NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology of NiMoS-CF Electrode
2.2. Catalytic Performance of NiMoS-CF Electrode for Sulfur Ions
2.2.1. Electrochemistry Tests
2.2.2. Flow Battery Tests
3. Experimental
3.1. Materials
3.2. Preparation of NiMoS Catalyst and NiMoS-CF
3.3. Material Characterizations
3.4. Electrochemical Measurements
3.5. Electrochemical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Twitchell, J.; DeSomber, K.; Bhatnagar, D. Defining long duration energy storage. J. Energy Storage 2023, 60, 105787. [Google Scholar] [CrossRef]
- Yuan, Z.; Liang, L.; Dai, Q.; Li, T.; Song, Q.; Zhang, H.; Hou, G.; Li, X. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 2022, 6, 884–905. [Google Scholar] [CrossRef]
- Zuo, P.; Ye, C.; Jiao, Z.; Luo, J.; Fang, J.; Schubert, U.S.; McKeown, N.B.; Liu, T.L.; Yang, Z.; Xu, T. Near-frictionless ion transport within triazine framework membranes. Nature 2023, 617, 299–305. [Google Scholar] [CrossRef]
- Yang, M.; Xu, Z.; Xiang, W.; Xu, H.; Ding, M.; Li, L.; Tang, A.; Gao, R.; Zhou, G.; Jia, C. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 2022, 44, 433–440. [Google Scholar] [CrossRef]
- Xing, F.; Liu, T.; Yin, Y.; Bi, R.; Zhang, Q.; Yin, L.; Li, X. Highly Active Hollow Porous Carbon Spheres@Graphite Felt Composite Electrode for High Power Density Vanadium Flow Batteries. Adv. Funct. Mater. 2022, 32, 2111267. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, X.; Cai, Y.; Su, R.; Zhu, Q.; Zhao, T.; Jiang, H. Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 2024, 69, 103404. [Google Scholar] [CrossRef]
- Bui, T.T.; Shin, M.; Abbas, S.; Ikhsan, M.M.; Do, X.H.; Dayan, A.; Almind, M.R.; Park, S.; Aili, D.; Hjelm, J.; et al. Sulfonated para-Polybenzimidazole Membranes for Use in Vanadium Redox Flow Batteries. Adv. Energy Mater. 2024; early view. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Cheng, G.; Li, Y.; Dai, L.; Zhu, J.; Meng, W.; Xi, J.; Wang, L.; He, Z. Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery. Carbon Energy 2024, 6, e537. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Liu, C.; Jia, X.; Jian, J.; Guo, B.; Lu, S.; Qin, W.; Wang, Q.; Wu, X. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries. Angew. Chem. 2023, 135, e202304667. [Google Scholar] [CrossRef]
- Cheng, X.; Xuan, T.; Wang, L. A low-cost all-iron hybrid redox flow batteries enabled by deep eutectic solvents. Chem. Eng. J. 2024, 491, 151936. [Google Scholar] [CrossRef]
- Gao, J.; Lee, K.; Amini, K.; Gordon, R.G.; Betley, T.A.; Aziz, M.J. A Highly Soluble Iron-Based Posolyte Species with High Redox Potential for Aqueous Redox Flow Batteries. Adv. Funct. Mater. 2024, 34, 2310140. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, K.; Li, X.; Yan, C.; Liu, Q.; Tang, A. Tuning the ferrous coordination structure enables a highly reversible Fe anode for long-life all-iron flow batteries. J. Mater. Chem. A 2021, 9, 26354–26361. [Google Scholar] [CrossRef]
- Lan, J.; Li, K.; Yang, L.; Lin, Q.; Duan, J.; Zhang, S.; Wang, X.; Chen, J. Hierarchical Nano-Electrocatalytic Reactor for High Performance Polysulfides Redox Flow Batteries. ACS Nano 2023, 17, 20492–20501. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, W.; Zhang, Y.; Zhang, T.; Li, X.; Feng, Y.; Zhao, R.; Li, W.; Elzatahry, A.; Hassan, Y.; et al. An energetic K+-S aqueous battery with 96% sulfur redox utilization. Joule 2024, 8, 2033–2048. [Google Scholar] [CrossRef]
