Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,691)

Search Parameters:
Keywords = CaO content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 707 KB  
Article
Comparison of ChatGPT-4o and DeepSeek R1 in the Management of Ophthalmological Emergencies—An Analysis of Ten Fictional Case Vignettes
by Dominik Knebel, Siegfried Priglinger and Benedikt Schworm
J. Clin. Med. 2025, 14(24), 8927; https://doi.org/10.3390/jcm14248927 - 17 Dec 2025
Abstract
Background: Generative artificial intelligence (AI) applications have gained increasing popularity in recent years and are used by an ever-increasing number of people on a day-to-day basis. While the performance of the earlier-generation generative AI ChatGPT-3.5 in the context of ophthalmologic emergencies has been [...] Read more.
Background: Generative artificial intelligence (AI) applications have gained increasing popularity in recent years and are used by an ever-increasing number of people on a day-to-day basis. While the performance of the earlier-generation generative AI ChatGPT-3.5 in the context of ophthalmologic emergencies has been previously assessed, the purpose of this study is to analyze the performance of the newer-generation generative AIs DeepSeek R1 (Hangzhou DeepSeek Artificial Intelligence Co., Ltd., Hangzhou, China) and ChatGPT-4o (OpenAI Inc., San Francisco, CA, USA) in the context of diagnosis, triage and prehospital management of ophthalmological emergencies. Methods: Ten previously published fictional case vignettes representing queries in the English language of patients experiencing acute ophthalmological symptoms were entered into the generative AIs DeepSeek R1 and ChatGPT-4o. The interaction with the generative AIs followed a previously described structured interaction path. In a random order, each case vignette was entered into separate chats five times, producing a total of 50 answers from each generative AI. Each answer was analyzed according to a previously published manual. Results: We observed better values for DeepSeek R1 compared to ChatGPT-4o in terms of treatment accuracy (60% compared to 50%), the share of answers containing wrong (46% compared to 60%) or conflicting information (30% compared to 40%), the share of answers that correctly captured the overall severity of symptoms (98% compared to 78%), as well as the share of potentially harmful answers (38% compared to 50%). Moreover, DeepSeek R1 more frequently provided a single diagnosis (20% compared to 16%) and specific treatment advice (42% compared to 20%) than ChatGPT-4o. Both generative AIs showed a diagnostic accuracy of 100%, i.e., whenever they provided a single diagnosis, this was indeed the correct diagnosis. In terms of triage accuracy, ChatGPT-4o performed slightly better than DeepSeek R1 (73% compared to 66%). In contrast to DeepSeek R1, which never directed questions back at the user, ChatGPT-4o always did. The direction of questions at the user enables dialogues with ChatGPT-4o that more closely resemble the actual taking of a patient’s history. However, DeepSeek R1 seems to perform better compared to ChatGPT-4o in terms of several important content-related metrics and has been shown to be more cost-effective in other studies. Conclusions: Both newer-generation generative AIs constitute remarkable milestones in the development of generative artificial intelligence. However, since potentially harmful recommendations were observed with both models, we currently do not recommend their use as sole source of information on ophthalmological emergencies for laypersons. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

