Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = Campylobacter jejuni infections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1573 KB  
Article
Determinants of Entero-Invasive and Non-Entero-Invasive Diarrheagenic Bacteria Among HIV-Positive and HIV-Negative Adults in Ghana
by Hagen Frickmann, Fred Stephen Sarfo, Betty Roberta Norman, Albert Dompreh, Shadrack Osei Asibey, Richard Boateng, Veronica Di Cristanziano, Tafese Beyene Tufa, Ulrike Loderstädt, Ramona Binder, Andreas Erich Zautner, Tom Luedde, Torsten Feldt and Kirsten Alexandra Eberhardt
Med. Sci. 2025, 13(4), 316; https://doi.org/10.3390/medsci13040316 - 12 Dec 2025
Viewed by 263
Abstract
Objectives: This observational and cross-sectional study investigated differential associations between entero-invasive and non-entero-invasive enteric pathogens and HIV infection, considering socioeconomic, clinical and immunological aspects. In a Ghanaian population with a high prevalence of enteric pathogens, stool samples from people living with HIV (PLWH) [...] Read more.
Objectives: This observational and cross-sectional study investigated differential associations between entero-invasive and non-entero-invasive enteric pathogens and HIV infection, considering socioeconomic, clinical and immunological aspects. In a Ghanaian population with a high prevalence of enteric pathogens, stool samples from people living with HIV (PLWH) were screened for Salmonella spp., Shigella spp./EIEC (enteroinvasive Escherichia coli), and Campylobacter jejuni as entero-invasive bacteria, for enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC) as non-entero-invasive bacteria. Arcobacter butzleri, with uncertain enteropathogenicity, was also included. Methods: Stool samples from PLWH (with and without antiretroviral therapy) and HIV-negative controls were analyzed by real-time PCR for the presence and quantity of the selected enteropathogens. Results were correlated with socioeconomic, clinical, and immunological parameters. Results: The presence of Shigella spp. /EIEC in stool was both qualitatively and quantitatively associated with reduced CD4+ T lymphocyte counts and was qualitatively associated with clinically apparent diarrhea. EAEC showed a weak positive association with HIV infection, supported by a negative correlation between EAEC DNA quantity and CD4+ T lymphocyte counts. EPEC colonization was associated with HIV negativity, higher CD4+ T lymphocyte counts, and lower socioeconomic status. Abundance of Salmonella enterica was associated with clinically apparent diarrhea. Conclusions: This explorative, hypothesis-forming study suggests species- or pathovar-specific associations between enteric bacterial pathogens and HIV-related immunosuppression. Observed relationships with clinically apparent diarrhea largely align with findings from sub-Saharan African children, except for a more pronounced association between diarrhea and Salmonella in this cohort. Full article
Show Figures

Figure 1

15 pages, 1952 KB  
Article
Epithelial–Macrophage Crosstalk in Host Responses to Campylobacter jejuni Infection in Humans
by Khaled Abdelaziz, Shreeya Sharma, Mostafa Naguib and Alexis Stamatikos
Microorganisms 2025, 13(12), 2808; https://doi.org/10.3390/microorganisms13122808 - 10 Dec 2025
Viewed by 327
Abstract
Interactions between Campylobacter jejuni and host immune cells have been studied using various single-cell line models, such as macrophages and intestinal epithelial cells; however, these single-cell approaches do not fully capture the complexity of the host response. Investigating the interactions between these cell [...] Read more.
Interactions between Campylobacter jejuni and host immune cells have been studied using various single-cell line models, such as macrophages and intestinal epithelial cells; however, these single-cell approaches do not fully capture the complexity of the host response. Investigating the interactions between these cell types offers a more comprehensive model for understanding Campylobacter–host dynamics. Therefore, this study aimed to investigate these interactions, specifically between intestinal epithelial cells and macrophages, using an in vitro model of C. jejuni infection. We examined whether soluble factors secreted from C. jejuni-infected HT-29 cells (human colorectal adenocarcinoma cells that express characteristics of mature intestinal cells) at 10 and 50 multiplicities of infection (MOI) influence RAW 264.7 macrophage activity, including nitric oxide (NO) production, migration, phagocytosis, bacterial killing, and the expression of cytokines (IL-6, IL-1β, TNF-α) and the chemokine CCL2. C. jejuni infection of HT-29 cells at 10 MOI induced significant IFN-γ production, a key macrophage activator. The treatment of macrophages with supernatants from HT-29 cells infected with C. jejuni significantly increased NO production, enhanced migration and phagocytic activity, and increased IL-6, TNF-α and CCL2 gene expression. However, no significant killing of phagocytosed C. jejuni was observed. On the other hand, supernatants from HT-29 cells infected with 50 MOI of C. jejuni suppressed NO production and macrophage phagocytosis, which may explain individual variations in the immune system’s ability to contain infection, potentially influenced by the infectious dose. These findings support the notion that Campylobacter can evade macrophage killing even under activated conditions. Further studies are needed to elucidate the molecular mechanisms by which Campylobacter survives within activated macrophages. Full article
(This article belongs to the Special Issue Breaking Barriers: The Breakdown of Epithelial Defenses by Pathogens)
Show Figures

