Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = CSF1R

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2207 KiB  
Article
CSF1R-Dependent Microglial Repopulation and Contact-Dependent Inhibition of Proliferation In Vitro
by Rie Nakai, Kuniko Kohyama, Yasumasa Nishito and Hiroshi Sakuma
Brain Sci. 2025, 15(8), 825; https://doi.org/10.3390/brainsci15080825 (registering DOI) - 31 Jul 2025
Viewed by 136
Abstract
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 [...] Read more.
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 weeks to monitor their repopulation ability in vitro. Flow cytometry and immunocytochemistry revealed that anti-CD11b bead treatment effectively eliminated >95% of microglia in mixed glial cultures. Following removal, the number of CX3CR1-positive microglia gradually increased; when a specific threshold was reached, repopulation ceased without any discernable rise in cell death. Cell cycle and 5-ethynyl-2′-deoxyuridine incorporation assays suggested the active proliferation of repopulating microglia at d7. Time-lapse imaging demonstrated post-removal division of microglia. Colony-stimulating factor 1 receptor-phosphoinositide 3-kinase-protein kinase B signaling was identified as crucial for microglial repopulation, as pharmacological inhibition or neutralization of the pathway significantly abrogated repopulation. Transwell cocultures revealed that resident microglia competitively inhibited microglial proliferation probably through contact inhibition. This in vitro microglial removal system provides valuable insights into the mechanisms underlying microglial proliferation. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Graphical abstract

12 pages, 1243 KiB  
Article
The Pharmacological Evidences for the Involvement of AhR and GPR35 Receptors in Kynurenic Acid-Mediated Cytokine and Chemokine Secretion by THP-1-Derived Macrophages
by Katarzyna Sawa-Wejksza, Jolanta Parada-Turska and Waldemar Turski
Molecules 2025, 30(15), 3133; https://doi.org/10.3390/molecules30153133 - 26 Jul 2025
Viewed by 400
Abstract
Kynurenic acid (KYNA), a tryptophan metabolite, possesses immunomodulatory properties, although the molecular mechanism of this action has not yet been resolved. In the present study, the effects of KYNA on the secretion of selected cytokines and chemokines by macrophages derived from the human [...] Read more.
Kynurenic acid (KYNA), a tryptophan metabolite, possesses immunomodulatory properties, although the molecular mechanism of this action has not yet been resolved. In the present study, the effects of KYNA on the secretion of selected cytokines and chemokines by macrophages derived from the human THP-1 cell line are investigated. Furthermore, the involvement of the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 35 (GPR35) in mediating the effects of KYNA was examined. In lipopolysaccharide (LPS)-stimulated THP-1-derived macrophages, KYNA significantly reduced IL-6 and CCL-2, but increased IL-10 and M-CSF levels. AhR antagonist CH-223191 reduced the KYNA influence on IL-6, CCL-2, and M-CSF production, while the GPR35 antagonist, ML-145, blocked KYNA-induced IL-10 production. Furthermore, it was shown that THP-1 derived macrophages were capable of synthesizing and releasing KYNA and that its production was increased in the presence of LPS. These findings suggest that THP-1-derived macrophages are a source of KYNA and that KYNA modulates inflammatory responses predominantly through AhR and GPR35 receptors. Our study provides further evidence for the involvement of macrophages in immunomodulatory processes that are dependent on AhR and GPR35 receptors, as well as the potential role of KYNA in these phenomena. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3307 KiB  
Article
Expanding the Spectrum of CSF3R-Mutated Myeloid Neoplasm Beyond Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia: A Comprehensive Analysis of 13 Cases
by Neha Seth, Judith Brody, Peihong Hsu, Jonathan Kolitz, Pratik Q. Deb and Xinmin Zhang
J. Clin. Med. 2025, 14(15), 5174; https://doi.org/10.3390/jcm14155174 - 22 Jul 2025
Viewed by 271
Abstract
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid [...] Read more.
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid neoplasms with CSF3R alterations. Patients (median age, 77 years) were categorized into groups with a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) (n = 5), acute leukemia (n = 4), and other myeloid neoplasms (n = 4) based on the WHO 2022 and ICC criteria. Results: The CSF3R p.Thr618Ile mutation was most frequent (11/13), with additional pathogenic variants including p.Gln743Ter and frameshift mutations affecting the cytoplasmic tail. Variant allele frequencies (VAFs) ranged from 2% to 49%, with the highest median VAF in the MDS/MPN group. Co-mutations varied by subtype; MDS/MPN, NOS, and CMML cases frequently harbored mutations in epigenetic regulators (ASXL1, TET2) and splicing factors (SF3B1, SRSF2, ZRSR2), while acute leukemia cases showed alterations in JAK3, STAT3, and NRAS. Survival analysis revealed distinct patterns across the three diagnostic groups, with MDS/MPN having the poorest prognosis. Conclusion: This study expands the recognized spectrum of CSF3R-related myeloid neoplasms and highlights the clinical and molecular heterogeneity associated with these mutations, emphasizing the need for comprehensive molecular profiling and the potential for targeted therapies. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Acute Myeloid Leukemia)
Show Figures