16 pages, 15595 KB  
Article
Study on Calcified Alkali Leaching of Vanadium-Extracted Tailings and Preparation of Barium Orthovanadate
by Jinwei Qu, Yiqiu Wang, Xinyu Hao and Na Ma
Nanomaterials 2025, 15(24), 1889; https://doi.org/10.3390/nano15241889 - 17 Dec 2025
Abstract
While vanadium-extracted tailings contain valuable components, their utilization is difficult due to their high sodium content. In this work, a new oxygen-pressure calcification and alkaline leaching strategy to achieve barium orthovanadate vanadium precipitation is developed to realize the resourceful recycling and utilization of [...] Read more.
While vanadium-extracted tailings contain valuable components, their utilization is difficult due to their high sodium content. In this work, a new oxygen-pressure calcification and alkaline leaching strategy to achieve barium orthovanadate vanadium precipitation is developed to realize the resourceful recycling and utilization of vanadium-extracted tailings. First, the preparation of barium orthovanadate via calcified alkaline leaching and vanadium precipitation was studied, and the effects of CaO addition, NaOH concentration, leaching temperature, and liquid–solid ratio on the leaching rates of sodium and vanadium were evaluated in single-factor experiments. Under the optimum leaching conditions (CaO addition of 20%, alkali concentration of 150 g·L−1, leaching temperature of 180 °C, and liquid–solid ratio of 10:1), the leaching rates of vanadium and sodium reached 85.25% and 82.36%, respectively. Subsequently, the vanadium-containing leaching solution was subjected to a vanadium precipitation test, and the effects of pH, Ba(OH)2 addition (expressed as nBa/nV), vanadium precipitation temperature, and vanadium precipitation time on the vanadium precipitation rate were investigated. Under the optimum vanadium precipitation conditions (pH 14, nBa/nV = 1.5:1, temperature of 30 °C, reaction time of 60 min), a vanadium precipitation rate of more than 99% was achieved. The precipitated vanadium product of this reaction was confirmed to be Ba3(VO4)2 with a purity of more than 99%. Notably, the wastewater generated during the test process can be mixed with an alkali and returned to the leaching process for reuse, and the dealkalized residue can be used as a raw material for ore reduction in iron smelting processes. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 3664 KB  
Article
The Release Characteristic and Removal of Heavy Metal and HCl During Co-Combustion of MSW and Aged Refuse: A Preliminary Study Based on Thermodynamic Equilibrium Analysis
by Limei Chen, Yaojie Wang, Yanfen Liao and Xiaoqian Ma
Molecules 2025, 30(24), 4771; https://doi.org/10.3390/molecules30244771 - 14 Dec 2025
Viewed by 133
Abstract
Co-combustion in a refuse incinerator is a primary method for treating aged refuse (AR). Given the high contents of heavy metals and chlorine in AR, it is crucial to investigate their release and fate during co-combustion to achieve environmentally sound treatment. This study [...] Read more.
Co-combustion in a refuse incinerator is a primary method for treating aged refuse (AR). Given the high contents of heavy metals and chlorine in AR, it is crucial to investigate their release and fate during co-combustion to achieve environmentally sound treatment. This study investigated the release and volatilization of heavy metals (Cd, Cr, Zn, Ni, Cu, Pb) and HCl during the co-combustion of AR and municipal solid waste (MSW) through chemical thermodynamic equilibrium analysis. The effects of several parameters on the volatilization of heavy metals and HCl were analyzed, including incineration temperature, the N2/O2 ratio, the degree of refuse classification, the blending ratio of AR, and the effects of conventional calcium-based additives. The results showed that high temperature promoted the volatilization of Cd, Pb, Cu, Ni, and HCl. A lower N2/O2 ratio suppressed Zn and HCl volatilization. A higher degree of MSW classification (with lower proportions of kitchen and wood waste) and an increased AR blending ratio enhanced Zn fixation. CaO at high temperature only suppressed HCl volatilization, with a minor effect on heavy metals. Two modified calcium-based additives (CaBSiO4OH and CaB5SiO9(OH)5) with strong high-temperature Cu removal capabilities were explored, and their risk index was analyzed. Full article
Show Figures

Figure 1

29 pages, 4201 KB  
Article
The Effect of Boron Oxide on the Biocompatibility, Cellular Response, and Antimicrobial Properties of Phosphosilicate Bioactive Glasses for Metallic Implants’ Coatings
by Joy-anne N. Oliver, Qichan Hu, Jincheng Du and Melanie Ecker
Appl. Sci. 2025, 15(24), 13120; https://doi.org/10.3390/app152413120 - 12 Dec 2025
Viewed by 88
Abstract
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates [...] Read more.
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates the biological consequences of incorporating 0, 5, 10, and 15 mol% B2O3 to determine their suitability as coatings for Ti6Al4V. Glass extracts were evaluated using L-929 fibroblast cultures (MTT assay and ImageJ-based cell counting), antimicrobial assays against Escherichia coli and Staphylococcus aureus using a semi-quantitative dilution-plating method, and SBF immersion studies to assess pH evolution, surface mineralization, and Ca/P ratio development. FTIR and SEM analyses revealed composition-dependent formation of phosphate-, carbonate-, and silicate-rich surface layers, with 5B exhibiting the most consistent early-stage hydroxyapatite-like signatures, supported by Ca/P ratios approaching the stoichiometric value. The pH measurements showed rapid alkalization for 5B and moderate buffering behavior at higher boron contents, consistent with boron-dependent modifications to network connectivity. Cytocompatibility studies demonstrated a dose- and time-dependent reduction in cell number at elevated B2O3 levels, whereas the 0B and 5B extracts maintained higher viability and preserved cell morphology. Antibacterial assays revealed strain-dependent and sub-lethal inhibitory effects, with E. coli exhibiting stronger sensitivity than S. aureus, likely due to differences in cell wall architecture and susceptibility to ionic osmotic microenvironment changes. When considered alongside previously published computational and physicochemical results, the biological data indicate that moderate boron incorporation (5 mol%) provides the most favorable balance between dissolution kinetics, apatite formation, cytocompatibility, and antimicrobial modulation. These findings identify the 5B composition as a strong candidate for further optimization toward bioactive glass coatings on Ti6Al4V implants. Full article
Show Figures

