Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,167)

Search Parameters:
Keywords = CYP27B1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 172
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 1584 KiB  
Article
Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy
by Krzysztof Piątek, Grażyna Kurzawińska, Marcin Ożarowski, Piotr Józef Olbromski, Adam Kamiński, Maciej Brązert, Tomasz M. Karpiński, Wiesław Markwitz and Agnieszka Seremak-Mrozikiewicz
Int. J. Mol. Sci. 2025, 26(15), 7456; https://doi.org/10.3390/ijms26157456 (registering DOI) - 1 Aug 2025
Viewed by 82
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is [...] Read more.
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is to evaluate the association between CYP7A1, NR1H1, RXRA, and PPARA gene variants and risk of ICP. Five single nucleotide variants (SNVs), rs3808607 (CYP7A1), rs56163822 (NR1H4), rs1800206 (PPARA), rs749759, and rs11381416 (NR2B1), were genotyped in a group of 96 ICP and 211 controls. The T allele of the CYP7A1 (rs3808607) variant may be a protective factor against ICP risk (OR = 0.697, 95% CI: 0.495–0.981, p = 0.038). Genetic model analysis showed that rs3808607 was associated with decreased risk of ICP under dominant (OR = 0.55, 95% CI: 0.32–3.16, p = 0.032, AIC = 380.9) and log-additive models (OR = 0.71, 95% CI: 0.51–1.00, p = 0.046, AIC = 381.4). The A insertion in the rs11381416 NR2B1 variant was associated with the degree of elevation in the liver function tests TBA (34.3 vs. 18.8 μmol/L, p = 0.002), ALT (397.0 vs. 213.0 IU/L, p = 0.017), and AST (186.0 vs. 114.4 IU/L, p = 0.032) in ICP women. Results indicate an association between the CYP7A1 rs3808607 and the risk of ICP and the association of the rs11381416 of the NR2B1 receptor with higher values of liver function tests in women with ICP. A better understanding of the cooperation of proteins involved in BA metabolism may have important therapeutic implications in ICP and other hepatobiliary diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 103
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

14 pages, 7293 KiB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 264
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

20 pages, 2893 KiB  
Review
Breast Cancer Cytochromes P450: Chemopreventive and/or Therapeutic Targets for Naturally Occurring Phytochemicals
by Hanna Szaefer, Barbara Licznerska, Hanna Sobierajska and Wanda Baer-Dubowska
Molecules 2025, 30(15), 3079; https://doi.org/10.3390/molecules30153079 - 23 Jul 2025
Viewed by 291
Abstract
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes [...] Read more.
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes P450 (CYPs) play key roles in estrogen synthesis and catabolism, leading to potentially carcinogenic metabolites. CYP19 (aromatase) catalyzes the conversion of androgens to estrogens. The estrogen receptor-dependent pathway induces cell growth. CYP1 family enzymes, particularly CYP1B1, are involved in the redox cycling of estrogen metabolites and the subsequent estrogen–DNA adducts formation. Naturally occurring phytochemicals of different classes were shown to modulate the CYP expression and activity in cell-free systems or breast cancer cells. One of the most promising CYP19 inhibitors is chrysin (flavone), while stilbenes seem to be the most effective CYP1B1 inhibitors. In most cases, their effect is not specific. Therefore, different approaches are made to find the best candidate for the drug prototype of a new therapeutic or chemopreventive agent and to improve its pharmacokinetic parameters. This review presents and discusses the possible effects on major CYPs involved in estrogen metabolism by phytochemicals from the most investigated classes, namely flavonoids, stilbenes, and glucosinolates breakdown products. Full article
Show Figures

Figure 1

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 295
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