Figure 1

16 pages, 417 KiB  
Review
Potential Biological and Genetic Links Between Dementia and Osteoporosis: A Scoping Review
by Abayomi N. Ogunwale, Paul E. Schulz, Jude K. des Bordes, Florent Elefteriou and Nahid J. Rianon
Geriatrics 2025, 10(4), 96; https://doi.org/10.3390/geriatrics10040096 - 20 Jul 2025
Viewed by 289
Abstract
Background: The biological mediators for the epidemiologic overlap between osteoporosis and dementia are unclear. We undertook a scoping review of clinical studies to identify genetic and biological factors linked with these degenerative conditions, exploring the mechanisms and pathways connecting both conditions. Methods: Studies [...] Read more.
Background: The biological mediators for the epidemiologic overlap between osteoporosis and dementia are unclear. We undertook a scoping review of clinical studies to identify genetic and biological factors linked with these degenerative conditions, exploring the mechanisms and pathways connecting both conditions. Methods: Studies selected (1) involved clinical research investigating genetic factors or biomarkers associated with dementia or osteoporosis, and (2) were published in English in a peer-reviewed journal between July 1993 and March 2025. We searched Medline Ovid, Embase, PsycINFO, the Cochrane Library, the Web of Science databases, Google Scholar, and the reference lists of studies following the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR). Results: Twenty-three studies were included in this review. These explored the role of the APOE polymorphism (n = 2) and the APOE4 allele (n = 13), associations between TREM2 mutation and late onset AD (n = 1), and associations between amyloid beta and bone remodeling (n = 1); bone-related biomarkers like DKK1, OPG, and TRAIL as predictors of cognitive change (n = 2); extracellular vesicles as bone–brain communication pathways (1); and the role of dementia-related genes (n = 1), AD-related CSF biomarkers (n = 1), and parathyroid hormone (PTH) (n = 1) in osteoporosis–dementia pathophysiology. Conclusions: Bone-related biomarkers active in the Wnt/β-Catenin pathway (Dkk1 and sclerostin) and the RANKL/RANK/OPG pathway (OPG/TRAIL ratio) present consistent evidence of involvement in AD and osteoporosis development. Reports proposing APOE4 as a causal genetic link for both osteoporosis and AD in women are not corroborated by newer observational studies. The role of Aβ toxicity in osteoporosis development is unverified in a large clinical study. Full article
Show Figures

