Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = Cable3D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 378 KB  
Article
An Exploratory Study of Biceps Brachii Electromyographic Activity During Traditional Dumbbell Versus Bayesian Cable Curls
by Koulla Parpa, Antreas Vasiliou, Marcos Michaelides, Karuppasamy Govindasamy, Anton Chernov and Konstantina Intziegianni
Muscles 2025, 4(4), 45; https://doi.org/10.3390/muscles4040045 - 13 Oct 2025
Viewed by 666
Abstract
Although previous studies have examined various factors that influence biceps brachii activation, such as grip position, load, and exercise variation, to our knowledge, no prior studies have compared muscle activation during a traditional biceps curl and a Bayesian cable curl. Therefore, this study [...] Read more.
Although previous studies have examined various factors that influence biceps brachii activation, such as grip position, load, and exercise variation, to our knowledge, no prior studies have compared muscle activation during a traditional biceps curl and a Bayesian cable curl. Therefore, this study aimed to examine the differences in biceps brachii muscle activation between these two training modalities. Data from eleven volunteers (age: 25 ± 6 y; weight: 86 ± 13 kg; height: 177 ± 8 cm) were included in the analysis. Muscle activity was assessed using the normalized root mean square (RMS) values obtained from surface electromyography (sEMG). A within-subjects, counterbalanced design was utilized where all participants completed both testing conditions in a randomized order to control for potential order effects. Participants visited the laboratory and fitness center on two occasions. On the first day, anthropometric measurements were obtained, along with one repetition maximum (1-RM) for both the dumbbell biceps curl and the Bayesian curl. On the second day, participants performed an isometric maximal voluntary contraction (MVC), followed by electromyographic assessment of muscle activity during the dumbbell biceps curl and the Bayesian curl, each performed at 80% of their respective 1-RM. When the normal distribution was confirmed via the Shapiro–Wilk test (p > 0.05), a paired t-test was used for statistical analysis. On the other hand, when normality was not confirmed, the Wilcoxon test was utilized. Statistically significant differences (p = 0.003) were observed in the EMG amplitude (%) between the biceps curl (111.46 ± 26.80) and the Bayesian curl (93.39 ± 15.65) with a large effect size (d = 0.82). Based on the EMG analysis, the dumbbell biceps curl elicited significantly greater muscle activation compared to the Bayesian curl, suggesting that the conventional movement places a higher mechanical and neuromuscular demand on the biceps brachii. Full article
Show Figures