Figure 1

19 pages, 1577 KB  
Article
Quantifying Influencing Factors of Dioxin Removal in Fly Ash Pyrolysis Through Meta-Analysis and Structural Equation Modeling
by Tao He, Shihan Tan, Qi Su, Feifei Chen, Chenlei Xie, Yuchi Zhong, Shuai Zhang and Jiafeng Ding
Toxics 2025, 13(12), 1072; https://doi.org/10.3390/toxics13121072 - 12 Dec 2025
Viewed by 167
Abstract
The treatment of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/Fs) in incineration fly ash presents a significant challenge in solid hazardous waste management. This study systematically analyzed the influence mechanisms of multiple factors on the removal efficiency of PCDD/Fs during fly ash pyrolysis. It [...] Read more.
The treatment of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDD/Fs) in incineration fly ash presents a significant challenge in solid hazardous waste management. This study systematically analyzed the influence mechanisms of multiple factors on the removal efficiency of PCDD/Fs during fly ash pyrolysis. It integrated 4068 datasets conducted between 2010 and 2025 through meta-analysis. Results show that Al2O3, CaO, SiO2, and Cl in fly ash components enhance the removal efficiency by 14.0%, while Fe2O3 (Content greater than 5.7%) exhibits inhibitory effects. Cd and Cr demonstrate a bimodal response pattern: low/high concentrations promote removal, while medium concentrations inhibit it. Process optimization identified the optimal parameter combination as pyrolysis temperatures of 500–900 °C, residence time of 50–90 min, and a gas flow rate greater than or equal to 400 mL/min. A significant negative correlation was observed between the initial dioxin concentration and removal efficiency. This study established a structural equation modeling (SEM) model to describe how metallic and nonmetallic components, fly ash components, and pyrolysis conditions determine removal efficiency. Fly ash composition was confirmed as the most influential factor (total effect = 0.3194), with fixed carbon and ash content being the most reliable indicators. Among pyrolysis conditions, gas conditions (flow rate, gas type) also significantly affected removal efficiency (total effect = 0.2357). Conversely, nonmetallic components and excessively prolonged pyrolysis time (beyond the window) consistently reduced removal efficiency. These findings provide theoretical support for upgrading fly ash pyrolysis processes toward low-carbon and resource-efficient operations. Full article
Show Figures