Figure 1

14 pages, 846 KiB  
Article
Uncovering Allele-Specific Expression Patterns Associated with Sea Lice (Caligus rogercresseyi) Burden in Atlantic Salmon
by Pablo Cáceres, Paulina López, Carolina Araya, Daniela Cichero, Liane N. Bassini and José M. Yáñez
Genes 2025, 16(7), 841; https://doi.org/10.3390/genes16070841 - 19 Jul 2025
Viewed by 356
Abstract
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain [...] Read more.
Background/Objetives: Sea lice (Caligus rogercresseyi) pose a major threat to Atlantic salmon (Salmo salar) aquaculture by compromising fish health and reducing production efficiency. While genetic variation in parasite load has been reported, the molecular mechanisms underlying this variation remain unclear. Methods: two sea lice challenge trials were conducted, achieving high infestation rates (47.5% and 43.5%). A total of 85 fish, selected based on extreme phenotypes for lice burden (42 low, 43 high), were subjected to transcriptomic analysis. Differential gene expression was integrated with allele-specific expression (ASE) analysis to uncover cis-regulatory variation influencing host response. Results: Sixty genes showed significant ASE (p < 0.05), including 33 overexpressed and 27 underexpressed. Overexpressed ASE genes included Keratin 15, Collagen IV/V, TRIM16, and Angiopoietin-1-like, which are associated with epithelial integrity, immune response, and tissue remodeling. Underexpressed ASE genes such as SOCS3, CSF3R, and Neutrophil cytosolic factor suggest individual variation in cytokine signaling and oxidative stress pathways. Conclusions: several ASE genes co-localized with previously identified QTLs for sea lice resistance, indicating that cis-regulatory variants contribute to phenotypic differences in parasite susceptibility. These results highlight ASE analysis as a powerful tool to identify functional regulatory elements and provide valuable candidates for selective breeding and genomic improvement strategies in aquaculture. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 10725 KiB  
Article
A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China
by Kaisen Ma, Jing Yi, Hua Sun, Song Chen, Chaokui Li and Ming Gong
Forests 2025, 16(7), 1179; https://doi.org/10.3390/f16071179 - 17 Jul 2025
Viewed by 332
Abstract
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary [...] Read more.
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary filtering methods is limited in complex forest conditions. A partitioned cloth simulation filtering (PCSF) method based on different vegetation cover was proposed in this study to improve the classification accuracy, and tree heights were extracted to demonstrate the effectiveness of the proposed method. UAV-LiDAR data and field measurements collected from the Lutou experimental forest farm in the southern subtropical forest region of China were used for validation, and the slope-based filtering, progressive triangulated irregular network densification filtering (PTD), moving surface fitting filtering (MSFF), and CSF were adopted for comparisons. The results showed that the proposed method yielded the best ground filtering effect, reducing the filtering total error by 2.12%–4.22% compared with other methods, and the relative root mean squared error (rRMSE) of extracted tree heights was reduced by 1.24%–3.84%, respectively. The proposed method can achieve a satisfactory filtering effect and tree height extraction result, which provides a methodological basis to precisely extract tree heights in large-scale forests. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Performance of Plasma Phosphorylated tau-217 in Patients on the Continuum of Alzheimer’s Disease
by Farida Dakterzada, Ricard López-Ortega, Alba Vilella-Figuerola, Nathalia Montero-Castilla, Iolanda Riba-Llena, Maria Ruiz-Julián, Alfonso Arias, Jordi Sarto, Nuria Tahan and Gerard Piñol-Ripoll
Int. J. Mol. Sci. 2025, 26(14), 6771; https://doi.org/10.3390/ijms26146771 - 15 Jul 2025
Viewed by 381
Abstract
Recent studies have demonstrated the high analytical and diagnostic performance of plasma p-tau217 using well-defined cohorts. We aimed to assess the analytical, diagnostic, and prognostic utility of plasma p-tau217 as a routine biomarker in symptomatic patients attending our memory clinic. We also sought [...] Read more.
Recent studies have demonstrated the high analytical and diagnostic performance of plasma p-tau217 using well-defined cohorts. We aimed to assess the analytical, diagnostic, and prognostic utility of plasma p-tau217 as a routine biomarker in symptomatic patients attending our memory clinic. We also sought to identify optimal cutoff points that align with cerebrospinal fluid (CSF) amyloid beta (Aβ) status. A total of 276 cognitively impaired patients were included, with 81 mild cognitive impairment (MCI) patients followed for a mean of 56 (±15.8) months to evaluate progression to Alzheimer’s disease (AD). CSF and blood biomarkers of AD were quantified using the Lumipulse G platform. Plasma p-tau217 levels showed strong correlations with CSF Aβ42/Aβ40 (r = −0.707), p-tau181/Aβ42 (r = 0.842), and p-tau181 (r = 0.728). Plasma p-tau217 levels were significantly higher in the A + T + group than in A − T +/− (p < 0.001) and outperformed other plasma markers in detecting CSF Aβ pathology (AUC 0.924).Additionally, p-tau217 moderated cognitive changes over time as measured by the Mini-mental state examination (MMSE) (F(2, 70) = 13.995, p < 0.001) and outperformed other plasma biomarkers in predicting progression from MCI to AD (AUC 0.876). Using a dual cutoff strategy, 72% of patients were classified with 94.9% concordance with CSF Aβ status. Plasma p-tau217 shows strong potential as a non-invasive, cost-effective diagnostic and prognostic tool in clinical settings. Full article
(This article belongs to the Special Issue Biomarkers in Precision Medicine)
Show Figures