Figure 1

20 pages, 2608 KB  
Article
Analysis of Multi-Stage Slope Displacement and Internal Force of Supporting Structure of Frame Prestressed Anchor Cable Support
by Jingbang Li, Yanpeng Zhu, Shuaihua Ye, Nianxiang Li and Bo Liu
Buildings 2025, 15(20), 3668; https://doi.org/10.3390/buildings15203668 - 11 Oct 2025
Viewed by 331
Abstract
Relying on an engineering case, this study establishes an analysis model using PLAXIS 3D and GeoStudio, and compares and analyzes the slope deformation and internal force of the supporting structure with different slope grades and different platform widths at the same height. The [...] Read more.
Relying on an engineering case, this study establishes an analysis model using PLAXIS 3D and GeoStudio, and compares and analyzes the slope deformation and internal force of the supporting structure with different slope grades and different platform widths at the same height. The results show that the greatest displacement manifests in the lower segments of the slope, which is 12.99 mm, and the maximum anchoring force manifests in the mid-level and lower segments of the slope, which is 288.1 kN. A close correlation is observed between the simulated horizontal displacement of the slope, the maximum axial force of the anchor cable, and the corresponding field measurement results, indicating that the model parameters are satisfactory and that the resulting calculations are reliable. In consideration of the comprehensive stability of the slope, the stability coefficient increased by approximately 1.42% with two-stage slope support and by about 3.48% with four-stage slope support. The axial force of anchor cables was reduced by around 9.5% under two-stage grading, while four-stage grading decreased the maximum axial force of the middle–lower anchors by nearly 27%. The distance between the entrance and exit of the overall sliding surface and the slope surface also decreases with the increase in slope grading and platform width. This study systematically evaluates the combined effects of slope grading, platform width, and frame prestressed anchors. When site conditions permit, slope grading should be prioritized over simply widening the platform, as grading more effectively enhances slope stability and reduces anchor cable loads. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 6982 KB  
Article
Numerical Investigation on Wave-Induced Boundary Layer Flow over a Near-Wall Pipeline
by Guang Yin, Sindre Østhus Gundersen and Muk Chen Ong
Coasts 2025, 5(4), 40; https://doi.org/10.3390/coasts5040040 - 9 Oct 2025
Viewed by 260
Abstract
Pipelines and power cables are critical infrastructures in coastal areas for transporting energy resources from offshore renewable installations to onshore grids. It is important to investigate the hydrodynamic forces on pipelines and cables and their surrounding flow fields, which are highly related to [...] Read more.
Pipelines and power cables are critical infrastructures in coastal areas for transporting energy resources from offshore renewable installations to onshore grids. It is important to investigate the hydrodynamic forces on pipelines and cables and their surrounding flow fields, which are highly related to their on-bottom stability. The time-varying hydrodynamic forces coefficients and unsteady surrounding flows of a near-seabed pipeline subjected to a wave-induced oscillatory boundary layer flow are studied through numerical simulations. The Keulegan–Carpenter numbers of the oscillatory flow are up to 400, which are defined based on the maximum undisturbed near-bed orbital velocity, the pipeline diameter and the period of the oscillatory flow. The investigated Reynolds number is set to 1×104, defined based on Uw and D. The influences of different seabed roughness ratios ks/D (where ks is the Nikuradse equivalent sand roughness) up to 0.1 on the hydrodynamic forces and the flow fields are considered. Both a wall-mounted pipeline with no gap ratio to the bottom wall and a pipeline with different gap ratios to the wall are investigated. The correlations between the hydrodynamic forces and the surrounding flow patterns at different time steps during one wave cylinder are analyzed by using the force partitioning method and are discussed in detail. It is found that there are influences of the increasing ks/D on the force coefficients at large KC, while for the small KC, the inertial effect from the oscillatory flow dominates the force coefficients with small influences from different ks/D. The FPM analysis shows that the elongated shear layers from the top of the cylinder contribute to the peak values of the drag force coefficients. Full article
Show Figures

Figure 1

25 pages, 4115 KB  
Article
Rock Mass Failure Classification Based on FAHP–Entropy Weight TOPSIS Method and Roadway Zoning Repair Design
by Biao Huang, Qinghu Wei, Zhongguang Sun, Kang Guo and Ming Ji
Processes 2025, 13(10), 3154; https://doi.org/10.3390/pr13103154 - 2 Oct 2025
Viewed by 318
Abstract
After the original support system in the auxiliary transportation roadway of the northern wing of the Zhaoxian Mine failed, the extent of damage and deformation varied significantly across different sections of the drift. A single support method could not meet the engineering requirements. [...] Read more.
After the original support system in the auxiliary transportation roadway of the northern wing of the Zhaoxian Mine failed, the extent of damage and deformation varied significantly across different sections of the drift. A single support method could not meet the engineering requirements. Therefore, this paper conducted research on the classification of roadway damage and zoning repair. The overall damage characteristics of the roadway are described by three indicators: roadway deformation, development of rock mass fractures, and water seepage conditions. These are further refined into nine secondary indicators. In summary, a rock mass damage combination weighting evaluation model based on the FAHP–entropy weight TOPSIS method is proposed. According to this model, the degree of damage to the roadway is divided into five grades. After analyzing the damage conditions and support requirements at each grade, corresponding zoning repair plans are formulated by adjusting the parameters of bolts, cables, channel steel beams, and grouting materials. At the same time, the reliability of partition repair is verified using FLAC3D 6.0 numerical simulation software. Field monitoring results demonstrated that this approach not only met the support requirements for the roadway but also improved the utilization rate of support materials. This provides valuable guidance for the design of support systems for roadways with similar heterogeneous damage. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