Graphical abstract

21 pages, 2046 KB  
Article
Mitigation of Greenhouse Gas Emissions Through Straw Management and Oxygenated and Biochar-Based Fertilizers
by Qi Sun, Yu-Feng Wang, Hao Jiang, Huichang Bian, Xiao-Jun Wang, Yan Li, Hong-Sheng Gao, Xue Pan, Shuai Hao and Xue-Jia Gu
Plants 2025, 14(24), 3791; https://doi.org/10.3390/plants14243791 - 12 Dec 2025
Viewed by 145
Abstract
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation [...] Read more.
Straw returning is a common agricultural practice that can enhance rice (Oryza sativa L.) yield in paddy systems. However, it also leads to a significant increase in greenhouse gas emissions (GHG). Fortunately, this negative impact can be mitigated by implementing enhanced oxygenation strategies during rice cultivation. This study explored the effects of various oxygenation measures on GHG under straw-returning conditions through controlled pot experiments. Six distinct treatments were applied. These included straw not returned (NR, no straw applied), straw returned (SR), controlled irrigation (CI), oxygenation irrigation (OI), application of oxygenated fertilizer (OF, CaO2), and use of biochar-based fertilizer (CF). All treatment groups, with the exception of the NR group, involved the return of straw to the field. Creating rice production methods that increase yield and decrease emissions is of great importance to agricultural ecology. We postulated that using aeration methods under straw return conditions would stabilize rice yield and reduce GHG. The experimental results were consistent with our hypothesis. The experiment evaluated multiple parameters, including rice yield, leaf photosynthetic performance, soil ammonium and nitrate nitrogen (N) levels, and greenhouse gas emissions. The findings revealed that different oxygenation approaches significantly promoted rice tillering. Oxygenation measures have been shown to enhance rice yield by 19% to 65%. The highest tiller numbers were observed in the SR (22.75) and CF (21.6) treatments. Among all treatments, the CF achieved the highest seed setting rate at 0.94, which was notably greater than that of the other treatments. Total plant biomass was also significantly higher in the straw returning treatment (109.36 g), surpassing all other treatments. In terms of soil nitrogen dynamics, the OF treatment resulted in the highest nitrate nitrogen content. Meanwhile, the ammonium nitrogen concentrations across the four oxygenation treatments (CI, OI, OF, CF) ranged from approximately 7 to 8.9 mg kg−1. Regarding GHG, the CF treatment exhibited the lowest methane emissions, which were 33% lower compared to the straw returning treatment. The OF led to a 22% reduction in carbon dioxide emissions (CO2) relative to straw returning. Most notably, the CF reduced nitrous oxide emissions by 37% compared to the straw returning treatment. Overall, SR was found to substantially increase GHG. In contrast, all tested oxygenation measures—CI, OI, OF, and CF—were effective in suppressing GHG to varying degrees. Among these, the CF and OF demonstrated the most balanced and outstanding effects, both in reducing emissions and maintaining stable rice yields. Full article
Show Figures

Figure 1

15 pages, 8324 KB  
Article
Tailoring and Fabricating Temperature-Stable ZnNb2O6-Ca0.5Sr0.5TiO3 Composite Ceramics for Next-Generation Microwave Components
by Haodong Wang, Chuying Chen, Xiuli Fu and Zhijian Peng
Materials 2025, 18(24), 5572; https://doi.org/10.3390/ma18245572 - 11 Dec 2025
Viewed by 177
Abstract
ZnNb2O6-based microwave dielectric ceramics have attracted considerable attention due to their high quality factor (Q × f) and low sintering temperature, but their application was limited by poor temperature stability with a large negative temperature coefficient of resonant frequency [...] Read more.
ZnNb2O6-based microwave dielectric ceramics have attracted considerable attention due to their high quality factor (Q × f) and low sintering temperature, but their application was limited by poor temperature stability with a large negative temperature coefficient of resonant frequency (τf). Herein, novel (1 − x)ZnNb2O6−xCa0.5Sr0.5TiO3 (x = 0.05–0.125) composite ceramics were designed and fabricated. The used ZnNb2O6 and Ca0.5Sr0.5TiO3 were synthesized through solid-phase reaction by using stoichiometric metal oxides or carbonates as the raw materials at 650 and 1100 °C, respectively. The composite ceramics were prepared by solid-state sintering, and the sintering parameters were optimized at 1175 °C for 4 h by visual high-temperature deformation analysis. A focus was paid on the temperature stability and compositional effects of Ca0.5Sr0.5TiO3 of the obtained composited ceramics. As the Ca0.5Sr0.5TiO3 content increases, the dielectric constant (εr) and Q × f gradually decrease, while τf shifts toward positive values. At x = 0.075, the composite ceramics sintered at 1175 °C for 4 h exhibit near-zero τf (−8.99 ppm/°C), coupled with εr = 23.23 and Q × f = 21,686 GHz. This study provides theoretical guide and material support for designing and fabricating various high-performance thermally stable microwave dielectric ceramics for 5G communication devices and future communication technologies. Full article
Show Figures