- Yan, S.; Huang, S.; Xu, H.; Li, L.; Zou, H.; Ding, M.; Jia, C.; Wang, Q. Redox Targeting-based Neutral Aqueous Flow Battery with High Energy Density and Low Cost. ChemSusChem 2023, 16, e202300710. [Google Scholar] [CrossRef]
- Sreenath, S.; Nayanthara, P.S.; Pawar, C.M.; Ash, A.; Bhatt, B.; Verma, V.; Nagarale, R.K. An aqueous polysulfide redox flow battery with a semi-fluorinated cation exchange membrane. Energy Adv. 2024, 3, 203–214. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.M.; Gómez-Coma, L.; Pérez, G.; Ortiz, A.; Ortiz, I. The roles of ionic liquids as new electrolytes in redox flow batteries. Sep. Purif. Technol. 2020, 252, 117436. [Google Scholar] [CrossRef]
- Song, X.; Wang, C.; Shen, Z.; Guo, K.; Wu, J.; Guo, Z.; Liu, X.; Zhao, Y. Solvated metal complexes for balancing stability and activity of sulfur free radicals. eScience 2023, 4, 100225. [Google Scholar] [CrossRef]
- Liang, H.; Kumar, P.; Ma, Z.; Zhao, F.; Cheng, H.; Xie, H.; Cao, Z.; Cavallo, L.; Li, Q.; Ming, J. Electrolyte Intermolecular Interaction Mediated Nonflammable Potassium-Ion Sulfur Batteries. ACS Energy Lett. 2024, 9, 3536–3546. [Google Scholar] [CrossRef]
- Shin, M.; Noh, C.; Kwon, Y. Electrolyte optimization of alkaline aqueous redox flow battery using iron-2,2-bis(hydroxymethyl)-2,2′,2′-nitrilotriethanol complex as active material for anolyte. Chem. Eng. J. 2023, 453, 139738. [Google Scholar] [CrossRef]
- Rahimi, M.; Molaei Dehkordi, A.; Roberts, E.P.L. Magnetic nanofluidic electrolyte for enhancing the performance of polysulfide/iodide redox flow batteries. Electrochim. Acta 2021, 369, 137687. [Google Scholar] [CrossRef]
- Ahmad, A.; Aldawood, T.A.; Mansha, M.; Ali, S.; Tahir, M.N.; Khan, M.; Khan, I.A.; Khan, S.A. Optimized and cost-effective elemental-sulfur sodium polysulfide/sodium bromide aqueous electrolytes for redox flow batteries. J. Power Sources 2024, 614, 235013. [Google Scholar] [CrossRef]
- Ding, M.; Fu, H.; Lou, X.; He, M.; Chen, B.; Han, Z.; Chu, S.; Lu, B.; Zhou, G.; Jia, C. A Stable and Energy-Dense Polysulfide/Permanganate Flow Battery. ACS Nano 2023, 17, 16252–16263. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.M.A.; Apfel, U.-P. Metal-Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives. Eur. J. Inorg. Chem. 2020, 2020, 2679–2690. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B.; Chen, Y.; Zhou, W.; Li, H.; Zhao, R.; Li, X.; Zhang, T.; Bu, F.; Zhao, Z.; et al. Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 2023, 10, nwac268. [Google Scholar] [CrossRef]
- Ma, D.; Hu, B.; Wu, W.; Liu, X.; Zai, J.; Shu, C.; Tadesse Tsega, T.; Chen, L.; Qian, X.; Liu, T.L. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367. [Google Scholar] [CrossRef]
- Wei, X.; Xia, G.-G.; Kirby, B.; Thomsen, E.; Li, B.; Nie, Z.; Graff, G.G.; Liu, J.; Sprenkle, V.; Wang, W. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes. J. Electrochem. Soc. 2016, 163, A5150–A5153. [Google Scholar] [CrossRef]
- Gao, M.; Huang, S.; Zhang, F.; Lee, Y.M.; Huang, S.; Wang, Q. Successive ionic layer adsorption and reaction–deposited copper sulfide electrocatalyst for high-power polysulfide-based aqueous flow batteries. Mater. Today Energy 2020, 18, 100540. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 2021, 6, 517–528. [Google Scholar] [CrossRef]
- Radich, E.J.; Dwyer, R.; Kamat, P.V. Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S2−/Sn2− at the Counter Electrode. J. Phys. Chem. Lett. 2011, 2, 2453–2460. [Google Scholar] [CrossRef]
- Astruc, D. Inorganic Electrochemistry. Theory, Practice and Application. By Piero Zanello. Angew. Chem. Int. Ed. 2004, 43, 3752–3753. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-04372-0. [Google Scholar]