22 pages, 3340 KB  
Article
Microstrip Patch Antenna for GNSS Applications
by Hatice-Andreea Topal and Teodor Lucian Grigorie
Appl. Sci. 2025, 15(19), 10663; https://doi.org/10.3390/app151910663 - 2 Oct 2025
Viewed by 351
Abstract
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a [...] Read more.
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a comparative evaluation of the materials used in the antenna design, assess the geometric configuration and analyze the key performance parameters of the proposed microstrip patch antenna. Prior to the numerical modeling and simulation process, a preliminary assessment was conducted to evaluate how different substrate materials influence antenna efficiency. For instance, a comparison between FR-4 and RT Duroid 5880 dielectric substrates revealed signal attenuation differences of approximately −1 dB at the target frequency. The numerical simulations were carried out using Ansys HFSS design. The antenna was mounted on a dielectric substrate, which was also mounted on a ground plane. The microstrip antenna was fed using a coaxial cable at a single point, strategically positioned to achieve circular polarization within the operating frequency band. The aim of this study is to design and analyze a microstrip antenna that operates within the previously specified frequency range, ensuring optimal impedance matching of 50 Ω with a return loss of S11 < −10 dB at the operating frequency (with these parameters also contributing to the definition of the antenna’s operational bandwidth). Furthermore, the antenna is required to provide a gain greater than 3 dB for integration into GNSS’ receivers and to achieve an Axial Ratio value below 3 dB in order to ensure circular polarization, thereby facilitating the antenna’s integration into GNSSs. Full article
Show Figures

Figure 1

24 pages, 8957 KB  
Article
Inversion of Physical and Mechanical Parameters of Surrounding Rock Mass in Foundation Pits Using a PSO-BP Neural Network
by Gang Li, Wei Xiao, Yanlin Liang, Qiyin Gu, Junxin Jiang, Wei Meng and Yuanfu Zhou
Buildings 2025, 15(19), 3499; https://doi.org/10.3390/buildings15193499 - 28 Sep 2025
Viewed by 211
Abstract
In foundation pit engineering, precise determination of the physical–mechanical parameters of the surrounding rock is essential for reliable simulation of rock deformation and anchor cable forces. A foundation pit engineering project in Shapingba District, Chongqing, was selected as a case study. A numerical [...] Read more.
In foundation pit engineering, precise determination of the physical–mechanical parameters of the surrounding rock is essential for reliable simulation of rock deformation and anchor cable forces. A foundation pit engineering project in Shapingba District, Chongqing, was selected as a case study. A numerical model was developed using FLAC3D, and 64 working conditions were designed via orthogonal experiments to serve as training samples. Global optimization inversion of the samples was performed using a BP neural network enhanced by particle swarm optimization. Using selected monitoring data of surrounding rock displacement and anchor cable forces, inversion was conducted to determine the physical–mechanical parameters of the foundation pit surrounding rock, and the FLAC3D model inputs were subsequently updated. Finally, simulated results were validated against field measurements. The maximum relative error of surrounding rock displacement reached 8%, with only 3% at the pit center. The largest settlement occurred in the eastern section, where the relative error was 5%. For anchor cable forces, the maximum relative error was 7.9%. This study employed a PSO-BP neural network to invert the physical–mechanical parameters of the foundation pit surrounding rock and introduced a two-stage validation using measured displacements and anchor cable forces. The approach enhances inversion accuracy and provides a practical reference for similar foundation pit engineering applications. Full article
Show Figures

