ijms-logo

Journal Browser

Journal Browser

Molecular Regulation of Animal Fat and Muscle Development

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 352

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
Interests: fat deposition; muscle development; adipocyte; bone metabolism; pig genome

Special Issue Information

Dear Colleagues,

The regulation of animal fat and muscle development is crucial for livestock production, meat quality, and metabolic health. Adipogenesis, the process of fat cell formation, is primarily controlled by transcription factors such as PPARγ and C/EBPs, which drive the differentiation of preadipocytes into adipocytes. Similarly, the development of muscle tissue is regulated by myogenic regulatory factors (MRFs) like MyoD, Myf5, and myogenin, which guide the proliferation and maturation of muscle cells. Beyond genetic regulation, external factors such as food additives and dietary components significantly influence fat deposition and muscle growth. Additives like growth promoters, antioxidants, and feed supplements can regulate metabolic pathways and hormonal responses thereby altering fat deposition and muscle development. In this Special Issue, we showcase recent studies addressing the genetic, hormonal, and dietary influences on fat and muscle regulation. This compilation aims to provide a comprehensive perspective on optimizing animal growth and meat quality while ensuring sustainable practices in livestock production.

Dr. Taiyong Yu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal fat
  • muscle development
  • adipogenesis
  • PPARγ
  • C/EBPs
  • food additives
  • metabolic pathways
  • meat quality
  • preadipocytes
  • MyoD

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 8179 KiB  
Article
Unveiling Key Genes and Crucial Pathways in Goose Muscle Satellite Cell Biology Through Integrated Transcriptomic and Metabolomic Analyses
by Yi Liu, Cui Wang, Mingxia Li, Yunzhou Yang, Huiying Wang, Shufang Chen and Daqian He
Int. J. Mol. Sci. 2025, 26(8), 3710; https://doi.org/10.3390/ijms26083710 - 14 Apr 2025
Viewed by 197
Abstract
Skeletal muscle satellite cells (SMSCs) are quiescent stem cells located in skeletal muscle tissue and function as the primary reservoir of myogenic progenitors for muscle growth and regeneration. However, the molecular and metabolic mechanisms governing their differentiation in geese remain largely unexplored. This [...] Read more.
Skeletal muscle satellite cells (SMSCs) are quiescent stem cells located in skeletal muscle tissue and function as the primary reservoir of myogenic progenitors for muscle growth and regeneration. However, the molecular and metabolic mechanisms governing their differentiation in geese remain largely unexplored. This study comprehensively examined the morphological, transcriptional, and metabolic dynamics of goose SMSCs across three critical differentiation stages: the quiescent stage (DD0), the differentiation stage (DD4), and the late differentiation stage (DD6). By integrating transcriptomic and metabolomic analyses, stage-specific molecular signatures and regulatory networks involved in SMSC differentiation were identified. Principal component analysis revealed distinct clustering patterns in gene expression and metabolite profiles across these stages, highlighting dynamic shifts in lipid metabolism and myogenesis. The PPAR signaling pathway emerged as a key regulator, with crucial genes such as PPARG, IGF1, ACSL5, FABP5, and PLIN1 exhibiting differentiation-dependent expression patterns. Notably, PPARG and IGF1 displayed negative correlations with adenosine and L-carnitine levels, suggesting their role in metabolic reprogramming during myotube formation. Additionally, MYOM2 and MYBPC1 exhibited stage-specific regulation and positively correlated with 2,3-dimethoxyphenylamine. This study provides a foundational framework for understanding muscle development and regeneration, offering valuable insights for both agricultural and biomedical research. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

Back to TopTop