- Nicholson, R.S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Uchida, Y.; Kätelhön, E.; Compton, R.G. Determination of standard electrochemical rate constants from semi-circular sweep voltammetry: A combined theoretical and experimental study. J. Electroanal. Chem. 2021, 880, 114891. [Google Scholar] [CrossRef]
- Velický, M.; Bradley, D.F.; Cooper, A.J.; Hill, E.W.; Kinloch, I.A.; Mishchenko, A.; Novoselov, K.S.; Patten, H.V.; Toth, P.S.; Valota, A.T.; et al. Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8, 10089–10100. [Google Scholar] [CrossRef] [PubMed]
- Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanalysis 2004, 16, 505–506. [Google Scholar] [CrossRef]
- Klingler, R.J.; Kochi, J.K. Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. J. Phys. Chem. 1981, 85, 1731–1741. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, Z. Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance. Nanotechnology 2022, 33, 185403. [Google Scholar] [CrossRef]
- Lou, X.; Fu, H.; Xu, J.; Long, Y.; Yan, S.; Zou, H.; Lu, B.; He, M.; Ding, M.; Zhu, X.; et al. Cost-Effective Membrane and Advanced Electrode for Stable Polysulfide-Ferricyanide Flow Battery. Energy Mater. Adv. 2022, 2022, 9865618. [Google Scholar] [CrossRef]
- Long, Y.; Xu, Z.; Wang, G.; Xu, H.; Yang, M.; Ding, M.; Yuan, D.; Yan, C.; Sun, Q.; Liu, M.; et al. A neutral polysulfide/ferricyanide redox flow battery. iScience 2021, 24, 103157. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, L.; Zhu, Q.; Huang, C.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core–shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118–18125. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, K.; Min, J.; Yang, L.; Luo, J.; Liu, J.; Lei, M.; Zhang, R.; Ren, L.; Wang, Z. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries. Ionics 2019, 25, 1487–1494. [Google Scholar] [CrossRef]
- Yang, D.; Cao, L.; Feng, L.; Huang, J.; Kajiyoshi, K.; Feng, Y.; Liu, Q.; Li, W.; Feng, L.; Hai, G. Formation of hierarchical Ni3S2 nanohorn arrays driven by in-situ generation of VS4 nanocrystals for boosting alkaline water splitting. Appl. Catal. B Environ. 2019, 257, 117911. [Google Scholar] [CrossRef]
- Liu, M.; Kong, L.; Wang, X.; He, J.; Bu, X.-H. Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient Oxygen Evolution. Small 2019, 15, 1903410. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.M.A.; Attia, M.; Tetzlaff, D.; Apfel, U.-P. Tailoring the Electrocatalytic Activity of Pentlandite FexNi9–XS8 Nanoparticles via Variation of the Fe:Ni Ratio for Enhanced Water Oxidation. ChemElectroChem 2021, 8, 3863–3874. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Y.; Li, J.; Zhang, K.; Xia, Y.; Hui, B.; Yang, D. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B Environ. 2021, 293, 120215. [Google Scholar] [CrossRef]
- Liu, C.; Jia, D.; Hao, Q.; Zheng, X.; Li, Y.; Tang, C.; Liu, H.; Zhang, J.; Zheng, X. P-Doped Iron–Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 27667–27676. [Google Scholar] [CrossRef]
- Han, W.; Liu, Z.; Pan, Y.; Guo, G.; Zou, J.; Xia, Y.; Peng, Z.; Li, W.; Dong, A. Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Adv. Mater. 2020, 32, 2002584. [Google Scholar] [CrossRef]
- Li, L.-Y.; Yan, S.; Huang, Y.-J.; Zhong, F.-F.; Cao, J.-C.; Ding, M.; Jia, C.-K. Carbon felt electrode coated with WS2 enables a high-performance polysulfide/ferricyanide flow battery. Rare Met. 2024, 43, 5039–5047. [Google Scholar] [CrossRef]