Figure 1

12 pages, 3568 KB  
Article
Theoretical Study on the Grafting Reaction of Benzophenone Compounds to Polyethylene in the UV Radiation Cross-Linking Process
by Yang Du, Chi Deng, Hui Zhang, Xia Du, Yan Shang and Xuan Wang
Polymers 2025, 17(19), 2595; https://doi.org/10.3390/polym17192595 - 25 Sep 2025
Viewed by 502
Abstract
In this study, benzophenone compounds substituted with electron-withdrawing groups (-NO2, -F, and -Cl) and electron-donating groups (-OH, -CH3, -NH2, and -OCH3) were employed as voltage stabilizers for crosslinked polyethylene (XLPE) insulation materials. At B3LYP/6-311+G(d [...] Read more.
In this study, benzophenone compounds substituted with electron-withdrawing groups (-NO2, -F, and -Cl) and electron-donating groups (-OH, -CH3, -NH2, and -OCH3) were employed as voltage stabilizers for crosslinked polyethylene (XLPE) insulation materials. At B3LYP/6-311+G(d,p) level, reaction Gibbs free potential energy data for eleven reaction channels and molecular characteristics, including electron affinity EA(s), ionization potential IP(s), and HOMO-LUMO gap (Eg) of benzophenone derivatives, were obtained. The effects of electron-donating and electron-withdrawing functional groups were systematically evaluated. The calculated results indicate that benzophenones exhibit the lowest Gibbs free energy barrier for grafting onto polyethylene among the investigated molecules. With the introduction of electron-donating groups, the reaction Gibbs free energy barrier increases. It is worth noting that 2-Nitrobenzophenone is considered to possess superior electrical resistivity, attributed to its highest electron affinity among the studied compounds. This investigation is expected to provide reliable insights for the development of modified polyethylene-based insulating materials for high-voltage cables. Full article
Show Figures

Graphical abstract

29 pages, 6067 KB  
Article
Audio Interference Suppressor in Analog Audio Interface
by Vladimir Olujić, Siniša Fajt, Vlado Sruk and Miljenko Krhen
Sensors 2025, 25(18), 5868; https://doi.org/10.3390/s25185868 - 19 Sep 2025
Viewed by 427
Abstract
Audio systems with unbalanced connections are susceptible to interference from ground loops, which manifests as hum and noise. This paper introduces and evaluates a novel passive Audio Interference Suppressor in Analog Audio Interface (AISAAI) designed to mitigate this problem. The AISAAI circuit is [...] Read more.
Audio systems with unbalanced connections are susceptible to interference from ground loops, which manifests as hum and noise. This paper introduces and evaluates a novel passive Audio Interference Suppressor in Analog Audio Interface (AISAAI) designed to mitigate this problem. The AISAAI circuit is inserted between an audio device’s rectifier ground and its protective earth terminal, creating an optimized impedance path that reduces interference while ensuring safety. This approach is analyzed within a proposed Analog Audio Interconnection System (AAIS) framework. Experimental results show that common-mode voltages from protective earth potential differences are the primary source of interference. The optimized AISAAI suppressor achieves a consistent 15–30 dB reduction in measured audio interference across the audio band, regardless of the interconnect cable characteristics. This study confirms AISAAI as an effective solution for reducing ground loop noise in unbalanced audio systems and underlines the usefulness of the AAIS model for systemic analysis. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 6899 KB  
Article
Optimization of Unrepeatered Optical Communication Systems and the Applications in Cabled Ocean Observatories
by Chang Shu, Feng Lyu, Rendong Xu, Jianping Li, Xichen Wang and Liang Xu
Photonics 2025, 12(9), 930; https://doi.org/10.3390/photonics12090930 - 18 Sep 2025
Viewed by 551
Abstract
Conventional repeatered optical communication systems face inherent limitations in terms of reliability, flexibility in optical fiber configuration, and power supply modes, particularly when applied to large-scale cabled ocean observatories, which have highly variable load demands. To address these challenges, a novel hybrid optimization [...] Read more.
Conventional repeatered optical communication systems face inherent limitations in terms of reliability, flexibility in optical fiber configuration, and power supply modes, particularly when applied to large-scale cabled ocean observatories, which have highly variable load demands. To address these challenges, a novel hybrid optimization algorithm (GA + PSO + SA) has been developed to enable simultaneous optimization of multiple critical parameters, including the pump light wavelength, the length of the erbium-doped fiber, and the placement of the remote optical amplifier. This approach represents a significant advancement over conventional single-algorithm methods because it effectively overcomes local optima and achieves global performance optimization. Comprehensive simulations and experimental validation demonstrate that the optimized unrepeatered system achieves transmission distances of 691.8 km using G.654E fibers and over 400 km with standard G.652D fibers, while maintaining excellent signal quality and exceptional stability. This work provides a systematic framework for the design and optimization of ultra-long-haul unrepeatered systems, highlighting their practical applicability in cabled ocean observatories. Full article
(This article belongs to the Special Issue Exploring Optical Fiber Communications: Technology and Applications)
Show Figures