Figure 1

15 pages, 793 KB  
Article
Raw Milk as a Source of Campylobacter Infection: Isolation and Molecular Identification of Campylobacter coli and Campylobacter jejuni in Ecuador
by Andrea Padilla-Cerda, Anthony Loor-Giler, Byron Puga-Torres, Silvana Santander-Parra and Luis Núñez
Pathogens 2025, 14(11), 1155; https://doi.org/10.3390/pathogens14111155 - 13 Nov 2025
Viewed by 689
Abstract
The consumption of raw milk has been demonstrated to carry a potential risk of transmission of Campylobacter spp., with Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli) being the major causes for foodborne gastroenteritis cases. The present study assessed the prevalence and [...] Read more.
The consumption of raw milk has been demonstrated to carry a potential risk of transmission of Campylobacter spp., with Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli) being the major causes for foodborne gastroenteritis cases. The present study assessed the prevalence and species distribution of Campylobacter spp. in 633 raw milk samples collected over a one-year climatic cycle from small, medium, and large producers in Pichincha and Manabí, Ecuador. Samples were augmented and analyzed by qPCR for Campylobacter spp., while species identification was performed by duplex PCR and confirmed by 16S rDNA sequencing. The average prevalence of Campylobacter spp. was 49.9% (316/633), with a higher detection rate in Manabí (57.6%, 182/316) compared to Pichincha (42.4%, 134/316). C. coli was the most prevalent species, accounting for 46.2% (146/316) of the cases, followed by C. jejuni at 23.1% (73/316), co-contaminations at 13.3% (42/316), and non-identified Campylobacter at 44.0% (139/316). Phylogenetic analysis was employed to confirm species identity, thereby confirming the presence of Campylobacter fetus and Campylobacter lari. The increased diversity and frequency of isolates in Manabí, particularly during periods of elevated temperature, imply that coastal environmental conditions and production practices promote the persistence of bacteria. The findings of this study indicate a high prevalence of Campylobacter in Ecuadorian raw milk, posing a significant health risk to the population and underscoring the need for enhanced hygiene practices and continuous monitoring to mitigate public health risks. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

26 pages, 5166 KB  
Article
Impact of Isoquinoline Alkaloids on the Intestinal Barrier in a Colonic Model of Campylobacter jejuni Infection
by Anna Duda-Madej, Przemysław Gagat, Jerzy Wiśniewski, Szymon Viscardi and Paweł Krzyżek
Int. J. Mol. Sci. 2025, 26(21), 10634; https://doi.org/10.3390/ijms262110634 - 31 Oct 2025
Cited by 2 | Viewed by 431
Abstract
Phytotherapy is a growing field of modern medicine, offering natural alternatives with multidirectional pharmacological effects. Among plant-derived bioactive compounds, isoquinoline alkaloids exhibit antioxidant, anti-inflammatory, and antimicrobial properties. Our in vitro model of campylobacteriosis confirmed that berberine reduces pathological changes in colonocytes not only [...] Read more.
Phytotherapy is a growing field of modern medicine, offering natural alternatives with multidirectional pharmacological effects. Among plant-derived bioactive compounds, isoquinoline alkaloids exhibit antioxidant, anti-inflammatory, and antimicrobial properties. Our in vitro model of campylobacteriosis confirmed that berberine reduces pathological changes in colonocytes not only through its direct antibacterial (minimum inhibitory concentration for pure berberine against Campylobacter jejuni was 64 μg/mL) and anti-biofilm (fourfold reduction in C. jejuni biomass) effects, but also through its protective effect on the morphostructure and secretory profile of host cells exposed to bacterial components. Furthermore, berberine stabilized intercellular junction proteins, modulated bile acid and arachidonic acid metabolism, and supported host-protective signaling pathways. These findings indicate that berberine acts through a dual mechanism—directly reducing bacterial virulence while enhancing intestinal barrier integrity and metabolic homeostasis. In summary, berberine appears to be a multifunctional phytochemical in the development of new strategies for the prevention and treatment of C. jejuni-induced gastrointestinal infections and epithelial barrier dysfunctions. The protective effect we have demonstrated may contribute to alleviating the phenomenon of “leaky gut,” commonly associated with campylobacteriosis. Full article
(This article belongs to the Special Issue Intestinal Diseases and Gut Microbiota)
Show Figures