Figure 1

20 pages, 2060 KiB  
Article
Involvement of Microglia in Retinal Ganglion Cell Injury Induced by IOP Elevation in a Rat Ex Vivo Acute Glaucoma Model
by Taimu Sato, Makoto Ishikawa, Yukitoshi Izumi, Naoya Shibata, Kota Sato, Michiko Ohno-Oishi, Hiroshi Tawarayama, Hiroshi Kunikata, Charles F. Zorumski and Toru Nakazawa
Biomedicines 2025, 13(7), 1670; https://doi.org/10.3390/biomedicines13071670 - 8 Jul 2025
Viewed by 433
Abstract
Background: An acute angle-closure attack (AAC) is an ocular emergency that results from a rapid increase in intraocular pressure (IOP). Sustained IOP elevation induces severe degeneration of retinal ganglion cells (RGCs) without treatment. Overactivated microglia, key participants in innate immune responses, have [...] Read more.
Background: An acute angle-closure attack (AAC) is an ocular emergency that results from a rapid increase in intraocular pressure (IOP). Sustained IOP elevation induces severe degeneration of retinal ganglion cells (RGCs) without treatment. Overactivated microglia, key participants in innate immune responses, have critical roles in the pathogenesis of IOP-induced RGC death, although precise mechanisms remain unclear. In the present study, we used a rat ex vivo acute glaucoma model to investigate the role of microglial signaling in RGC death and examined whether pharmacological depletion of microglia using a CSF-1R inhibitor, PLX5622, exerts neuroprotection against pressure-induced retinal injury. Methods: Ex vivo rat retinas were exposed to hydrostatic pressure (10 mmHg or 75 mmHg) for 24 h. Pressure-dependent changes in retinal microglia and RGCs were detected by immunofluorescence. Morphological changes in the retina and RGC apoptosis were examined using light microscopy and TUNEL staining, respectively. The expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β were examined using Western blotting. Effects of PLX5622, an agent that depletes microglia, were examined in morphology, apoptosis, and protein expression assays, while TAK-242, a TLR4 inhibitor, was examined against protein expression. Results: Pressure loading at 75 mmHg markedly increased activated microglia and apoptotic RGCs in the isolated retinas. Western blotting revealed increases in expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β at 75 mmHg compared to 10 mmHg. Inhibition of pressure-induced increases in NLRP3 by TAK-242 indicates that pressure elevation induces RGC death via activation of the TLR4–NLRP3 inflammasome cascade. PLX5622 depleted microglia at 75 mmHg and significantly decreased expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β at 75 mmHg, resulting in preservation of RGCs. Conclusions: These results indicate that pressure elevation induces proliferation of inflammatory microglia and promotes IL-1β production via activation of the TLR4–NLRP3 inflammasome cascade, resulting in RGC death. Pharmacological depletion of microglia with PLX5622 could be a potential neuroprotective approach to preserve RGCs from inflammatory cytokines in AAC eyes. Full article
(This article belongs to the Special Issue Glaucoma: New Diagnostic and Therapeutic Approaches, 2nd Edition)
Show Figures