15 pages, 518 KiB  
Review
Advances in Bract Coloration: Diversity, Pigment Synthesis, and Regulatory Mechanisms in Ornamental Plants
by Xiaoyang Li, Yang Liu, Zhiquan Cai and Yiwei Zhou
Plants 2025, 14(14), 2155; https://doi.org/10.3390/plants14142155 - 13 Jul 2025
Viewed by 453
Abstract
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as [...] Read more.
Bract coloration in ornamental plants is a complex trait governed by diverse pigments (chlorophylls, anthocyanins, betalains, and carotenoids), their biosynthetic pathways, and regulatory networks. While previous research has primarily focused on floral pigmentation, studies on bract coloration—particularly in species where bracts serve as the primary ornamental feature—have received less attention until recent advances. This review synthesizes current understanding of bract color diversity, pigment biochemistry, and molecular regulation in key species including Bougainvillea, Euphorbia pulcherrima, Anthurium andraeanum, Curcuma alismatifolia, and Zantedeschia hybrida. Anthocyanins predominantly contribute to red-to-purple hues, while betalains generate red, purple, or yellow coloration through differential accumulation of betacyanins and betaxanthins. Developmental color transitions are mediated by chlorophyll degradation and carotenoid dynamics. The spatiotemporal regulation of pigment accumulation involves coordinated interactions between key structural genes (CHS, DFR, ANS for anthocyanins; DODA, CYP76AD1 for betalains), transcription factors (MYB, bHLH, WRKY), and plant growth regulators (BAP, GA, MeJA). Despite these advances, significant knowledge gaps remain in genetic inheritance patterns, epigenetic regulation, cross-pigment pathway crosstalk, and environmental modulation. Future research directions should integrate multi-omics approaches, wild germplasm resources, and gene-editing technologies to develop novel breeding strategies for bract color improvement. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

12 pages, 697 KiB  
Article
Dietary Gluten-Free Regimen Does Not Affect the Suppression of the Inflammatory Response in the Arachidonic Acid Cascade in Hashimoto’s Disease
by Małgorzata Szczuko, Lidia Kwiatkowska, Urszula Szczuko, Leon Rudak, Karina Ryterska, Anhelli Syrenicz, Jakub Pobłocki and Arleta Drozd
Int. J. Mol. Sci. 2025, 26(13), 6507; https://doi.org/10.3390/ijms26136507 - 6 Jul 2025
Viewed by 509
Abstract
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). [...] Read more.
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). Eicosanoids are formed via the cyclooxygenase (COX), lipoxygenase (LOX), and monooxygenase (CYP450) pathways with arachidonic acid (ARA), resulting in the production of epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs). These eicosanoids can act in an autocrine or paracrine manner on target cells. This study aimed to examine whether a gluten-free diet (GFD) can modulate the enzymatic pathways of the pro-inflammatory ARA cascade. The study material consisted of serum samples from Caucasian female patients with HD aged 18–55 years. Participants were enrolled in the study based on the presence of an ultrasound characteristic of HD, and elevated serum levels of anti-thyroid peroxidase antibodies and anti-thyroglobulin antibodies. Patients with confirmed celiac disease did not participate in the study. A total of 78 samples were analyzed, with 39 collected after 3 months of following a GFD. Eicosanoids (thromboxane B2, prostaglandin E2, leukotriene B4, and 16R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (16-RS HETE)) were extracted using high-performance liquid chromatography. The contribution of leukotriene (LTB) was analyzed in the LOX pathway, prostaglandins (PGE2) and thromboxane (TXB2) were selected for the involvement of the COX pathway, and 16RS HETE was used for the CYP450 pathway. All parameters were analyzed before and after a 3-month dietary intervention that included a gluten-free diet. In the obtained results, only one mediator, leukotriene B4, was significant (p < 0.05). The mean level on the initial visit was 0.202 ± 0.11 (SD), while it was 0.421 ± 0.27 (SD) on the subsequent visit, indicating a significant increase in its level after implementing a GFD. Although there was a trend in the CYP 450 pathway of decreased 16-RS HETE, the presented correlations show that thromboxane B4 and 16RS-HETE were positively correlated with the body mass and body fat mass of the examined patients. There was a trend in the CYP 450 pathway of decreased 16-RS HETE after GFD. Thromboxane B4 and 16RS-HETE levels before GFD were positively correlated with the body mass and body fat mass of the examined patients. A gluten-free diet in HD does not suppress the synthetic pathways of LOX, COX, or cytochrome P450 (CYP450). The level of adipose tissue has a greater impact on the inflammatory processes in HD than a gluten-free diet. This study does not confirm the suppressive effect of a gluten-free diet on the pro-inflammatory arachidonic acid cascade in any of the three analyzed mediator synthesis LOX, COX, CYP450 pathways. Full article
Show Figures