Figure 1

20 pages, 2429 KB  
Review
The Growing Antibiotic Resistance of Campylobacter Species: Is There Any Link with Climate Change?
by Eleni V. Geladari, Dimitris Kounatidis, Evangelia Margellou, Apostolos Evangelopoulos, Edison Jahaj, Andreas Adamou, Vassilios Sevastianos, Charalampia V. Geladari and Natalia G. Vallianou
Microbiol. Res. 2025, 16(11), 226; https://doi.org/10.3390/microbiolres16110226 - 22 Oct 2025
Viewed by 1234
Abstract
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct [...] Read more.
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct contact with animals, emphasizing its zoonotic potential. Campylobacterisosis does not usually require hospitalization. Antimicrobials are warranted only for patients with severe disease, as well as patients who are at risk for severe disease, such as the elderly, pregnant women or immunocompromised patients. Nonetheless, the irrational use of antibiotics in human and veterinary medicine enhances antimicrobial resistance (AMR). Resistance of Campylobacter spp. to fluoroquinolones, macrolides and tetracyclines is a significant concern to the scientific community. Point mutations, horizontal gene transfer and efflux pumps are the main mechanisms for the development and transmission of AMR in Campylobacter spp. Emerging evidence suggests that climate change may indirectly contribute to the spread of AMR in Campylobacter, particularly through its influence on bacterial ecology, transmission pathways and antibiotic use patterns. Higher temperatures and extreme weather events accelerate bacterial growth, amplify the transfer of AMR genes and magnify disease transmission, including drug-resistant infections. Horizontal gene transfer, especially in the context of biofilm formation, may further perplex the situation. Excessive farming and overuse of antibiotics as growth promoters in animals may also contribute to increased AMR rates. Climate change and AMR are interconnected and pose a significant threat to global public health. Multidisciplinary strategies mitigating both phenomena are crucial in order to contain the spread of Campylobacter-related AMR. The aim of this review is to describe the molecular mechanisms that result in AMR of Campylobacter spp. and underscore the association between climate change and Campylobacteriosis. Novel methods to mitigate Campylobacter-related AMR will also be discussed. Full article
Show Figures

Figure 1

10 pages, 506 KB  
Brief Report
Antimicrobial Susceptibility of Campylobacter spp. Isolated from Cattle in Mongolia
by Erdenebat Bulgan, Zolzaya Byambajav, Batsukh Naranchimeg, Batsaikhan Chantsal, Tsognemekh Bolormaa, Badrakh Sandagdorj, Purevdorj Nyam-Osor, Eisaku Kikuchi, Akio Suzuki, Jirachaya Toyting-Hiraishi, Toyotaka Sato and Motohiro Horiuchi
Vet. Sci. 2025, 12(10), 931; https://doi.org/10.3390/vetsci12100931 - 24 Sep 2025
Viewed by 716
Abstract
Poultry and cattle are the major reservoirs of Campylobacter infection in humans. However, no information is available on Campylobacter spp. in cattle in Mongolia. Thus, this study aimed to assess their prevalence and antimicrobial resistance. Between 2019 and 2023, rectal swabs were collected [...] Read more.
Poultry and cattle are the major reservoirs of Campylobacter infection in humans. However, no information is available on Campylobacter spp. in cattle in Mongolia. Thus, this study aimed to assess their prevalence and antimicrobial resistance. Between 2019 and 2023, rectal swabs were collected from cattle on dairy farms around Ulaanbaatar city and in total, 35 Campylobacter spp., including 23 C. jejuni, 7 C. hyointestinalis, 4 C. fetus, and 1 C. lari, were isolated. Multilocus sequence typing of C. jejuni cattle isolates revealed substantial genetic diversity and identified 7 sequence types (STs) including ST61, which is known to be associated with cattle and sheep. Interestingly, the antimicrobial resistance patterns of the C. jejuni cattle isolates completely differed from those of previously reported chicken isolates. Excluding one ciprofloxacin-resistant isolate, all isolates were susceptible to tetracycline and ciprofloxacin. This is the first report on the characterization of Campylobacter spp. in cattle in Mongolia. Although no official statistics of human campylobacteriosis are currently available in Mongolia, data on Campylobacter spp. in food-producing animals represent valuable information for investigating potential sources and infection routes to humans. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