Figure 1

22 pages, 3155 KiB  
Article
Dissecting the Immunological Microenvironment of Glioma Based on IDH Status: Implications for Immunotherapy
by Miyu Kikuchi, Hirokazu Takami, Yukari Kobayashi, Koji Nagaoka, Yosuke Kitagawa, Masashi Nomura, Shunsaku Takayanagi, Shota Tanaka, Nobuhito Saito and Kazuhiro Kakimi
Cells 2025, 14(13), 1035; https://doi.org/10.3390/cells14131035 - 7 Jul 2025
Viewed by 443
Abstract
Gliomas, particularly IDH-wildtype ones, are associated with poor prognosis, yet their immunological landscape remains uncertain. We analyzed RNA sequencing data from 55 glioma patients, estimating immune infiltration with CIBERSORTx and immune cell states via Ecotyper. IDH-wildtype gliomas showed significantly higher immune cell infiltration [...] Read more.
Gliomas, particularly IDH-wildtype ones, are associated with poor prognosis, yet their immunological landscape remains uncertain. We analyzed RNA sequencing data from 55 glioma patients, estimating immune infiltration with CIBERSORTx and immune cell states via Ecotyper. IDH-wildtype gliomas showed significantly higher immune cell infiltration (p = 0.002), notably of regulatory T cells (Tregs) and macrophages, and a greater proportion of exhausted T cells compared to IDH-mutant gliomas. Clustering based on immune profiles revealed two groups. Cluster A, enriched for IDH-wildtype cases, exhibited heightened immune infiltration but also marked immunosuppression. Cluster B, which included both IDH-wildtype and mutant cases, showed lower levels of immune infiltration. Tumor-infiltrating lymphocyte (TIL) cultured from IDH-wildtype tumors demonstrated limited expansion following anti-PD-1, a CSF1R inhibitor, or a STAT3 inhibitor treatment, without clear cluster-specific differences. Tumor-reactive TILs were mainly observed in cluster A. These findings highlight that IDH-wildtype gliomas have an immunosuppressive and heterogeneous microenvironment, potentially limiting responses to single-agent immunotherapies. A personalized, multi-targeted approach addressing multiple immunosuppressive mechanisms may be essential to improve immunotherapy outcomes in this aggressive glioma subgroup. Full article
Show Figures

Figure 1

47 pages, 1745 KiB  
Review
Infection Biomarkers in Children with Chemotherapy-Induced Severe Neutropenia
by Wioletta Bal, Zuzanna Piasecka, Klaudia Szuler and Radosław Chaber
Cancers 2025, 17(13), 2227; https://doi.org/10.3390/cancers17132227 - 2 Jul 2025
Viewed by 696
Abstract
Background/Objectives: Febrile neutropenia is a frequent and potentially life-threatening complication in pediatric oncology patients receiving chemotherapy. Due to profound immunosuppression, early diagnosis of infections remains a major clinical challenge. This review evaluates the diagnostic and prognostic utility of infection biomarkers in children with [...] Read more.
Background/Objectives: Febrile neutropenia is a frequent and potentially life-threatening complication in pediatric oncology patients receiving chemotherapy. Due to profound immunosuppression, early diagnosis of infections remains a major clinical challenge. This review evaluates the diagnostic and prognostic utility of infection biomarkers in children with chemotherapy-induced severe neutropenia. Methods: We reviewed clinical studies that assessed the diagnostic performance of inflammatory biomarkers—including C-reactive protein (CRP), procalcitonin (PCT), interleukins (IL-6, IL-8, IL-10), and others—in pediatric febrile neutropenia. The review includes data on sensitivity, specificity, predictive value, and clinical applications. Results: CRP remains a common but nonspecific marker, often insufficient for early stratification. PCT showed consistently high negative predictive value and early responsiveness to bacterial infections. IL-6 and IL-10 demonstrated strong early diagnostic accuracy in the early phase (AUC > 0.80 in multiple studies) and were particularly useful in predicting septic shock when combined. IL-8, while less specific, may help rule out infection when levels are low. Emerging biomarkers such as presepsin, MR-proADM, and PSP showed promising diagnostic performance. Presepsin achieved near-perfect accuracy in some cohorts (AUC up to 0.996), outperforming CRP and PCT, though its ability to discriminate bacteremia at fever onset varied. MR-proADM demonstrated consistent AUCs above 0.75 and may support early sepsis identification. PSP was associated with significantly elevated levels in sepsis. Additional novel markers—including sTNFR-II, sIL-2R, IP-10, Flt-3L, MCP-1-a, and MBL—showed encouraging diagnostic profiles in individual studies, particularly due to high specificity, but require external validation. G-CSF also emerged as a promising candidate in multimarker models. In contrast, TNF-α and IL-1β displayed limited utility as standalone indicators. Conclusions: Biomarkers such as PCT, IL-6, Il-8, and IL-10 offer valuable tools for early infection detection and risk stratification in pediatric febrile neutropenia. Emerging markers—including presepsin, MR-proADM, and PSP—further enhance diagnostic precision and may support early identification of sepsis. Multimarker strategies, particularly those incorporating presepsin, IL-10, or MR-proADM, show potential to improve diagnostic performance beyond conventional markers. Further prospective validation is needed to optimize clinical implementation and guide personalized treatment decisions. Full article
(This article belongs to the Special Issue Infectious Agents and Cancer in Children and Adolescents)
Show Figures