Figure 1

18 pages, 6772 KiB  
Article
Integrated Multi-Omics Analysis Reveals the Regulatory Mechanism of Peanut Skin Procyanidins on Lipid Metabolism in High-Fat-Diet-Induced Obese Mice
by Jinxin Shen, Yi Zhou, Daijun Yang, Ruonan Liu, Xiaoling Zhu and Rui Liu
Nutrients 2025, 17(13), 2228; https://doi.org/10.3390/nu17132228 - 5 Jul 2025
Viewed by 544
Abstract
Background: Obesity-associated metabolic disorders represent a critical global health challenge, which necessitates innovative strategies targeting lipid metabolism. Peanut skin procyanidins (PSPs), abundant bioactive compounds derived from agricultural by-products, show potential in lipid regulation, but molecular mechanisms remain unclear. Methods: This study [...] Read more.
Background: Obesity-associated metabolic disorders represent a critical global health challenge, which necessitates innovative strategies targeting lipid metabolism. Peanut skin procyanidins (PSPs), abundant bioactive compounds derived from agricultural by-products, show potential in lipid regulation, but molecular mechanisms remain unclear. Methods: This study integrated hepatic metabolomics, network pharmacology, and gut microbiota analysis to systematically decipher the mechanisms for PSP to ameliorate high-fat diet (HFD)-induced lipid metabolism disorders. Results: PSP intervention significantly attenuated HFD-induced increases in LDL-C, TG, and TC levels and effectively mitigated hepatic lipid accumulation. Metabolomics revealed that PSP reshaped hepatic lipid dynamics by modulating glycerophospholipid, linoleic acid, arachidonic acid, tryptophan, and nitrogen metabolism. Subsequent network pharmacology identified PLA2G10, PLA2G5, PLA2G2A, and CYP1B1 as the core targets, and PSP could markedly suppress their HFD-induced overexpression. Furthermore, PSP selectively reshaped the gut microbiota, enriching beneficial genera such as Akkermansia and Bacteroides while reducing the abundance of harmful bacteria within Firmicutes. PICRUSt-based functional prediction indicated that PSP alters gut microbial glutamine synthetase activity. Conclusions: Mechanistically, PSP regulates lipid metabolism by downregulating PLA2G10, PLA2G5, PLA2G2A, and CYP1B1 expression, remodeling gut microbiota structure, and increasing hepatic glutamine level. These findings provide novel insights into value-added utilization of agricultural byproducts and development of targeted intervention strategies for metabolic diseases. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

29 pages, 4734 KiB  
Review
The Cytochrome CYP4 in Breast and Other Cancers
by Gloria M. Calaf, Leodan A. Crispin, Felipe Ossandon-Acosta, Summer Perez-Tapia and Luis N. Ardiles
Biology 2025, 14(7), 812; https://doi.org/10.3390/biology14070812 - 4 Jul 2025
Viewed by 472
Abstract
Breast cancer has emerged as the leading cause of death among females worldwide. The CYPs play a crucial role in carcinogenesis. The role of the CYP enzyme family, particularly the CYP4 family, in cancer biology has attracted significant attention in recent years. Bioinformatics [...] Read more.
Breast cancer has emerged as the leading cause of death among females worldwide. The CYPs play a crucial role in carcinogenesis. The role of the CYP enzyme family, particularly the CYP4 family, in cancer biology has attracted significant attention in recent years. Bioinformatics indicated that breast cancer is influenced by genes like CYP4B1, CYP4F12, and CYP4F3. CYP4B1 has a non-significant correlation with BRCA1 and BRCA2, but a positive correlation with ESR1 in the basal subtype. CYP4F12 has a significant positive correlation with BRCA1 in the Luminal B subtype, but not with BRCA2, and a positive correlation with ESR1 in the basal subtype. CYP4F3 has a significant positive correlation with BRCA1 in the Luminal A and Luminal B subtypes and with BRCA2 in Her2, Luminal A, and Luminal B subtypes, and a positive correlation with ESR1 in the basal subtype and Luminal B patients. This article aims to emphasize the functional importance of CYP4, highlighting the complex interplay between CYP enzymes and estrogen receptors in breast cancer, and indicating new avenues for future research and potential therapeutic interventions. In addition, their expression profiles and alterations were examined across various organs and cancer types. These findings underscore the potential relevance of these genes as predictive biomarkers and prospective therapeutic targets in specific cancer settings. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