16 pages, 1442 KB  
Article
Comparative Virulence Gene Profiling of Campylobacter jejuni and Campylobacter coli Isolates from Avian and Human Sources in Egypt
by Amr Mekky, Mohamed R. Issa, Amro Hashish, Wafaa Hassan, Ali Wahdan, Islam Hisham, Shymaa Enany and Mohamed Enany
Microbiol. Res. 2025, 16(9), 209; https://doi.org/10.3390/microbiolres16090209 - 18 Sep 2025
Viewed by 1201
Abstract
Campylobacter species are considered to be the leading bacterial cause of human gastroenteritis globally. Consumption of undercooked or contaminated food, such as chicken, is the main cause of human campylobacteriosis. Despite this significant zoonotic link, comparative data on virulence determinants in Campylobacter isolates [...] Read more.
Campylobacter species are considered to be the leading bacterial cause of human gastroenteritis globally. Consumption of undercooked or contaminated food, such as chicken, is the main cause of human campylobacteriosis. Despite this significant zoonotic link, comparative data on virulence determinants in Campylobacter isolates across avian and human sources remain limited. This study aimed to characterize the prevalence and expression of virulence determinants in Campylobacter jejuni and Campylobacter coli isolates from chicken and human sources in Ismailia governorate, Egypt. A total of twenty C. jejuni and C. coli isolates (ten of each species) were screened for 14 virulence genes using PCR. All isolates harbored virB11, iam, racR, and tetO. Chicken isolates exhibited a significantly higher prevalence: C. jejuni (chicken): pldA, dnaJ, flaA (100%), cdtB (80%), ciaB (60%), and wlaN (0%); C. coli (chicken): pldA, dnaJ (100%), flaA (60%), cdtB (60%), ciaB (40%), and wlaN (20%). In contrast, human isolates showed a markedly lower prevalence: C. jejuni (human): dnaJ, flaA, and cdtB (20%); C. coli (human): dnaJ, flaA, and cdtB (40%). Crucially, pldA, ciaB, and wlaN were absent in all human isolates. plda and dnaJ genes showed statistically significant prevalence differences. qPCR revealed a significant upregulation (p < 0.05) of dnaJ, virB11, flaA, and iam in chicken isolates compared to human isolates, with log2 fold changes of 3.52, 2.84, 2.43, and 1.90 for C. jejuni and 3.06, 2.38, 1.51, and 1.32 for C. coli. Differential expressions of racR, cdtB, and tetO were not significant, with log2 fold changes ranging from −0.51 to 0.14. Ganglioside mimicry genes (Cst11, wlaN, Waac, ggt, and cgtB) and the carbon storage regulator gene (csrA) were absent in all human isolates. These findings underscore the significant variability in virulence gene profiles in chicken and human C. jejuni and C. coli isolates and highlight the importance of molecular characterization in the risk assessment and epidemiological surveillance of Campylobacter infections. Full article
Show Figures