Figure 1

19 pages, 2136 KB  
Article
Two-Sheath Loop Short Circuit Defects Detection in High-Voltage Cable Systems Using Sheath Current Phasors
by Weihua Yuan, Jing Tu, Yongheng Ai, Zhanran Xia, Ruoxin Song, Jianfeng He, Xinyun Gao, Minghong Jiang, Bin Yang, Bo Li and Hang Wang
Energies 2025, 18(18), 4868; https://doi.org/10.3390/en18184868 - 12 Sep 2025
Viewed by 345
Abstract
The joint is the weak point of HV (high voltage) cable insulation systems; creep discharge between insulation layers of the cable joint, due to moisture intrusion, is one of the main defects leading to single-phase grounding. Carbonization on the insulation interface after creep [...] Read more.
The joint is the weak point of HV (high voltage) cable insulation systems; creep discharge between insulation layers of the cable joint, due to moisture intrusion, is one of the main defects leading to single-phase grounding. Carbonization on the insulation interface after creep discharge would lead to a short-circuit defect in the sheath loops and result in abnormal sheath current. In this study, a novel diagnostic criterion using the phasor difference of sheath currents at both ends of the same circuit is proposed. The coupling effect between the sheath and the conductor under defect conditions is considered, and the original lumped parameter model of the cable circuit is optimized. The cable parameters are further corrected using a genetic algorithm. The diagnostic criterion comprehensively accounts for the adverse effects of unequal cable segment lengths, load current fluctuations, grounding impedance, and phase voltage variations. When the phase angle fluctuation of the phasor difference is within 10° and the defect impedance is below 100 Ω, the defective joint can be accurately diagnosed by this method. The conclusion has been validated through PSCAD simulations, with a diagnostic accuracy above 97%. Even under 20 dB noise interference, the error increase remains within 2%. Full article
Show Figures

Figure 1

17 pages, 26803 KB  
Article
High-Precision Small-Scale 3D Seismic Technology for Natural Gas Hydrate Exploration in the Northern South China Sea
by Dasen Zhou, Siqing Liu, Xianjun Zeng, Limin Gou, Jing Li, Jingjing Zhang, Xiaozhu Hao, Qingxian Zhao, Qingwang Yao, Jiafa Zhang, Jiaqi Shen, Zelin Mu and Zelin He
J. Mar. Sci. Eng. 2025, 13(9), 1703; https://doi.org/10.3390/jmse13091703 - 3 Sep 2025
Viewed by 577
Abstract
To address the demand for high-precision exploration of natural gas hydrates in the northern South China Sea, this paper presents a novel high-precision small-scale 3D seismic exploration technology. The research team independently developed a seismic acquisition system, incorporating innovative designs such as a [...] Read more.
To address the demand for high-precision exploration of natural gas hydrates in the northern South China Sea, this paper presents a novel high-precision small-scale 3D seismic exploration technology. The research team independently developed a seismic acquisition system, incorporating innovative designs such as a narrow trace spacing of 3.125 m and a short streamer length of 150 m. By integrating advanced processing techniques, including pre-stack noise suppression, spectral broadening, and refined velocity analysis, the system significantly enhances the precision and spatial resolution of shallow seismic data. During field trials in the Qiongdongnan basin, the system successfully acquired 3D seismic data over an area of 50 km2, enabling fine-scale imaging of sub-seabed strata within the upper 300 m. This represents a notable improvement in resolution compared to conventional 3D seismic technologies. When benchmarked against international counterparts such as P-cable, our system demonstrates distinct advantages in terms of exploration depth (reaching 1800 m) and dominant frequency range (spanning 10~390 Hz). The research findings provide a reliable technical approach for the detailed characterization of natural gas hydrates and the inversion of reservoir parameters, thereby holding significant practical value for advancing the industrial development of natural gas hydrates in China’s offshore areas. Full article
Show Figures