14 pages, 1035 KiB  
Article
Interaction Between CYP1A2-Related Caffeine Metabolism and Vitamin B12/Folate Status in Patients with Metabolic Syndrome: A Novel Biomarker Axis
by Laura Claudia Popa, Ahmed Abu-Awwad, Simona Sorina Farcas, Simona-Alina Abu-Awwad and Nicoleta Ioana Andreescu
Metabolites 2025, 15(7), 450; https://doi.org/10.3390/metabo15070450 - 4 Jul 2025
Viewed by 706
Abstract
Background/Objectives: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as [...] Read more.
Background/Objectives: The prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, driven by complex genetic, nutritional, and environmental factors. Caffeine metabolism, primarily mediated by CYP1A2 (though other enzymes such as CYP1A1 may also be involved), and the status of micronutrients such as vitamin B12 and folate have each been linked to MetS components. This study investigates the interaction between CYP1A2 genetic variants and vitamin B12/folate levels in patients with MetS, aiming to identify a novel biomarker axis with potential implications for personalized interventions. Methods: This cross-sectional observational study included 356 adults diagnosed with MetS, recruited from Western Romania. Genotyping for CYP1A2 rs762551 was performed using TaqMan PCR assays. Daily caffeine intake was assessed via validated dietary questionnaires. Serum levels of folate and vitamin B12 were measured using chemiluminescence immunoassays. Results: AA genotype patients with a moderate coffee intake (1–2 cups/day) had significantly higher folate and B12 levels than AC or CC carriers. These nutritional advantages were associated with more favorable BMI and triglyceride profiles. The interaction between CYP1A2 genotype and coffee intake was significant for both micronutrient levels and metabolic parameters, particularly in the AA group. No significant associations were found in high-coffee-intake subgroups (≥3 cups/day). Conclusions: The interplay between CYP1A2 polymorphisms and B-vitamin status may represent a clinically relevant biomarker axis in MetS. Moderate caffeine intake in slow metabolizers (AA genotype) may boost micronutrient status and metabolic health, supporting personalized nutrition. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 679 KiB  
Article
Pharmacogenetic Biomarkers of Ibrutinib Response and Toxicity in Chronic Lymphocytic Leukemia: Insights from an Observational Study
by Noelia Pérez-Gómez, Antonio Sanz-Solas, Beatriz Cuevas, María Victoria Cuevas, Cristina Alonso-Madrigal, Javier Loscertales, Rodolfo Álvarez-Nuño, Covadonga García, Pablo Zubiaur, Gonzalo Villapalos-García, Raúl Miguel Parra-Garcés, Gina Mejía-Abril, Raquel Alcaraz, Raquel Vinuesa, Francisco Javier Díaz-Gálvez, María González-Oter, Natalia García-Sancha, Raúl Azibeiro-Melchor, Tomás José González-López, Francisco Abad-Santos, Jorge Labrador and Miriam Saiz-Rodríguezadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(7), 996; https://doi.org/10.3390/ph18070996 - 2 Jul 2025
Viewed by 398
Abstract
Background/Objectives: Ibrutinib is a selective Bruton’s tyrosine kinase inhibitor approved for the treatment of chronic lymphocytic leukemia (CLL). This drug exhibits significant variability in response and toxicity profile, possibly due to genetic polymorphisms in drug-metabolizing enzymes and transporters. The aim of this observational [...] Read more.
Background/Objectives: Ibrutinib is a selective Bruton’s tyrosine kinase inhibitor approved for the treatment of chronic lymphocytic leukemia (CLL). This drug exhibits significant variability in response and toxicity profile, possibly due to genetic polymorphisms in drug-metabolizing enzymes and transporters. The aim of this observational study is to address interindividual variability in the efficacy and safety of ibrutinib treatment in 49 CLL patients. Methods: Genotyping of nine polymorphisms was performed by quantitative polymerase chain reaction (qPCR) using a ViiA7® PCR Instrument and TaqMan assays, and ibrutinib plasma concentrations were determined using high-performance liquid chromatography coupled to a tandem mass spectrometry detector (HPLC-MS/MS). Results: Our study confirmed a high response rate, with 62% of patients achieving complete remission (CR), 9% CR with incomplete hematologic recovery (CRi), and 24% partial remission (PR). The impact of genetic polymorphisms on the CR rate was evaluated, revealing no statistically significant associations for CYP3A4, CYP3A5, ABCB1, ABCG2, and SLCO1B1 variants. However, a tendency was observed for patients carrying ABCB1 rs1128503, rs1045642 T/T, or rs2032582 A/A genotypes to achieve a higher CR rate. Adverse drug reactions (ADRs) were frequent, with vascular disorders (39%) and infections (27%) being the most common. Genetic polymorphisms influenced ibrutinib toxicity, with CYP3A4 *1/*22 appearing to be protective against overall ADRs. Conclusions: The unexpected association between CYP3A4 *1/*22 genotype and lower ADR incidence, as well as the trend toward improved treatment response in patients carrying ABCB1 genotypes, suggests compensatory metabolic mechanisms. However, given the small sample size, larger studies are needed to confirm these findings and their clinical implications, while also aiming to uncover other non-genetic factors that may contribute to a better understanding of the variability in treatment response and toxicity. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Figure 1