Figure 1

15 pages, 609 KiB  
Article
CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study
by Andrea Iracema Milán Salvatierra, Juan Carlos Bravata Alcántara, Víctor Manuel Alvarado Castro, Estibeyesbo Said Plascencia Nieto, Faustino Cruz Leyto, Mónica Tejeda Romero, Jorge Cruz Rico, Bogar Pineda Terreros, Sandra López Palafox, Adriana Jiménez, Juan Ramón Padilla Mendoza, José Bonilla Delgado, Catalina Flores-Maldonado and Enoc Mariano Cortés Malagón
Diseases 2025, 13(7), 206; https://doi.org/10.3390/diseases13070206 - 1 Jul 2025
Viewed by 401
Abstract
Background/Objectives: In adults with B-cell acute lymphoblastic leukemia (B-ALL), central nervous system (CNS) involvement represents a significant clinical challenge due to its association with adverse outcomes. Infiltration of blast cells into the CNS is primarily detected via cerebrospinal fluid (CSF) microscopy, the current [...] Read more.
Background/Objectives: In adults with B-cell acute lymphoblastic leukemia (B-ALL), central nervous system (CNS) involvement represents a significant clinical challenge due to its association with adverse outcomes. Infiltration of blast cells into the CNS is primarily detected via cerebrospinal fluid (CSF) microscopy, the current gold standard diagnostic method, although it has limitations in terms of sensitivity. Quantitative polymerase chain reaction (qPCR) offers higher sensitivity and can support the diagnosis of CNS infiltration. This study assessed the mRNA expression levels of CD79A and IL7R in CSF to evaluate their potential for detecting CNS involvement in adults with B-ALL. Methods: CSF samples were collected from adults with B-ALL. The classification criteria for CNS Leukemia (CNS status) were used to evaluate CNS involvement. RNA was extracted from the CSF, and quantitative reverse transcription PCR (RT-qPCR) was used to measure the CD79A and IL7R mRNA expression levels. Results: A total of 19 treatment-naïve adult patients with B-ALL were enrolled over a 19-month period. Four (21%) patients had CNS3 status. Four (21%) patients had CNS3 status. The results also showed that the expression levels of CD79A and IL7R mRNA were significantly higher (median fold change = 0.62 and 2.12, p < 0.05, respectively) in the group with CNS3. Furthermore, using the Haldane-Anscombe correction and Fisher’s exact test, we demonstrated an association between IL7R and CNS3 expression (odds ratio = ∞, due to zero CNS+ in the IL7R group, p < 0.05). Conclusions: CD79A and IL7R mRNA levels in CSF could be potential biomarkers for detecting CNS involvement in adult patients with B-ALL. Full article
Show Figures