Figure 1

17 pages, 2690 KB  
Article
Directional Transformation of Native Holocellulose into Long-Chain Ether Fuel Precursors over Metal Oxides
by Yuan Liu, Jialong Chen, Li Yang, Fang Liu and Feiqiang Guo
Energies 2025, 18(24), 6425; https://doi.org/10.3390/en18246425 - 9 Dec 2025
Viewed by 126
Abstract
Incomplete diesel combustion emits soot and CO. The use of biomass-derived, oxygen-containing diesel additives has been proposed as an effective mitigation strategy. Among these, long-chain ethers have been widely regarded as one of the most promising additive classes. Guided by this, carbonyl compounds [...] Read more.
Incomplete diesel combustion emits soot and CO. The use of biomass-derived, oxygen-containing diesel additives has been proposed as an effective mitigation strategy. Among these, long-chain ethers have been widely regarded as one of the most promising additive classes. Guided by this, carbonyl compounds were targeted as intermediates for the synthesis of long-chain ethers. Py-GC/MS was used to assess eight oxides (CaO, ZrO2, NiO, CeO2, TiO2 (rutile), TiO2 (anatase), Fe2O3, CuO) during fast pyrolysis of native holocellulose. Relative content of carbonyl compounds was increased by all catalysts, with CaO exhibiting the highest value (69.47%). CaO raised the content of linear ketones from 18.25% to 27.61%, while it sharply reduced the relative content of acetic acid (from 11.56% to 3.19%). TiO2 (rutile) increased cyclic ketones from 11.09% to 15.01%. CuO boosted furans and acids to 17.48% and 17.91%, respectively. Levoglucosan dropped from 11.24% to 4.83% over CuO, which also increased furfural content from 3.25% to 5.63%. Full article
Show Figures

Figure 1

16 pages, 6714 KB  
Article
Effect of Fluoride Content in Synthetic Phosphogypsum on the Hydration Behavior and Mechanical Properties of Cemented Paste Backfill
by Bin Liu, Qinli Zhang, Daolin Wang, Yan Feng, Yikun Yang and Qiusong Chen
Appl. Sci. 2025, 15(24), 12939; https://doi.org/10.3390/app152412939 - 8 Dec 2025
Viewed by 171
Abstract
Phosphogypsum-based cemented paste backfill (PCPB) represents an effective solution for managing substantial accumulations of PG. However, its practical application is limited by excessive fluoride content and insufficient strength. To systematically investigate the influence of initial fluoride content on the hydration behavior, microstructures, and [...] Read more.
Phosphogypsum-based cemented paste backfill (PCPB) represents an effective solution for managing substantial accumulations of PG. However, its practical application is limited by excessive fluoride content and insufficient strength. To systematically investigate the influence of initial fluoride content on the hydration behavior, microstructures, and strength development of PCPB specimens, synthetic phosphogypsum was prepared using CaSO4·2H2O and NaF to eliminate impurity interference in this study. A series of specimens was designed with varying initial fluoride content (5–70 mg/L), sand-to-cement ratios (1:6, 1:8, 1:10), and concentrations (63 wt%, 65 wt%). Setting time, unconfined compressive strength, isothermal calorimetry, X-ray diffraction, and scanning electron microscopy were employed to elucidate the effects and underlying mechanisms of fluoride on PCPB performance. The results indicate that higher initial fluoride content markedly delayed setting and reduced early strength. Calorimetric analysis confirmed that fluoride postponed the exothermic peak and extended the induction period, primarily due to the formation of the CaF2 layer on clinker particle surfaces, which hindered nucleation and hydration. The microscopic results further revealed that high fluoride content suppressed the formation of ettringite and C-S-H gels, resulting in more porous and loosely bonded microstructures. Leaching tests indicated that fluoride immobilization in PCPB specimens occurred mainly through CaF2 precipitation, physical encapsulation, and ion exchange. These findings provide theoretical support for the fluoride thresholds in PG below which the adverse effects on cement hydration and strength development can be minimized, contributing to the sustainable goals of waste reduction, harmless disposal, and resource recovery in the phosphate industry. Full article
Show Figures