Figure 1

15 pages, 957 KB  
Article
Campylobacter Colonisation of Poultry Slaughtered at Nigerian Slaughterhouses: Prevalence, Antimicrobial Resistance, and Risk of Zoonotic Transmission
by Emmanuel O. Njoga, Philip P. Mshelbwala, Akwoba J. Ogugua, Excel C. Enemuo-Edo, Onyinye S. Onwumere-Idolor, Temitope M. Ogunniran, Sunday N. Bernard, Joel C. Ugwunwarua, Ebube C. Anidobe, Chinwe E. Okoli, Enid Godwin, Simon I. Enem and James W. Oguttu
Trop. Med. Infect. Dis. 2025, 10(9), 265; https://doi.org/10.3390/tropicalmed10090265 - 17 Sep 2025
Cited by 1 | Viewed by 1537
Abstract
Zoonotic Campylobacter species (ZCS), particularly C. jejuni and C. coli, cause major foodborne gastroenteritis and poultry is the principal reservoirs. However, there is limited data on Campylobacter transmission risk practices and antimicrobial resistance (AMR) in Nigeria. Therefore, this study determined the prevalence, [...] Read more.
Zoonotic Campylobacter species (ZCS), particularly C. jejuni and C. coli, cause major foodborne gastroenteritis and poultry is the principal reservoirs. However, there is limited data on Campylobacter transmission risk practices and antimicrobial resistance (AMR) in Nigeria. Therefore, this study determined the prevalence, AMR, and risk practices aiding Campylobacter transmission in two major slaughterhouses processing poultry carcasses in Enugu State, Nigeria. Four hundred poultry faecal samples were analysed for zoonotic Campylobacter organisms using standard protocols. Antimicrobial resistance was profiled via Kirby–Bauer disk diffusion technique, against eight antimicrobial agents. Risk practices were assessed through slaughterhouse observations and interviews with 56 workers. The overall prevalence of Campylobacter infections was 14.5% (58/400), while the species-specific prevalence were 13% (52/400) and 1.5% (6/400) for C. coli and C. jejuni, respectively. Campylobacter colonisation was significantly higher (p < 0.05) in broilers, and during the wet season. The AMR profile of the isolates against the eight antibiotics tested was: Amoxicillin/clauvlanic acid (100%), vancomycin (100%), tetracycline (96.6%), ciprofloxacin (55.2%), chloramphenicol (44.8%), ceftazidime (10.3%), azithromycin (3.4%) and streptomycin (3.4%). All the 58 Campylobacter isolates were multidrug-resistant. The multiple antibiotic resistance indices ranged from 0.4 to 0.9, with a mean of 0.7. Major risk practice associated with ZCS transmission include non-use of personal protective equipment (100%), slaughtering on unsanitary surfaces (100%), using visibly unclean water for meat processing (100%), improper manual evisceration (75%), eating or drinking during processing (64.4%), slaughtering sick animals (37.5%), inadequate cleaning of surfaces and equipment after use (21.4%) and consuming raw meat during carcass processing (19.6%). The findings reflect critical gaps in food safety, occupational health, prudent antimicrobial use in poultry farming and zoonotic disease control, emphasizing the need for antibiotic regulation, training on hygienic meat processing, public education, infrastructural development of slaughterhouse facilities, and inter-sectorial collaboration to curb Campylobacter contamination and spread of antimicrobial resistance. Full article
Show Figures

Figure 1

13 pages, 748 KB  
Article
Characterization of Antimicrobial Resistance in Campylobacter Species from Broiler Chicken Litter
by Tam T. Tran, Sylvia Checkley, Niamh Caffrey, Chunu Mainali, Sheryl Gow, Agnes Agunos and Karen Liljebjelke
Antibiotics 2025, 14(8), 759; https://doi.org/10.3390/antibiotics14080759 - 28 Jul 2025
Viewed by 1136
Abstract
Background/Objectives: Campylobacteriosis in human populations is an ongoing issue in both developed and developing countries. Poultry production is recognized as a reservoir for antimicrobial resistance and main source of human Campylobacter infection. Methods: In this study, sixty-five Campylobacter isolates were cultured from [...] Read more.
Background/Objectives: Campylobacteriosis in human populations is an ongoing issue in both developed and developing countries. Poultry production is recognized as a reservoir for antimicrobial resistance and main source of human Campylobacter infection. Methods: In this study, sixty-five Campylobacter isolates were cultured from fecal samples collected from 17 flocks of broiler chickens in Alberta, Canada over two years (2015–2016). Susceptibility assays and PCR assays were performed to characterize resistance phenotypes and resistance genes. Conjugation assays were used to examine the mobility of AMR phenotypes. Results: Campylobacter jejuni was the predominant species recovered during both years of sampling. There were no Campylobacter coli isolates found in 2015; however, approximately 33% (8/24) of isolates collected in 2016 were Campylobacter coli. The two most frequent antimicrobial resistance patterns in C. jejuni collected in 2015 were tetracycline (39%) and azithromycin/clindamycin/erythromycin/telithromycin resistance (29%). One isolate collected in 2015 has resistance pattern ciprofloxacin/nalidixic acid/tetracycline. The tetO gene was detected in all tetracycline resistant isolates from 2015. The cmeB gene was detected in all species isolates with resistance to azithromycin/clindamycin/erythromycin/telithromycin, and from two isolates with tetracycline resistance. Alignment of the nucleotide sequences of the cmeB gene from C. jejuni isolates with different resistance patterns revealed several single nucleotide polymorphisms. A variety of multi-drug resistance patterns were observed through conjugation experiments. Conclusions: These data suggest that poultry production may serve as a potential reservoir for and source of transmission of multi-drug resistant Campylobacter jejuni and supports the need for continued surveillance. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