Figure 1

19 pages, 11390 KiB  
Article
Single-Nucleus Transcriptomics Reveals Glial Metabolic–Immune Rewiring and Intercellular Signaling Disruption in Chronic Migraine
by Shuangyuan Hu, Zili Tang, Shiqi Sun, Lu Liu, Yuyan Wang, Longyao Xu, Jing Yuan, Ying Chen, Mingsheng Sun and Ling Zhao
Biomolecules 2025, 15(7), 942; https://doi.org/10.3390/biom15070942 - 28 Jun 2025
Viewed by 545
Abstract
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a [...] Read more.
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a nitroglycerin (NTG)-induced CM rat model, with a particular focus on microglia and astrocytes. We identified 19 transcriptional clusters representing nine major cell types, among which reactive microglia (NTG-Mic) and astrocytes (NTG-Asts) were markedly expanded. The NTG-Mic displayed a glycolysis-dominant, complement-enriched state, whereas the NTG-Asts exhibited concurrent activation of amino acid transport and cytokine signaling pathways. Pseudotime trajectory analysis revealed bifurcated glial activation paths, with NTG driving both cell types toward terminal reactive states. Intercellular communication inference uncovered suppressed homeostatic interactions (e.g., CSF1-CSF1R) alongside enhanced proinflammatory signaling (e.g., FGF1-FGFR2, PTN-SDC4), particularly affecting neuron–glia and glia–glia crosstalk. Together, these findings define a high-resolution atlas of glial reprogramming in CM, implicating state-specific metabolic–immune transitions and dysregulated glial communication as potential targets for therapeutic intervention. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

9 pages, 639 KiB  
Brief Report
Recombinant IgG1 Fc-μTP-L309C Ameliorates Endogenous Rheumatoid Arthritis in the K/BxN Mouse Model by Decreasing Th1 and Th17 Cells in the Spleen, Lymph Nodes and Joint and Increasing T Regulatory Cells and IL-10 in the Joint
by Bonnie J. B. Lewis, Selena Cen, Ruqayyah J. Almizraq, Beth Binnington, Rolf Spirig, Fabian Käsermann and Donald R. Branch
J. Clin. Med. 2025, 14(13), 4509; https://doi.org/10.3390/jcm14134509 - 25 Jun 2025
Viewed by 401
Abstract
Background/Objectives: Recombinant Fc proteins have been produced that have a protective effect in mouse models of arthritis, such as the K/BxN rheumatoid arthritis model. We have previously shown that a recombinant human IgG1 Fc with a point mutation at position 309, replacing a [...] Read more.
Background/Objectives: Recombinant Fc proteins have been produced that have a protective effect in mouse models of arthritis, such as the K/BxN rheumatoid arthritis model. We have previously shown that a recombinant human IgG1 Fc with a point mutation at position 309, replacing a leucine with a cysteine, fused to the human IgM tailpiece to form a human IgG1 Fc hexamer, rFc-µTP-L309C, effectively prevents neutrophil infiltration into the joints and ameliorates arthritis in the K/BxN serum transfer model and in the endogenous chronic arthritis K/BxN model. We have now investigated the effect of rFc-µTP-L309C on T-cells in the K/BxN chronic arthritis mouse model. Methods: PBMCs were isolated from the spleen, lymph nodes and joint synovial fluid from K/BxN mice having severe chronic arthritis that had been treated with 200 mg/kg rFc-µTP-L309C or human serum albumin (HSA). Flow cytometry was used to isolate the activated CD4+CD44+ T-cells and T-regulatory cells (Tregs). Intracellular staining was used to identify Th1 and Th17 T-cell subsets, and CD4+CD25+FoxP3+ Tregs. ELISA was used to measure levels of IL-10 and TGF-β in synovial fluid. Results: We find that amelioration of the arthritis occurs after treatment with rFc-µTP-L309C and results in a decrease in Th1 cells’ production of IFNγ and Th17 cells’ production of IL-17. Amelioration also results in decreased production of GM-CSF. Moreover, amelioration results in increased Tregs and IL-10 production in the synovial fluid. Conclusions: rFc-µTP-L309C reduces the inflammatory T-cells and increases the regulatory anti-inflammatory T-cells in the chronic arthritis K/BxN mouse model. This effect explains, in part, the ability of rFc-µTP-L309C to ameliorate the arthritis and reduce damage on the articular cartilage of K/BxN mice. Full article
(This article belongs to the Special Issue Updates on Rheumatoid Arthritis: From Diagnosis to Treatment)
Show Figures

