (NiMoS-CF) electrode, which significantly accelerates the electrochemical reaction rates and enhances the cycling stability of PFRFB. Our PFRFB system, integrated with the NiMoS-CF electrode, exhibited an energy efficiency of 70% and a voltage efficiency of 87%, with a remarkable doubling of its cycle life as opposed to the pristine carbon felt (CF) electrode at a current density of 40 mA cm−2. Notably, during 2500 cycles of charge–discharge testing, we achieved an average coulombic efficiency exceeding 99%. These improvements in PFRFB performance can be attributed to the NiMoS-CF electrode’s large surface area, low resistance, and robust redox activity. This study offerings a novel approach for enhancing the electrochemical reaction kinetics and cycling stability in PFRFBs, laying a scientific foundation in the applications of practical PFRFBs for next-generation energy storage. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

21 pages, 3162 KiB  
Article
Screening Refractory Dye Degradation by Different Advanced Oxidation Processes
by Imane Ouagued, Marc Cretin, Eddy Petit, Geoffroy Lesage, Abderrahmane Djafer, Abdallah Ouagued and Stella Lacour
Molecules 2025, 30(3), 712; https://doi.org/10.3390/molecules30030712 - 5 Feb 2025
Cited by 2 | Viewed by 943
Abstract
This study investigated Rhodamine B (RhB) degradation by electro-Fenton (EF), anodic oxidation (AO), and their combination (EF/AO), using a carbon felt cathode coupled to a sub-stoichiometric titanium dioxide Magnéli phase (Ti4O7) anode or a platinized titanium (Ti/Pt) anode. The [...] Read more.
This study investigated Rhodamine B (RhB) degradation by electro-Fenton (EF), anodic oxidation (AO), and their combination (EF/AO), using a carbon felt cathode coupled to a sub-stoichiometric titanium dioxide Magnéli phase (Ti4O7) anode or a platinized titanium (Ti/Pt) anode. The results indicated that operational parameters influenced the kinetics of electrochemical reactions. An increase in current density from 10 to 50 mA cm−2 significantly enhanced the RhB degradation rate; 30 mA cm−2 was the optimal current density, balancing both energy efficiency and degradation performance. Moreover, higher RhB concentrations required longer treatment. The Microtox® bioluminescence inhibition test revealed a significant toxicity decrease of the dye solution during electrochemical degradation, which was highest with EF/AO. Similarly, total organic carbon removal was highest with EF/AO (90% at pH 3), suggesting more efficient mineralization of RhB and its by-products than with EF or AO. Energy consumption remained relatively stable with all oxidation processes throughout the 480 min electrolysis period. High-resolution mass spectrometry elucidated RhB degradation pathways, highlighting chain oxidation reactions leading to the formation of intermediates and mineralization to CO2 and H2O. This study underscores the potential of EF, AO, and EF/AO as effective methods for RhB mineralization to develop sustainable and environmentally friendly wastewater treatment strategies. Full article
(This article belongs to the Special Issue Advanced Oxidation/Reduction Processes in Water Treatment)
Show Figures

Figure 1

13 pages, 7879 KiB  
Article
Treatment Performance and Characteristics of Biofilm Carriers in an Aerobic Waterwheel-Driven Rotating Biological Contactor
by Helai Cheng, Wenhua Li, Ziao Gong, Cangxiang Wen, Chong Zhang and Xiwu Lu
Water 2025, 17(3), 356; https://doi.org/10.3390/w17030356 - 27 Jan 2025
Cited by 3 | Viewed by 1278
Abstract
Rotating biological contactors (RBCs) are widely utilized in aerobic wastewater treatment due to their high stability, efficiency, and ease of maintenance. The choice of disc carrier material for biofilm formation is a critical factor influencing treatment performance. In the context of rural domestic [...] Read more.
Rotating biological contactors (RBCs) are widely utilized in aerobic wastewater treatment due to their high stability, efficiency, and ease of maintenance. The choice of disc carrier material for biofilm formation is a critical factor influencing treatment performance. In the context of rural domestic wastewater treatment, the biofilm carriers must balance cost-effectiveness and high efficiency. This study focuses on the aerobic unit of a combined anoxic denitrification–deodorization filter–aerobic RBC system, specifically, the waterwheel-driven aerobic RBC, and evaluates three types of biofilm carrier media: felt, carbon felt, and nonwoven fabric. The study compares their pollutant removal performance and biofilm enrichment characteristics to identify the optimal material. The results indicate that RBCs using nonwoven fabric as the biofilm carrier exhibit superior nitrification efficiency and biocompatibility compared to the other materials, achieving average removal rates of 84.3% for CODCr and 80.5% for ammonia nitrogen. While the addition of nonwoven fabric slightly reduced the driving efficiency of the waterwheel-driven aerobic RBC, it significantly enhanced oxygen transfer efficiency, which explained the enhanced organic degradation and ammonia nitrification. During the biofilm stable phase, the two-stage waterwheel-driven RBC with a nonwoven fabric carrier achieved average CODCr and ammonia nitrogen removal rates of 86.76 ± 0.85% and 92.15 ± 1.49%, respectively. Nonwoven fabric demonstrates significant potential as a biofilm carrier for aerobic rotating biological contactors. Full article
Show Figures

Figure 1

Back to TopTop