Figure 1

32 pages, 12922 KB  
Article
Research on Engineering Characteristics of Lignin–Cement-Stabilized Lead-Contaminated Lateritic Clay
by Junhua Chen, Xiulin Wei, Bocheng Huang, Aijun Chen, Xiong Shi, Shouqian Li, Ying Xiao, Xiao Liao and Liuxuan Zhao
Buildings 2025, 15(24), 4433; https://doi.org/10.3390/buildings15244433 - 8 Dec 2025
Viewed by 192
Abstract
This study systematically investigates the engineering characteristics of lead-contaminated red clay stabilized by calcium lignosulfonate and ordinary Portland cement composite binders. A series of experiments were conducted to evaluate the effects of lignosulfonate contents (0%, 0.25%, 0.5%, 1%, 2%), cement content (4%, 6%, [...] Read more.
This study systematically investigates the engineering characteristics of lead-contaminated red clay stabilized by calcium lignosulfonate and ordinary Portland cement composite binders. A series of experiments were conducted to evaluate the effects of lignosulfonate contents (0%, 0.25%, 0.5%, 1%, 2%), cement content (4%, 6%, 8%, 10%), and lead ion concentration (0%, 0.1%, 1%) on the mechanical properties, permeability characteristics, and leaching behavior. Key findings include the following. (1) Based on the highest mean UCS values observed in this study, the best-performing formulations were 1% lignosulfonate + 4% cement for uncontaminated soil, 0.5% lignosulfonate + 4% cement for 0.1% lead, and 0.25% lignosulfonate + 10% cement for 1% lead. (2) The permeability coefficient initially decreases and then increases with lignosulfonate addition, with maximum reductions of 65.9% and 44.4% for 0.1% and 1% lead contamination under their respective best-performing formulations under these specific test conditions. (3) The leaching concentration of 0.1% lead-contaminated soil met the national standard (<5 mg/L). Critically, however, the 1% lead-contaminated soil failed the TCLP test, with a leaching concentration of 37.3 mg/L, vastly exceeding the regulatory limit. This constitutes a treatment failure for environmental safety purposes, rendering the concurrent mechanical strength improvement irrelevant. (4) Microstructural and X-Ray Diffraction analyses (SEM and XRD) suggest that lignosulfonate improves soil structure by promoting the formation of C-S-H gel and ettringite (3CaO·Al2O3·3CaSO4·32H2O), whereas high lead concentrations inhibit ettringite formation. This research provides a theoretical foundation for the multi-criteria evaluation and application of lignosulfonate–cement composites in lead-contaminated soil remediation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 9961 KB  
Article
Geochronology and Geochemistry of Early–Middle Permian Intrusive Rocks in the Southern Greater Xing’an Range, China: Constraints on the Tectonic Evolution of the Paleo-Asian Ocean
by Haihua Zhang, Xiaoping Yang, Xin Huang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen and Haiwei Jiao
Minerals 2025, 15(12), 1288; https://doi.org/10.3390/min15121288 - 8 Dec 2025
Viewed by 257
Abstract
The tectonic evolution of the Paleo-Asian Ocean during the Early to Middle Permian remains a key issue in understanding the geodynamic history of the Central Asian Orogenic Belt. To address this, we conducted petrological, whole-rock geochemical, zircon U–Pb geochronological, and Hf isotopic analyses [...] Read more.
The tectonic evolution of the Paleo-Asian Ocean during the Early to Middle Permian remains a key issue in understanding the geodynamic history of the Central Asian Orogenic Belt. To address this, we conducted petrological, whole-rock geochemical, zircon U–Pb geochronological, and Hf isotopic analyses of Early Permian biotite granodiorite and Middle Permian porphyritic granite from the south-central Great Xing’an Range. Zircon U–Pb dating yields ages of 273.2 ± 1.4 Ma and 264.4 ± 1.5 Ma, indicating that these intrusions emplaced during Early and Middle Permian. Geochemical analyses show that the rocks are characterized by high SiO2 and Al2O3 contents, and low MgO and CaO contents and belong to the metaluminous to weakly peraluminous series, typical of I-type granites. The rocks are enriched in light rare earth elements and large-ion lithophile elements (e.g., Rb, Ba, K), but depleted in heavy rare earth elements and high field strength elements (e.g., Nb, Ta, P, Ti), with weakly negative Eu anomalies. The Early Permian pluton exhibits low-Sr and high-Yb characteristics and thus fall in the plagioclase stability field. In contrast, Middle Permian pluton was derived from magmas generated by partial melting under high-pressure conditions and that, underwent crystal fractionation during ascent to the mid-upper crust, ultimately forming low-Sr and low-Yb type granites. All zircon εHf(t) values are positive (+4.84 to +14.87), with the corresponding two-stage Hf model ages ranging from 345 Ma to 980 Ma, indicating that the magmas were predominantly derived from juvenile crustal materials accreted during the Neoproterozoic to Phanerozoic. Considering these results, we propose that the Paleo-Asian Oceanic plate continued to subduct beneath the Songliao–Xilinhot block to the north during the Early to Middle Permian, with intense subduction and crustal thickening occurring in the Middle Permian. This suggests that the south-central segment of the Great Xing’an Range was situated in an active continental marginal setting during the Early-Middle Permian. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