12 pages, 4562 KB  
Article
Human Gliomedin and Ryanodine 3 Type Receptor Is the Key to Explain the Guillain Barre Syndrome in SARS-CoV-2 and Others Bacterial Related to SARS-CoV-2 Postinfection? A Molecular Mimicry Point of View
by Gustavo Alberto Obando-Pereda and Luis Alberto Ponce-Soto
Immuno 2025, 5(3), 28; https://doi.org/10.3390/immuno5030028 - 17 Jul 2025
Viewed by 1285
Abstract
Guillain-Barre syndrome is an autoimmune disease that provokes neural illness causing acute paralysis neuropathy. This syndrome appears after some bacterial infections produced by Campylobacter jejuni, Streptococcus pyogenes, S. pneumoniae, Haemophilus influenciae, E. coli and current studies showed the appears [...] Read more.
Guillain-Barre syndrome is an autoimmune disease that provokes neural illness causing acute paralysis neuropathy. This syndrome appears after some bacterial infections produced by Campylobacter jejuni, Streptococcus pyogenes, S. pneumoniae, Haemophilus influenciae, E. coli and current studies showed the appears of this syndrome after SARS-CoV-2 infection. In this study, a in silico analysis was carry out in which to determinate bacterial epitopes than produce the molecule mimicry phenomena and that can produce the immune system activation against this epitope. A conserved amino acid sequence has been encountered with the highest probability to activate the immune system against this bacterial epitope, human gliomedin and ryanodine 3 type receptor. More studies needed to demonstrate in vivo the molecular mimicry in Guillain-Barre syndrome patients. Full article
(This article belongs to the Section Immunopathology and Immunohistology)
Show Figures

Graphical abstract

30 pages, 2637 KB  
Review
Can Nature Overcome Invasive Gastrointestinal Infections?
by Anna Duda-Madej, Szymon Viscardi, Jakub Stecko, Natalia Szymańska, Ewa Topola, Katarzyna Pacyga and Marta Szandruk-Bender
Int. J. Mol. Sci. 2025, 26(12), 5795; https://doi.org/10.3390/ijms26125795 - 17 Jun 2025
Cited by 2 | Viewed by 1763
Abstract
Invasive bacterial gastrointestinal infections represent a substantial clinical burden worldwide, contributing to significant morbidity and, in severe cases, mortality. The causative bacterial agents of these infections include Shigella spp., enteroinvasive Escherichia coli, Salmonella spp., Campylobacter jejuni, Yersinia enterocolitica, and Listeria [...] Read more.
Invasive bacterial gastrointestinal infections represent a substantial clinical burden worldwide, contributing to significant morbidity and, in severe cases, mortality. The causative bacterial agents of these infections include Shigella spp., enteroinvasive Escherichia coli, Salmonella spp., Campylobacter jejuni, Yersinia enterocolitica, and Listeria monocytogenes. Given the growing challenges of therapy failures and rising antibiotic resistance, there is still an unmet need to identify novel, effective, and safe compounds exhibiting antimicrobial, anti-inflammatory, and immunomodulatory activities. In the present review, we aimed to compile current data regarding three alkaloids—berberine, sanguinarine, and cheleritrin—which hold significant promise in treating bacterial invasive gastrointestinal diseases. Our review extended beyond the direct antimicrobial properties of these compounds against pathogens capable of breaching the intestinal epithelial barrier. We also presented their modulatory effects on intestinal barrier integrity and their influence on the composition and function of the resident gut microbiota, thereby highlighting their potential indirect role in attenuating pathogen invasion and disease progression. Thus, our review presents alkaloids as potential preparations that potentiate the activity of classic anti-infective drugs, as well as substances that, by affecting the microbiome and intestinal mucosa, could be used for inflammatory bowel diseases. Full article
Show Figures