Figure 1

23 pages, 17970 KB  
Article
Strain Monitoring and Numerical Simulation Analysis of Nuclear Containment Structure During Containment Tests
by Xunqiang Yin, Weilong Yang, Junkai Zhang, Min Zhao and Jianbo Li
Sensors 2025, 25(16), 5197; https://doi.org/10.3390/s25165197 - 21 Aug 2025
Viewed by 666
Abstract
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the [...] Read more.
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the structure. However, whether the data from these substitute sensors can reasonably reflect the internal deformation behavior requires further investigation. To ensure the feasibility of the added strain sensors, a refined 3D model of a Chinese Pressurized Reactor (CPR1000) nuclear containment structure was developed in ANSYS 19.1 to study the internal and external deformation laws during a containment test (CTT). Solid reinforcement and cooling methods were employed to simulate prestressed cables and pre-tension application. The influence of ordinary steel bars in concrete was modeled using the smeared model, while interactions between the steel liner and concrete were simulated through coupled nodes. The model’s validity was verified against embedded strain sensor data recorded during a CTT. Furthermore, concrete and prestressed material parameters were refined through a sensitivity analysis. Finally, the variation law between the internal and external deformation of the containment structure was investigated under typical CTT loading conditions. Strain values in the wall thickness direction exhibited an essentially linear relationship. Near the equipment hatch, however, the strain distribution pattern was significantly influenced by the spatial arrangement of prestressed cables. Refined FEM and sensor systems are vital containment monitoring tools. Critically, surface-mounted strain sensors offer a feasible approach for inferring internal stress states and deformation behavior. This study provides theoretical support and a technical foundation for the safe assessment and maintenance of nuclear containment structures during operational service. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 4418 KB  
Article
A Pressure Wave Recognition and Prediction Method for Intelligent Sliding Sleeve Downlink Communication Systems Based on LSTM
by Xingming Wang, Zhipeng Xu, Yukun Fu, Xiangyu Wang, Lin Zhang and Qiaozhu Wang
Energies 2025, 18(16), 4384; https://doi.org/10.3390/en18164384 - 18 Aug 2025
Viewed by 528
Abstract
To address the challenges of signal recognition and prediction in intelligent sliding sleeve downlink communication systems, this paper proposes a dual-model framework based on Long Short-Term Memory (LSTM) networks. The system comprises a classifier for identifying pressure wave edge types and a generator [...] Read more.
To address the challenges of signal recognition and prediction in intelligent sliding sleeve downlink communication systems, this paper proposes a dual-model framework based on Long Short-Term Memory (LSTM) networks. The system comprises a classifier for identifying pressure wave edge types and a generator for predicting pressure waveforms. High-quality training data are generated by simulating pressure wave propagation caused by throttle valve modulations. A sliding window strategy and Z-score normalization are applied to enhance temporal modeling. The classifier achieves a high accuracy in identifying rising and falling edges under noise-free conditions. The generator, trained on down-sampled waveform segments, accurately reconstructs pressure dynamics using a dual-input strategy based on historical segments and hypothetical labels. A residual-based decision mechanism is employed to complete the full sequence label prediction. To evaluate robustness, noise intensities of 30 dB and 40 dB are introduced. The proposed system maintains high performance under both conditions, achieving label prediction accuracies of 100%. Error metrics such as MAE and RMSE remain within acceptable bounds, even in noisy environments. The results demonstrate that the proposed LSTM-based method has been validated on simulated data, showing its potential to approximate performance in real-world conditions. It provides a promising solution for cable-free measurement-while-drilling (MWD) and remote control of intelligent sliding sleeves in complex downhole environments. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