13 pages, 2784 KB  
Article
Investigation of the Microwave Absorption Properties of Bi1.7Pb0.3Sr2Ca2Cu3O10-Based Ceramic Composites
by Sean Roubion, Krishna Prasad Sharma, Ganesh Dhakal and Guang-Lin Zhao
Solids 2025, 6(4), 67; https://doi.org/10.3390/solids6040067 - 5 Dec 2025
Viewed by 492
Abstract
This study investigates the microwave absorption properties of the cuprate ceramic material Bi1.7Pb0.3Sr2Ca2Cu3O10 (BSCCO) and its composites with bismuth oxide (Bi2O3) in the 4–25 GHz frequency range. Composites [...] Read more.
This study investigates the microwave absorption properties of the cuprate ceramic material Bi1.7Pb0.3Sr2Ca2Cu3O10 (BSCCO) and its composites with bismuth oxide (Bi2O3) in the 4–25 GHz frequency range. Composites with varying BSCCO contents were fabricated and characterized using the Nicolson–Ross–Weir method and Agilent Materials Measurement Software 85071E to determine complex permeability and permittivity. The 4 wt.% BSCCO composite exhibited a peak reflection loss of −32.6 dB at 12.5 GHz, while the 40 wt.% BSCCO composite reached a 52% microwave absorption ratio at 23 GHz. These results demonstrate that microwave absorption is strongly influenced by dielectric properties and the ratio of BSCCO and Bi2O3 composites. This work highlights the potential of BSCCO-Bi2O3 ceramics for microwave absorption applications, particularly in environments experiencing significant temperature gradients due to their thermal stability and electromagnetic performance. Full article
Show Figures

Graphical abstract

15 pages, 1420 KB  
Article
Pyrolysis of Corn Straw for In Situ Dechlorination of Bio-Oil Under the Catalysis of Acidified-γ-Al2O3 Modified with Alkaline and Alkaline Earth Metal Compounds
by Wenkai Zhang, Ze Wang and Songgeng Li
Catalysts 2025, 15(12), 1142; https://doi.org/10.3390/catal15121142 - 4 Dec 2025
Viewed by 299
Abstract
Bio-oil’s high chlorine content severely hinders its application, because of its high corrosivity. Catalytic pyrolysis is an effective method for the dechlorination of bio-oil. Herein, the performances of the acidified-γ-Al2O3 modified with alkaline and alkaline earth metal compounds were investigated. [...] Read more.
Bio-oil’s high chlorine content severely hinders its application, because of its high corrosivity. Catalytic pyrolysis is an effective method for the dechlorination of bio-oil. Herein, the performances of the acidified-γ-Al2O3 modified with alkaline and alkaline earth metal compounds were investigated. It was found that NaOH was a better loading material than Ca(NO3)2 or Mg(NO3)2 in the support of acidified-γ-Al2O3. The optimal loading amount of NaOH was 5 wt% in the range of 1 wt%–15 wt%, and the better calcination temperature was 600 °C, compared with 800 °C. When catalyzed with Na/Al2O3 (5%, 600 °C), the organic chlorides content in bio-oil from the pyrolysis of corn straw at 500 °C was significantly reduced from 150 ppm to 29 ppm, while the inorganic chlorides content barely changed. NaAlO2 was generated in Na/Al2O3 from the solid-phase reaction between NaOH and Al2O3 by calcination. When Na/Al2O3 (5%,600 °C) and Na2CO3 were both used in two layers in a fixed-bed reactor, the organic and inorganic chlorides in bio-oil simultaneously significantly decreased, respectively, to 57 ppm and 23 ppm. The decrease in chlorides benefits the deep dechlorination of bio-oil by absorption or catalytic hydrodechlorination in a post-treatment process, which reduces the consumption of absorbent or hydrogen. Full article
Show Figures