Figure 1

14 pages, 600 KB  
Case Report
Emergence of Multidrug-Resistant Campylobacter jejuni in a Common Variable Immunodeficiency Patient: Evolution of Resistance Under the Selective Antibiotic Pressure
by Tajana Juzbašić, Nataša Andrijašević, Ivana Ferenčak, Dragan Jurić, Silvija Šoprek, Vlatka Poje Janeš, Ljiljana Žmak, Arjana Tambić Andrašević and Ana Gverić Grginić
Trop. Med. Infect. Dis. 2025, 10(6), 165; https://doi.org/10.3390/tropicalmed10060165 - 12 Jun 2025
Cited by 1 | Viewed by 988
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide which usually presents as mild, and self-limiting disease in immunocompetent individuals. However, in immunocompromised patients, such as those with common variable immunodeficiency, C. jejuni can cause severe recurrent infections requiring antibiotic treatment. Our [...] Read more.
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide which usually presents as mild, and self-limiting disease in immunocompetent individuals. However, in immunocompromised patients, such as those with common variable immunodeficiency, C. jejuni can cause severe recurrent infections requiring antibiotic treatment. Our study reports a case of a 37-year-old male patient with CVID, who had multiple episodes of C. jejuni intestinal infections over a 3.5-year period. A total of 27 stool samples were collected and analyzed between December 2020 and July 2024 during acute febrile diarrheal episodes, with C. jejuni isolated in 15 samples. Antimicrobial susceptibility testing (AST) during the course of the disease revealed three different antimicrobial resistance profiles including multi-drug-resistant phenotype. Whole genome sequencing was performed on three representative isolates, all identified as MLST type 367, ST-257 complex, with minimal genetic divergence, indicating a clonal origin. Genes and point mutations conferring resistance to macrolides, fluoroquinolones, beta-lactams, and tetracycline were identified in different C. jejuni isolates, along with key virulence factors linked to adherence, invasion, motility, and immune evasion. The genetic analysis of macrolide phenotypic resistance revealed different resistance mechanisms. Genotypic and phenotypic analyses of the same C. jejuni clone from single patient, and identified multidrug resistance pattern, present the first documented case of in vivo resistance development of C. jejuni in Croatia. This case highlights the role of prolonged antibiotic pressure in driving resistance evolution and underscores the need for careful antimicrobial stewardship and genomic monitoring in immunocompromised patients. Further research is needed to correlate phenotypic resistance with genetic determinants in Campylobacter spp. Full article
Show Figures

Figure 1

17 pages, 2925 KB  
Article
Shigella Mutant with Truncated O-Antigen as an Enteric Multi-Pathogen Vaccine Platform
by Jae-Ouk Kim, Harald Nothaft, Younghye Moon, Seonghun Jeong, Anthony R. Vortherms, Manki Song, Christine M. Szymanski, Jessica White and Richard Walker
Vaccines 2025, 13(5), 506; https://doi.org/10.3390/vaccines13050506 - 10 May 2025
Viewed by 1280
Abstract
Background/Objectives: Rising antibiotic resistance underscores the urgent need for effective vaccines against shigellosis. Our previous research identified the Shigella flexneri 2a truncated mutant (STM), a wzy gene knock-out strain cultivated in shake-flasks, as a promising broadly protective Shigella vaccine candidate. Expanding on [...] Read more.
Background/Objectives: Rising antibiotic resistance underscores the urgent need for effective vaccines against shigellosis. Our previous research identified the Shigella flexneri 2a truncated mutant (STM), a wzy gene knock-out strain cultivated in shake-flasks, as a promising broadly protective Shigella vaccine candidate. Expanding on this finding, our current study explores the feasibility of transitioning to a fermentor-grown STM as a vaccine candidate for further clinical development. Methods: The STM and STM-Cj, engineered to express the conserved Campylobacter jejuni N-glycan antigen, were grown in animal-free media, inactivated with formalin, and evaluated for key antigen retention and immunogenicity in mice. Results: The fermentor-grown STM exhibited significantly increased production yields and retained key antigens after inactivation. Immunization with the STM, particularly along with the double-mutant labile toxin (dmLT) adjuvant, induced robust immune responses to the conserved proteins IpaB, IpaC, and PSSP-1. Additionally, it provided protection against homologous and heterologous Shigella challenges in a mouse pulmonary model. The STM-Cj vaccine elicited antibody responses specific to the N-glycan while maintaining protective immune responses against Shigella. These findings underscore the potential of the fermentor-grown STM as a safe and immunogenic vaccine platform for combating shigellosis and possibly other gastrointestinal bacterial infections. Conclusions: Further process development to optimize growth and key antigen expression as well as expanded testing in additional animal models for the assessment of protection against Shigella and Campylobacter are needed to build on these encouraging initial results. Ultimately, clinical trials are essential to evaluate the efficacy and safety of STM-based vaccines in humans. Full article
(This article belongs to the Special Issue Recent Scientific Advances in Vaccines for Shigella)
Show Figures