28 pages, 13096 KB  
Article
Study on Failure Mechanism and Synergistic Support–Unloading Control Approach in Goaf-Side Roadways in Deep Thick Coal Seams
by Chong Zhang, Yue Sun, Yan Zhang, Yubing Huang, Huayu Yang, Zhenqing Zhang, Chen Chen and Hongdi Tian
Energies 2025, 18(16), 4330; https://doi.org/10.3390/en18164330 - 14 Aug 2025
Viewed by 465
Abstract
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly [...] Read more.
With coal mines’ mining depth increasing, the stress environment in deep mining (including key factors such as high ground stress, strong disturbance, and complex geological structures, as well as stress redistribution after deformation of surrounding roadway rock) is complex, which leads to increasingly prominent deformation and failure problems for goaf-side roadways in thick coal seams. Surrounding rock deformation is difficult to control, and mine pressure behavior is violent, making traditional support technologies no longer able to meet the mining safety requirements of roadways in deep thick coal seams. Taking the 6311 working face of Tangkou Coal Mine as the engineering research background, this paper systematically summarizes the deformation and failure characteristics of goaf-side roadways in deep thick coal seams through field monitoring, borehole peeping, and other means, and conducts in-depth analysis of their failure mechanisms and influencing factors. Aiming at these problems, a synergistic support–unloading control method for goaf-side roadways is proposed, which integrates roof blasting pressure relief, coal pillar grouting reinforcement, and constant-resistance energy-absorbing anchor cable support. The effects of the unsupported scheme, original support scheme, and synergistic support–unloading control scheme are compared and analyzed through FLAC3D numerical simulation. Further verification through field application shows that it has remarkable effects in controlling roadway convergence deformation, roof separation, and bolt (cable) stress. Specifically, compared with the original support schemes, the horizontal displacement on the coal pillar side is reduced by 89.5% compared with the original support scheme, and the horizontal displacement on the solid coal side is reduced by 79.3%; the vertical displacement on the coal pillar side is reduced by 45.8% and the vertical displacement on the solid coal side is reduced by 42.4%. Compared with the original support scheme, the maximum deformation of the roadway’s solid coal rib, roof, and coal pillar rib is reduced by 76%, 83%, and 88%, respectively, while the separation between the shallow and deep roof remains at a low level. The coal stress continues fluctuating stably during the monitoring period; the force on the bolts (cables) does not exceed the designed anchoring force, with sufficient bearing reserve space (47% remaining), and no breakage occurs, which fully proves the feasibility and effectiveness of the synergistic support–unloading control technology scheme. This technology realizes the effective control of on-site roadways and provides technical reference for the support engineering of coal mine goaf-side roadways under similar conditions. Full article
Show Figures

Figure 1

14 pages, 3113 KB  
Article
Development of the Biofidelic Instrumented Neck Surrogate (BINS) with Tunable Stiffness and Embedded Kinematic Sensors for Application in Static Tests and Low-Energy Impacts
by Giuseppe Zullo, Elisa Baldoin, Leonardo Marin, Andrey Koptyug and Nicola Petrone
Sensors 2025, 25(16), 4925; https://doi.org/10.3390/s25164925 - 9 Aug 2025
Viewed by 624
Abstract
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with [...] Read more.
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness. Full article
(This article belongs to the Special Issue Applications of Body Worn Sensors and Wearables)
Show Figures

Figure 1

Back to TopTop