21 pages, 30238 KiB  
Article
Transcriptome- and Metabolome-Based Regulation of Growth, Development, and Bioactive Compounds in Salvia miltiorrhiza (Lamiaceae) Seedlings by Different Phosphorus Levels
by Kewei Zuo, Lingxing Chen, Tian Li, Shuang Liu and Chenlu Zhang
Int. J. Mol. Sci. 2025, 26(13), 6253; https://doi.org/10.3390/ijms26136253 - 28 Jun 2025
Cited by 1 | Viewed by 313
Abstract
Phosphorus (P), as one of the essential bulk elements for plant growth and development, plays an important role in root growth, accumulation of secondary metabolites, and regulation of gene expression. In Salvia miltiorrhiza Bunge (S. miltiorrhiza), an important medicinal plant, the [...] Read more.
Phosphorus (P), as one of the essential bulk elements for plant growth and development, plays an important role in root growth, accumulation of secondary metabolites, and regulation of gene expression. In Salvia miltiorrhiza Bunge (S. miltiorrhiza), an important medicinal plant, the accumulation of its active components is closely related to the level of phosphorus supply, but the molecular regulatory mechanism of phosphorus treatment in the growth and secondary metabolism of S. miltiorrhiza is not clear. In this study, we investigated the effects of low phosphorus (P2), moderate phosphorus (P4), and high phosphorus (P6) treatment on the growth and development of S. miltiorrhiza. seedlings, the accumulation of bioactive compounds, and their transcriptional regulation using transcriptomic and metabolomic analyses, and identified the key regulatory genes in the biosynthesis pathways of tanshinone and salvianolic acid. The findings revealed that S. miltiorrhiza biomass exhibited a “peaked” response to phosphorus concentration, peaking at 0.625 mmol·L−1. At this optimal concentration, all four batches achieved maximum root length, root weight, and leaf weight: Batch I (11.3 cm, 2.34 g, 1.62 g), Batch II (12.7 cm, 2.67 g, 1.89 g), Batch III (13.8 cm, 2.85 g, 2.04 g), and Batch IV (15.6 cm, 3.51 g, 2.44 g). Both lower and higher concentrations resulted in growth inhibition and reduced bioactive compound accumulation. Transcription factors associated with root growth and development included bHLH, MYB, and WRKY; in particular, the bZIP23 transcription factor was highly expressed under abnormal phosphorus supply conditions. In addition, the biosynthetic pathways of tanshinone and salvianolic acid were elucidated, and key genes related to the synthesis pathways (CPS, KSL, CYP, PAL, HPPR, and RAS) were identified. The expression of several TFs (such as SmCPS1, SmCYP76AH3, SmCYP76AH1, SmGGPPS1, and SmRAS1) was found to be correlated with tanshinone and salvianolic acid synthesis. The present study provides a theoretical basis for further revealing the molecular mechanism of phosphorus regulation of growth, development, and secondary metabolism of S. miltiorrhiza and provides potential targets for efficient cultivation and molecular breeding of S. miltiorrhiza. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3888 KiB  
Article
Gut Microbiota-Bile Acid Crosstalk Contributes to Meat Quality and Carcass Traits of Tan and Dorper Sheep
by Lixian Yang, Ran Cui, Zhen Li, Mingming Xue, Shuheng Chan, Pengxiang Xue, Xiaoyang Yang, Longmiao Zhang, Fenghua Lv and Meiying Fang
Int. J. Mol. Sci. 2025, 26(13), 6224; https://doi.org/10.3390/ijms26136224 - 27 Jun 2025
Viewed by 393
Abstract
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, [...] Read more.
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, BAs are converted by colonic microbiota via bile salt hydrolase (BSH) and dehydroxylases into secondary BAs, which activate BA receptors to regulate host lipid and glucose metabolism. This study analyzed colonic BA profiles in 8-month-old Tan and Dorper sheep, integrating microbiome and longissimus dorsi muscle transcriptome data to investigate the gut–muscle axis in meat-quality and carcass trait regulation. Results showed that Tan sheep had 1.6-fold higher secondary BA deoxycholic acid (DHCA) levels than Dorper sheep (p < 0.05), whereas Dorper sheep accumulated conjugated primary BAs glycocholic acid (GCA) and tauro-α-muricholic acid (p < 0.05). Tan sheep exhibited downregulated hepatic BA synthesis genes, including cholesterol 7α-hydroxylase (CYP7A1) and 27-hydroxylase (CYP27A1), alongside upregulated transport genes such as bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), and ATP-binding cassette subfamily B member 4 (ABCB4), with elevated gut BSH activity (p < 0.05). DHCA was strongly correlated with g_Ruminococcaceae_UCG-014, ENSOARG00000001393, and ENSOARG00000016726, muscle fiber density, diameter, and linoleic acid (C18:2n6t) (|r| > 0.5, p < 0.05). In contrast, GCA was significantly associated with g_Lachnoclostridium_10, g_Rikenellaceae_RC9_gut_group, ENSOARG0000001232, carcass weight, and net meat weight (|r| > 0.5, p < 0.05). In conclusion, breed-specific colonic BA profiles were shaped by host–microbiota interactions, with DHCA potentially promoting meat quality in Tan sheep via regulation of muscle fiber development and fatty acid deposition, and GCA influencing carcass traits in Dorper sheep. This study provides novel insights into the gut microbiota–bile acid axis in modulating ruminant phenotypic traits. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