- Khan, N.A.; Rashid, N.; Junaid, M.; Zafar, M.N.; Faheem, M.; Ahmad, I. NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2019, 2, 3587–3594. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Fan, H.; Cheng, F.; Su, D.; Wang, G. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82. [Google Scholar] [CrossRef]
- Luo, P.; Sun, F.; Deng, J.; Xu, H.; Zhang, H.; Wang, Y. China Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction. Acta Phys.-Chim. Sin. 2018, 34, 1397–1404. [Google Scholar] [CrossRef]
- Yuan, S.; Li, W.; Wei, J.; Zheng, J.; Fang, W.; Yi, X.; Lai, W. Preparation of nanosheets-assembled flower-like NiMoS catalyst and its hydrodesulfurization performance. Acta Pet. Sin. Pet. Process. Sect. 2023, 39, 1349–1360. [Google Scholar]
- Wang, H.; Sayed, S.Y.; Luber, E.J.; Olsen, B.C.; Shirurkar, S.M.; Venkatakrishnan, S.; Tefashe, U.M.; Farquhar, A.K.; Smotkin, E.S.; McCreery, R.L.; et al. Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters. ACS Nano 2020, 14, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Li, M. Optimized operation method of vanadium redox flow batteries based on microgrid load response. J. Glob. Energy Interconnect. 2019, 2, 608–616. [Google Scholar] [CrossRef]
- Ma, Q. A Double-Layer Electrode for the Negative Side of Deep Eutectic Solvent Electrolyte-Based Vanadium-Iron Redox Flow Battery. Energy 2023, 265, 126291. [Google Scholar] [CrossRef]
- Mushtaq, K. In-Situ Crossover Diagnostics to Assess Membrane Efficacy for Non-Aqueous Redox Flow Battery. J. Energy Storage 2021, 40, 102713. [Google Scholar] [CrossRef]
- Jung, J. Highly Selective Composite Membranes Using Ladder-like Structured Polysilsesquioxane for a Non-Aqueous Redox Flow Battery. J. Membr. Sci. 2020, 595, 117520. [Google Scholar] [CrossRef]
- Li, Y.; Geysens, P.; Zhang, X.; Sniekers, J.; Fransaer, J.; Binnemans, K.; Vankelecom, I.F.J. Cerium-Containing Complexes for Low-Cost, Non-Aqueous Redox Flow Batteries (RFBs). J. Power Sources 2020, 450, 227634. [Google Scholar] [CrossRef]
- Zou, H.; Xu, Z.; Xiong, L.; Wang, J.; Fu, H.; Cao, J.; Ding, M.; Wang, X.; Jia, C. An Alkaline S/Fe Redox Flow Battery Endowed with High Volumetric-Capacity and Long Cycle-Life. J. Power Sources 2024, 591, 233856. [Google Scholar] [CrossRef]
Electrodes | Pristine CF | NiMoS-CF |
---|---|---|
D/(cm2 s−1) | 9.42 × 10−5 | 1.597 × 10−4 |
k0/(cm s−1) | 1.3 × 10−3 | 1.2 × 10−3 |
Cdl/(mF cm−2) | 6.44 | 7.02 |
ECSA/cm2 | 362.25 | 394.875 |
Tafel Slope/(mV dec−1) | 153.1 | 48.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, D.; Liu, B.; Ma, H.; Zhang, Z.; Wu, F.; Chen, Y.; Ali, J.; Xing, F.; Xiong, L. NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery. Molecules 2025, 30, 1219. https://doi.org/10.3390/molecules30061219
Mei D, Liu B, Ma H, Zhang Z, Wu F, Chen Y, Ali J, Xing F, Xiong L. NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery. Molecules. 2025; 30(6):1219. https://doi.org/10.3390/molecules30061219
Chicago/Turabian StyleMei, Dan, Bowen Liu, Haiqing Ma, Zhaoguo Zhang, Fan Wu, Yanan Chen, Jawad Ali, Futang Xing, and Liangbin Xiong. 2025. "NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery" Molecules 30, no. 6: 1219. https://doi.org/10.3390/molecules30061219
APA StyleMei, D., Liu, B., Ma, H., Zhang, Z., Wu, F., Chen, Y., Ali, J., Xing, F., & Xiong, L. (2025). NiMoS-Modified Carbon Felt Electrode for Improved Efficiency and Stability in a Neutral S/Fe Redox Flow Battery. Molecules, 30(6), 1219. https://doi.org/10.3390/molecules30061219