Figure 1

20 pages, 26086 KB  
Article
Effects of Fucoidan and Fucoidan Oligosaccharides in Growth and Quorum Sensing Mediated Virulence Factor of Campylobacter Jejuni
by Sharon Palafox Félix, Giovanna Sandoval Larios, Rosina Cabrera, Alfonso García-Galaz, José Ángel Huerta-Ocampo, Ana María Guzmán-Partida, Rosa Idalia Armenta Corral, Jose Andrei Sarabia-Sainz and Gabriela Ramos Clamont Montfort
Polysaccharides 2025, 6(2), 24; https://doi.org/10.3390/polysaccharides6020024 - 27 Mar 2025
Cited by 3 | Viewed by 1623
Abstract
Fucoidan is a sulfated fucan marine polysaccharide with potential therapeutic applications, including antibacterial activity and the control of virulence factors associated with quorum sensing. This study investigates the bioactivity of fucoidan derived from the brown algae Ascophyllum nodosum, as well as their [...] Read more.
Fucoidan is a sulfated fucan marine polysaccharide with potential therapeutic applications, including antibacterial activity and the control of virulence factors associated with quorum sensing. This study investigates the bioactivity of fucoidan derived from the brown algae Ascophyllum nodosum, as well as their fucoidan oligosaccharides (OFuc; <3 kDa), on the growth, motility, biofilm formation, and adhesion of Campylobacter jejuni, the leading cause of bacterial gastroenteritis worldwide. The results showed that fucoidan decreased the growth rate of C. jejuni at concentrations greater than 25 µg/mL, while no effect was observed with different concentrations (5–100 µg/mL) of OFuc. Neither compound affected bacterial motility. Both fucoidan and OFuc inhibited abiotic biofilm formation and diminished pathogen adhesion in a concentration-dependent manner. The study also found that C. jejuni recognized the fucoidan molecule through an enzyme-like lectin assay (ELLA) showing a lectin-like adhesin-carbohydrate recognition. Overall, these results suggest the potential of fucoidan from A. nodosum for controlling abiotic biofilm formation in the food industry, and they open new avenues for research into the use of fucoidan as a molecule aimed at blocking infections caused by C. jejuni. Full article
Show Figures

Graphical abstract

12 pages, 3835 KB  
Article
Monitoring of Pathogens Carried by Imported Flies and Cockroaches at Shenzhen Ports
by Siqi Zhang, Chunzhong Zhao, Guoping Liu, Liwei Guo, Ran Zhang, Junyu Yan, Jianan He and Cheng Guo
Trop. Med. Infect. Dis. 2025, 10(2), 57; https://doi.org/10.3390/tropicalmed10020057 - 17 Feb 2025
Viewed by 2204
Abstract
This study tested the efficacy of xenomonitoring using contaminated flies and cockroaches at ports in Shenzhen by analysing sample data from imported flies and cockroaches from October 2023 to April 2024 to identify the pathogens they carried. Among all the samples of flies [...] Read more.
This study tested the efficacy of xenomonitoring using contaminated flies and cockroaches at ports in Shenzhen by analysing sample data from imported flies and cockroaches from October 2023 to April 2024 to identify the pathogens they carried. Among all the samples of flies and cockroaches collected, Musca domestica vicina and Blattella germanica accounted for the highest proportion, 27.59% and 66.47%, respectively. Their positive rates for carrying Staphylococcus aureus were also the most significant, reaching 4.35% and 6.47%, respectively. The imported flies and cockroaches mainly came from Asia, with the highest proportion coming from Hong Kong, at 97.71% and 92.11%, respectively. Metagenomic sequencing indicated that the pathogens carried by the flies and cockroaches from different regions of Asia were generally similar but showed some differences. Flies from Southeast Asia, East Asia, South Asia, and West Asia and cockroaches from Southeast Asia, East Asia, and West Asia harboured unique opportunistic pathogens capable of causing gastrointestinal and respiratory infections in humans. Specifically, flies carried pathogens such as Campylobacter jejuni, Bacillus anthracis, Bacteroides fragilis, and Bordetella bronchiseptica, while cockroaches carried B. fragilis, Clostridium tetani, and Bacillus cereus. Our findings provide data support for future risk assessments of pathogens carried by imported vectors. Full article
Show Figures

Figure 1

Back to TopTop