Figure 1

11 pages, 430 KiB  
Article
Neurofilament Light Chain in Serum and CSF as a Potential Biomarker for Primary Angiitis of the Central Nervous System
by Christina Krüger, Hans Pinnschmidt, Maximilian Wilmes, Justina Dargvainiene, Frank Leypoldt, Alexander Seiler, Daniela Berg, Tim Magnus and Milani Deb-Chatterji
Cells 2025, 14(13), 966; https://doi.org/10.3390/cells14130966 - 24 Jun 2025
Viewed by 468
Abstract
Background: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis affecting CNS blood vessels, posing diagnostic challenges due to the limited specificity of the established diagnostic tools. Neurofilament light chain (NfL) might be a promising biomarker in PACNS. Methods: NfL [...] Read more.
Background: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis affecting CNS blood vessels, posing diagnostic challenges due to the limited specificity of the established diagnostic tools. Neurofilament light chain (NfL) might be a promising biomarker in PACNS. Methods: NfL in serum and CSF was measured in 33 PACNS patients (25 active [aPACNS], 8 in remission [rPACNS]) enrolled between 2014 and 2022 and compared to controls (serum: n = 303; CSF: n = 68); Results: Serum NfL was significantly elevated in aPACNS (median: 45.77 pg/mL) versus rPACNS (6.68 pg/mL; p < 0.001) and healthy controls (6.05 pg/mL; p < 0.001). Similarly, CSF NfL was significantly elevated in aPACNS (median: 4914.58 pg/mL) compared to rPACNS (301.19 pg/mL; p = 0.002) and controls (262.83 pg/mL; p < 0.001). Serum and CSF NfL were significantly correlated (r = 0.90, p < 0.001). Additionally, an association between elevated NfL and ischemic lesions was observed (serum: r = 0.59, p = 0.006; CSF: r = 0.43, p = 0.032). A subgroup analysis excluding stroke patients still revealed elevated NfL in 90% (CSF) and 50% (serum), with diminishing discriminatory power with older age. Conclusions: NfL holds potential as a biomarker for PACNS, in particular in younger patients. Full article
Show Figures

Figure 1

13 pages, 612 KiB  
Review
JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions
by Behzad Amoozgar, Ayrton Bangolo, Abdifitah Mohamed, Charlene Mansour, Daniel Elias, Christina Cho and Siddhartha Reddy
Biomedicines 2025, 13(7), 1527; https://doi.org/10.3390/biomedicines13071527 - 23 Jun 2025
Viewed by 640
Abstract
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of [...] Read more.
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, where JAK2 mediates key pro-inflammatory cytokines, including IL-6, IFN-γ, and GM-CSF. These cytokines promote donor T cell activation, effector differentiation, and target organ damage. The introduction of ruxolitinib, a selective JAK1/2 inhibitor, has transformed the treatment landscape for steroid-refractory acute and chronic GVHD, leading to improved response rates and durable symptom control. However, its limitations—such as cytopenias, infectious complications, and incomplete responses—have catalyzed the development of next-generation agents. In 2024, the FDA approved axatilimab, a CSF-1R inhibitor that targets monocyte-derived macrophages in fibrotic chronic GVHD, and remestemcel-L, an allogeneic mesenchymal stromal cell therapy, for pediatric steroid-refractory acute GVHD. Both agents offer mechanistically distinct and clinically meaningful additions to the therapeutic armamentarium. In parallel, emerging combination strategies involving JAK2 inhibitors and novel biologics show promise in enhancing immune tolerance while preserving graft-versus-leukemia (GvL) effects. Recent advances in biomarker development, such as the MAGIC Algorithm Probability (MAP), are enabling early risk stratification and response prediction. The integration of these tools with organ-specific and personalized approaches marks a shift toward more precise, durable, and tolerable GVHD therapy. This review highlights the current state and future direction of JAK2 inhibition and complementary therapies in the evolving GVHD treatment paradigm. Full article
(This article belongs to the Special Issue An Update on Transplantation Immunology)
Show Figures

Figure 1

Back to TopTop