Figure 1

24 pages, 3857 KB  
Article
Soil Ca2SiO4 Supplying Increases Drought Tolerance of Young Arabica Coffee Plants
by Miroslava Rakocevic and Rafael Vasconcelos Ribeiro
Plants 2025, 14(23), 3666; https://doi.org/10.3390/plants14233666 - 2 Dec 2025
Viewed by 336
Abstract
Silicon (Si) may benefit the growth and physiology of various cultivated species, especially under stress conditions. Here, we hypothesized that soil Si supplying as Ca2SiO4 would increase the drought tolerance and water use efficiency of young Coffea arabica L. (Arabica [...] Read more.
Silicon (Si) may benefit the growth and physiology of various cultivated species, especially under stress conditions. Here, we hypothesized that soil Si supplying as Ca2SiO4 would increase the drought tolerance and water use efficiency of young Coffea arabica L. (Arabica coffee) plants, by maintaining shoot water status and photosynthesis under low water availability. To test such a hypothesis, morphological and physiological (leaf water potential, leaf gas exchange, photochemical activity, chlorophyll content) traits of coffee plants were evaluated under varying soil Ca2SiO4 applications (0, 3000, 6000 kg ha−1) and water availability. The chemical composition of plant tissues was evaluated under well-watered conditions after six months of Ca2SiO4 application, with fertilized plants showing higher concentrations of Ca (leaves and roots) and B (all plant organs) as compared to plants not supplied with Ca2SiO4 (control treatment). As there were no changes in Si concentration in plant organs under Ca2SiO4 application, our data indicate that the coffee species is a Si non-accumulator, or at least the cultivar ‘Catuaí Vermelho’ evaluated herein. Additionally, the photosynthetic capacity of coffee plants increased with 6000 kg Ca2SiO4 ha−1 compared to the control under well-watered conditions, as given by increases in gross and net photosynthesis under light saturation, light saturation point, maximum RuBisCO carboxylation rate, maximum electron transport-dependent RuBP regeneration, and maximum rate of triose phosphate use. Such photosynthetic improvements underlined high leaf CO2 assimilation, transpiration, carboxylation efficiency, and chlorophyll content in plants grown under Si supplying and well-watered conditions. The negative impact of water deficit on leaf gas exchange was alleviated by Ca2SiO4 application, but the instantaneous water use efficiency was maintained as similar in both water regimes, as expected for Si non-accumulator species. Morphologically, coffee stem diameter was increased under Ca2SiO4 application, regardless of water regime. In conclusion, our data revealed that high Ca2SiO4 doses benefit coffee performance and also suggest that the use of steel slag—an industrial byproduct rich in Ca2SiO4—can be considered as a sustainable practice for residue recycling in agriculture while improving C. arabica growth and physiology under varying water availability. Full article
Show Figures

Graphical abstract

17 pages, 4844 KB  
Article
Coal Gasification Slag-Derived Ceramsite for High-Efficiency Phosphorus Removal from Wastewater
by Yu Li, Ruifeng Wang, Kexuan Shen, Yi Ye, Hui Liu, Zhanfeng Yang and Shengli An
Nanomaterials 2025, 15(23), 1822; https://doi.org/10.3390/nano15231822 - 1 Dec 2025
Viewed by 233
Abstract
Coal gasification slag (CGS), an industrial solid waste produced during high-temperature (1200–1600 °C) coal gasification, was utilized as the primary raw material, combined with minor additions of coal gangue and calcium oxide, to synthesize ceramsite filter via high-temperature sintering (900–1160 °C) for phosphorus-containing [...] Read more.
Coal gasification slag (CGS), an industrial solid waste produced during high-temperature (1200–1600 °C) coal gasification, was utilized as the primary raw material, combined with minor additions of coal gangue and calcium oxide, to synthesize ceramsite filter via high-temperature sintering (900–1160 °C) for phosphorus-containing wastewater treatment. The resulting ceramsite was evaluated for compressive strength, apparent porosity, water absorption, mineral phase composition, hydrolysis properties, and phosphorus removal performance. Experimental results revealed that increasing sintering temperature and calcium oxide content shifted the dominant crystalline phases from anorthite and hematite to gehlenite, anorthite, wollastonite, and esseneite, promoting the formation of porous structures. This transition increased apparent porosity while reducing compressive strength. Under optimal conditions (1130 °C, 20 wt.% CaO, 1 h sintering), the ceramsite (CM-20-1130) exhibited an apparent porosity of 43.12%, compressive strength of 3.88 MPa, apparent density of 1.084 g/cm3, and water absorption of 33.20%. The high porosity and abundant gehlenite and wollastonite phases endowed CM-20-1130 with enhanced hydrolysis capacity. Static phosphorus removal experiments demonstrated a maximum phosphorus removal capacity of 2.77 mg/g, driven by the release of calcium and hydroxide ions from gehlenite and wollastonite, which form calcium-phosphate precipitates on the ceramsite surface, enabling efficient phosphorus removal from simulated wastewater. Full article
Show Figures

Figure 1

Back to TopTop