20 pages, 5356 KiB  
Article
Structure–Function Analysis of the Steroid-Hydroxylating Cytochrome P450 109 (CYP109) Enzyme Family
by Siphesihle M. Msweli, Tiara Padayachee, Thembeka Khumalo, David R. Nelson, David C. Lamb and Khajamohiddin Syed
Int. J. Mol. Sci. 2025, 26(13), 6219; https://doi.org/10.3390/ijms26136219 - 27 Jun 2025
Viewed by 423
Abstract
Steroids are found in bacteria and eukaryotes, and genes potentially encoding steroid metabolic enzymes have also been identified in giant viruses. For decades, hydroxylated steroids have been utilized in medicine to treat various human diseases. The hydroxylation of steroids can be achieved using [...] Read more.
Steroids are found in bacteria and eukaryotes, and genes potentially encoding steroid metabolic enzymes have also been identified in giant viruses. For decades, hydroxylated steroids have been utilized in medicine to treat various human diseases. The hydroxylation of steroids can be achieved using microbial enzymes, especially cytochrome P450 monooxygenases (CYPs/P450s) and is well documented. Understanding the structural determinants that govern the regio- and stereoselectivity of steroid hydroxylation by P450s is essential in order to fully exploit their potential. Herein, we present a comprehensive analysis of the steroid-hydroxylating CYP109 family across the domains of life and delineate the structural determinants that govern steroid hydroxylation. Data mining, annotation, and phylogenetic analysis revealed that CYP109 family members are highly populated in bacteria, and indeed, these members passed from bacteria to archaea by horizontal gene transfer, leading to the evolution of P450s in archaea. Analysis of twelve CYP109 crystal structures revealed large, flexible, and dynamic active site cavities that can accommodate multiple ligands. The correct positioning and orientation of the steroid in the active site cavity and the nature of the C17 substituent on the steroid molecule influence catalysis. In an analogous fashion to the CYP107 family, the amino acid residues within the CYP109 binding pocket involve hydrophilic and hydrophobic interactions, influencing substrate orientations and anchoring and determining the site of hydroxylation and catalytic activity. A handful of amino acids, such as Val84, Val292, and Ser387 in CYP109B4, have been found to play a role in determining the catalytic regiospecificity, and a single amino acid, such as Arg74 in CYP109A2, has been found to be essential for the enzymatic activity. This work serves as a reference for the precise understanding of CYP109 structure–function relationships and for P450 enzymes in general. The findings will guide the genetic engineering of CYP109 enzymes to produce valuable steroid molecules of medicinal and biotechnological importance. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop