CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. B-ALL Diagnosis
2.3. Cerebrospinal Fluid Collection
2.4. CSF Cytology
2.5. Clinical Signs of CNS Leukemia
2.6. MRI-Based Assessment of CNS Involvement
2.7. Diagnostic Criteria for CNS Leukemia
2.8. RNA Extraction
2.9. RT‒qPCR
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B-ALL | Acute B-cell lymphoblastic leukemia |
CNS | Central nervous system |
CSF | Cerebrospinal fluid |
qPCR | Quantitative polymerase chain reaction |
RT-qPCR | Reverse transcription and qPCR |
CD79A | B-cell antigen receptor complex-associated protein alpha chain |
IL7R | interleukin 7 receptor |
E2A-PBX1 | It is a fusion gene resulting from the t(1;19) (q23;p13.3) chromosomal translocation |
BCR-ABL | It is an oncogenic fusion gene formed by the t(9;22) (q34;q11) chromosomal translocation, commonly known as the Philadelphia chromosome. |
CNSL | CNS leukemia |
pre-BCR | pre-B cell receptor |
PI3Kalpha/PKB | Phosphoinositide 3-kinase alpha/Protein kinase B |
KRAS/ERK | GTPase Kras/Extracellular Signal-Regulated Kinase |
MRI | Magnetic resonance imaging |
CEACAM6 | CEA cell adhesion molecule 6 |
Note: The names of genes and proteins are described as approved symbols and names as suggested by the HUGO gene nomenclature committee (www.genenames.org) URL (accessed on 28 June 2025) and UniProt (https://www.uniprot.org) URL (accessed on 28 June 2025). |
References
- Puckett, Y.; Chan, O. Acute Lymphocytic Leukemia; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Neaga, A.; Jimbu, L.; Mesaros, O.; Bota, M.; Lazar, D.; Cainap, S.; Blag, C.; Zdrenghea, M. Why Do Children with Acute Lymphoblastic Leukemia Fare Better Than Adults? Cancers 2021, 13, 3886. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Gu, Z.; Payne-Turner, D.; McCastlain, K.; Harvey, R.C.; Chen, I.M.; Pei, D.; Iacobucci, I.; Valentine, M.; Pounds, S.B.; et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J. Clin. Oncol. 2017, 35, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G. Genetics and prognosis of ALL in children vs. adults. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lenk, L.; Alsadeq, A.; Schewe, D.M. Involvement of the central nervous system in acute lymphoblastic leukemia: Opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev. 2020, 39, 173–187. [Google Scholar] [CrossRef]
- Gokbuget, N.; Boissel, N.; Chiaretti, S.; Dombret, H.; Doubek, M.; Fielding, A.; Foa, R.; Giebel, S.; Hoelzer, D.; Hunault, M.; et al. Management of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024, 143, 1903–1930. [Google Scholar] [CrossRef]
- Yao, H.; Price, T.T.; Cantelli, G.; Ngo, B.; Warner, M.J.; Olivere, L.; Ridge, S.M.; Jablonski, E.M.; Therrien, J.; Tannheimer, S.; et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 2018, 560, 55–60. [Google Scholar] [CrossRef]
- Alsadeq, A.; Fedders, H.; Vokuhl, C.; Belau, N.M.; Zimmermann, M.; Wirbelauer, T.; Spielberg, S.; Vossen-Gajcy, M.; Cario, G.; Schrappe, M.; et al. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system. Haematologica 2017, 102, 346–355. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Yuan, M.; Zhang, P.; Wang, Y.; Zheng, M.; Lv, Z.; Odhiambo, W.O.; Li, C.; Liu, C.; et al. Identification and characterization of a murine model of BCR-ABL1+ acute B-lymphoblastic leukemia with central nervous system metastasis. Oncol. Rep. 2019, 42, 521–532. [Google Scholar] [CrossRef]
- Jeha, S.; Pei, D.; Raimondi, S.C.; Onciu, M.; Campana, D.; Cheng, C.; Sandlund, J.T.; Ribeiro, R.C.; Rubnitz, J.E.; Howard, S.C.; et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia 2009, 23, 1406–1409. [Google Scholar] [CrossRef]
- Lenk, L.; Baccelli, I.; Laqua, A.; Heymann, J.; Reimer, C.; Dietterle, A.; Winterberg, D.; Mary, C.; Corallo, F.; Taurelle, J.; et al. The IL-7R antagonist lusvertikimab reduces leukemic burden in xenograft ALL via antibody-dependent cellular phagocytosis. Blood 2024, 143, 2735–2748. [Google Scholar] [CrossRef]
- McLean, K.C.; Mandal, M. It Takes Three Receptors to Raise a B Cell. Trends Immunol. 2020, 41, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Sasson, S.C.; Smith, S.; Seddiki, N.; Zaunders, J.J.; Bryant, A.; Koelsch, K.K.; Weatherall, C.; Munier, M.L.; McGinley, C.; Yeung, J.; et al. IL-7 receptor is expressed on adult pre-B-cell acute lymphoblastic leukemia and other B-cell derived neoplasms and correlates with expression of proliferation and survival markers. Cytokine 2010, 50, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Kohrer, S.; Havranek, O.; Seyfried, F.; Hurtz, C.; Coffey, G.P.; Kim, E.; Ten Hacken, E.; Jager, U.; Vanura, K.; O’Brien, S.; et al. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia 2016, 30, 1246–1254. [Google Scholar] [CrossRef]
- Almeida, A.R.M.; Neto, J.L.; Cachucho, A.; Euzebio, M.; Meng, X.; Kim, R.; Fernandes, M.B.; Raposo, B.; Oliveira, M.L.; Ribeiro, D.; et al. Interleukin-7 receptor alpha mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nat. Commun. 2021, 12, 7268. [Google Scholar] [CrossRef]
- Thomas, K.R.; Allenspach, E.J.; Camp, N.D.; Wray-Dutra, M.N.; Khim, S.; Zielinska-Kwiatkowska, A.; Timms, A.E.; Loftus, J.P.; Liggitt, H.D.; Georgopoulos, K.; et al. Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia 2022, 36, 42–57. [Google Scholar] [CrossRef]
- Geron, I.; Savino, A.M.; Fishman, H.; Tal, N.; Brown, J.; Turati, V.A.; James, C.; Sarno, J.; Hameiri-Grossman, M.; Lee, Y.N.; et al. An instructive role for Interleukin-7 receptor alpha in the development of human B-cell precursor leukemia. Nat. Commun. 2022, 13, 659. [Google Scholar] [CrossRef]
- Erasmus, M.F.; Matlawska-Wasowska, K.; Kinjyo, I.; Mahajan, A.; Winter, S.S.; Xu, L.; Horowitz, M.; Lidke, D.S.; Wilson, B.S. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci. Signal 2016, 9, ra116. [Google Scholar] [CrossRef]
- Thastrup, M.; Marquart, H.V.; Schmiegelow, K. Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Biomolecules 2022, 12, 813. [Google Scholar] [CrossRef]
- Frater, J.L.; Shirai, C.L.; Brestoff, J.R. Technological features of blast identification in the cerebrospinal fluid: A systematic review of flow cytometry and laboratory haematology methods. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 45–53. [Google Scholar] [CrossRef]
- Crespo-Solis, E.; Lopez-Karpovitch, X.; Higuera, J.; Vega-Ramos, B. Diagnosis of acute leukemia in cerebrospinal fluid (CSF-acute leukemia). Curr. Oncol. Rep. 2012, 14, 369–378. [Google Scholar] [CrossRef]
- de Haas, V.; Pieters, R.; van der Sluijs-Gelling, A.J.; Zwaan, C.M.; de Groot-Kruseman, H.A.; Sonneveld, E.; Stigter, R.L.; van der Velden, V.H.J. Flowcytometric evaluation of cerebrospinal fluid in childhood ALL identifies CNS involvement better then conventional cytomorphology. Leukemia 2021, 35, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Del Principe, M.I.; Maurillo, L.; Buccisano, F.; Sconocchia, G.; Cefalo, M.; De Santis, G.; Di Veroli, A.; Ditto, C.; Nasso, D.; Postorino, M.; et al. Central nervous system involvement in adult acute lymphoblastic leukemia: Diagnostic tools, prophylaxis, and therapy. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014075. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, J.A.; Lusardi, T.A.; Van Keuren-Jensen, K.R.; Phillips, J.I.; Lind, B.; Harrington, C.A.; McFarland, T.J.; Courtright, A.L.; Reiman, R.A.; Yeri, A.S.; et al. Analysis of extracellular RNA in cerebrospinal fluid. J. Extracell. Vesicles 2017, 6, 1317577. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Polyak, D.; Lamsam, L.; Connolly, I.D.; Johnson, E.; Khoeur, L.K.; Andersen, S.; Granucci, M.; Stanley, G.; Liu, B.; et al. Comprehensive RNA analysis of CSF reveals a role for CEACAM6 in lung cancer leptomeningeal metastases. NPJ Precis. Oncol. 2021, 5, 90. [Google Scholar] [CrossRef]
- Pine, S.R.; Yin, C.; Matloub, Y.H.; Sabaawy, H.E.; Sandoval, C.; Levendoglu-Tugal, O.; Ozkaynak, M.F.; Jayabose, S. Detection of central nervous system leukemia in children with acute lymphoblastic leukemia by real-time polymerase chain reaction. J. Mol. Diagn. 2005, 7, 127–132. [Google Scholar] [CrossRef]
- Peterffy, B.; Nadasi, T.J.; Krizsan, S.; Horvath, A.; Mark, A.; Barna, G.; Timar, B.; Almasi, L.; Muller, J.; Csanadi, K.; et al. Digital PCR-based quantification of miR-181a in the cerebrospinal fluid aids patient stratification in pediatric acute lymphoblastic leukemia. Sci. Rep. 2024, 14, 28556. [Google Scholar] [CrossRef]
- Thastrup, M.; Duguid, A.; Mirian, C.; Schmiegelow, K.; Halsey, C. Central nervous system involvement in childhood acute lymphoblastic leukemia: Challenges and solutions. Leukemia 2022, 36, 2751–2768. [Google Scholar] [CrossRef]
- Alsadeq, A.; Lenk, L.; Vadakumchery, A.; Cousins, A.; Vokuhl, C.; Khadour, A.; Vogiatzi, F.; Seyfried, F.; Meyer, L.H.; Cario, G.; et al. IL7R is associated with CNS infiltration and relapse in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 2018, 132, 1614–1617. [Google Scholar] [CrossRef]
- Lenk, L.; Carlet, M.; Vogiatzi, F.; Spory, L.; Winterberg, D.; Cousins, A.; Vossen-Gajcy, M.; Ibruli, O.; Vokuhl, C.; Cario, G.; et al. CD79a promotes CNS-infiltration and leukemia engraftment in pediatric B-cell precursor acute lymphoblastic leukemia. Commun. Biol. 2021, 4, 73. [Google Scholar] [CrossRef]
- Bain, B.J. FAB Classification of Leukemia. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Stanley Maloy, K.H., Ed.; Academic Press: Cambridge, UK, 2013; pp. 5–7. [Google Scholar]
- van Dongen, J.J.; Lhermitte, L.; Bottcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lecrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef]
- Tashjian, R.S.; Vinters, H.V.; Yong, W.H. Biobanking of Cerebrospinal Fluid. Methods Mol. Biol. 2019, 1897, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Levinsen, M.; Taskinen, M.; Abrahamsson, J.; Forestier, E.; Frandsen, T.L.; Harila-Saari, A.; Heyman, M.; Jonsson, O.G.; Lähteenmäki, P.M.; Lausen, B.; et al. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2014, 61, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Burgos, K.L.; Javaherian, A.; Bomprezzi, R.; Ghaffari, L.; Rhodes, S.; Courtright, A.; Tembe, W.; Kim, S.; Metpally, R.; Van Keuren-Jensen, K. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 2013, 19, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Rocha, J.M.C.; Murao, M.; Cancela, C.S.P.; de Oliveira, L.P.; Perim, L.P.; Santos, J.P.; de Oliveira, B.M. Comparative analysis between cytomorphology and flow cytometry methods in central nervous system infiltration assessment in oncohematological patients. Hematol. Transfus. Cell Ther. 2023, 45, 188–195. [Google Scholar] [CrossRef]
- Bromberg, J.E.; Breems, D.A.; Kraan, J.; Bikker, G.; van der Holt, B.; Smitt, P.S.; van den Bent, M.J.; van’t Veer, M.; Gratama, J.W. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology 2007, 68, 1674–1679. [Google Scholar] [CrossRef]
- Tu, S.; Zhang, K.; Liu, C.; Wang, N.; Chu, J.; Yang, L.; Xie, Z.; Hang, L.; Li, J.; Yang, W.; et al. Cerebrospinal Fluid Flow Cytometry in Pediatric Acute Lymphoblastic Leukemia: A Multicenter Retrospective Study in China. Cancer Med. 2024, 13, e70452. [Google Scholar] [CrossRef]
- Quijano, S.; Lopez, A.; Manuel Sancho, J.; Panizo, C.; Deben, G.; Castilla, C.; Antonio Garcia-Vela, J.; Salar, A.; Alonso-Vence, N.; Gonzalez-Barca, E.; et al. Identification of leptomeningeal disease in aggressive B-cell non-Hodgkin’s lymphoma: Improved sensitivity of flow cytometry. J. Clin. Oncol. 2009, 27, 1462–1469. [Google Scholar] [CrossRef]
- de Graaf, M.T.; de Jongste, A.H.; Kraan, J.; Boonstra, J.G.; Sillevis Smitt, P.A.; Gratama, J.W. Flow cytometric characterization of cerebrospinal fluid cells. Cytom. B Clin. Cytom. 2011, 80, 271–281. [Google Scholar] [CrossRef]
- Subira, D.; Castanon, S.; Roman, A.; Aceituno, E.; Jimenez-Garofano, C.; Jimenez, A.; Garcia, R.; Bernacer, M. Flow cytometry and the study of central nervous disease in patients with acute leukaemia. Br. J. Haematol. 2001, 112, 381–384. [Google Scholar] [CrossRef]
- Craig, F.E.; Ohori, N.P.; Gorrill, T.S.; Swerdlow, S.H. Flow cytometric immunophenotyping of cerebrospinal fluid specimens. Am. J. Clin. Pathol. 2011, 135, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Heger, J.M.; Mattlener, J.; Schneider, J.; Godel, P.; Sieg, N.; Ullrich, F.; Lewis, R.; Bucaciuc-Mracica, T.; Schwarz, R.F.; Ruess, D.; et al. Entirely noninvasive outcome prediction in central nervous system lymphomas using circulating tumor DNA. Blood 2024, 143, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Egyed, B.; Kutszegi, N.; Sagi, J.C.; Gezsi, A.; Rzepiel, A.; Visnovitz, T.; Lorincz, P.; Muller, J.; Zombori, M.; Szalai, C.; et al. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J. Transl. Med. 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Gianfelici, V.; Messina, M.; Paoloni, F.; Peragine, N.; Lauretti, A.; Fedullo, A.L.; Di Giacomo, F.; Vignetti, M.; Vitale, A.; Guarini, A.; et al. IL7R overexpression in adult acute lymphoblastic leukemia is associated to JAK/STAT pathway mutations and identifies patients who could benefit from targeted therapies. Leuk. Lymphoma 2019, 60, 829–832. [Google Scholar] [CrossRef]
- Wang, C.; Kong, L.; Kim, S.; Lee, S.; Oh, S.; Jo, S.; Jang, I.; Kim, T.D. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int. J. Mol. Sci. 2022, 23, 10412. [Google Scholar] [CrossRef]
- Degn, S.E.; Tolar, P. Towards a unifying model for B-cell receptor triggering. Nat. Rev. Immunol. 2025, 25, 77–91. [Google Scholar] [CrossRef]
- Gebing, P.; Loizou, S.; Hansch, S.; Schliehe-Diecks, J.; Spory, L.; Stachura, P.; Jepsen, V.H.; Vogt, M.; Pandyra, A.A.; Wang, H.; et al. A brain organoid/ALL coculture model reveals the AP-1 pathway as critically associated with CNS involvement of BCP-ALL. Blood Adv. 2024, 8, 4997–5011. [Google Scholar] [CrossRef]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef]
- Lee, R.D.; Munro, S.A.; Knutson, T.P.; LaRue, R.S.; Heltemes-Harris, L.M.; Farrar, M.A. Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat. Commun. 2021, 12, 6843. [Google Scholar] [CrossRef]
- de Graaf, M.T.; Smitt, P.A.; Luitwieler, R.L.; van Velzen, C.; van den Broek, P.D.; Kraan, J.; Gratama, J.W. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytom. B Clin. Cytom. 2011, 80, 43–50. [Google Scholar] [CrossRef]
CNS Status | CSF Findings | Clinical Significance |
---|---|---|
CNS1 (Negative) | No detectable leukemic blasts in CSF (<5 WBC/μL and no blasts) | No CNS involvement |
CNS2 (Indeterminate/Possible Involvement) | WBC < 5/μL but with detectable leukemic blasts in CSF | Uncertain significance may require close monitoring or treatment |
CNS3 (Positive for CNS leukemia) | WBC ≥ 5/μL with leukemic blasts in CSF, or clinical/MRI signs of CNS disease | Confirmed CNS involvement, requires intrathecal therapy |
Gene | Forward Primer (5′→3′) | Reverse Primer (5′→3′) | Probe (5′→3′) FAM |
---|---|---|---|
CD79A | CCTGGGACATTCTCCTTTCA | CTGGCCTGGAGAAGAGTGAG | GCCCTTCTGGGGGCTTCCTT |
IL7R | AGCCAGTTGGAAGTGAATGG | AGGCACTTTACCTCCACGAG | CGCAGCACTCACTGACCTGTGC |
GAPDH | CAGCCTCAAGATCATCAGCA | TGTGGTCATGAGTCCTTCCA | CCCCTGGCCAAGGTCATCCA |
Code | F/M | Age (Years) | BMI (kg/m2) | WBC/mm3 | Hb (g/dL) | PLT/mm3 | PBB (%) | BMB (%) |
---|---|---|---|---|---|---|---|---|
1148684 | F | 30 | 38.5 | 261,400 | 12.7 | 38,000 | 58 | 96 |
1146429 | F | 18 | 34.4 | 1130 | 4.7 | 40,000 | 90 | 70 |
1170985 | M | 26 | 23 | 2450 | 5.2 | 74,000 | 23 | 90 |
1172165 | M | 22 | 31.14 | 98,590 | 6.7 | 1890 | 77 | 98 |
1182265 | M | 21 | 25.4 | 298,830 | 6.9 | 19,000 | 88 | 95 |
1182029 | M | 20 | 30.5 | 2080 | 5.7 | 35,000 | 60 | 92 |
1182016 | F | 27 | 19.1 | 14,830 | 8.6 | 18,000 | 60 | 98 |
1180010 | F | 24 | 24.4 | 1830 | 8 | 1460 | 10 | 70 |
1170637 | M | 18 | 22.4 | 1040 | 3.8 | 16,000 | 60 | 70 |
1163868 | M | 19 | 25.8 | 19,200 | 8.6 | 42,000 | 31 | 99 |
1150680 | M | 22 | 30.72 | 1090 | 5.8 | 123,000 | 0 | 91 |
1161154 | F | 31 | 32.4 | 83,320 | 4.2 | 30,000 | 95 | 95 |
1162218 | M | 43 | 33.4 | 2630 | 7 | 309,000 | 2 | 30 |
1162264 | F | 67 | 30.75 | 156,200 | 4.5 | 11,000 | 70 | 90 |
1158854 | M | 49 | 29.3 | 11,000 | 4.5 | 8000 | 87 | 90 |
1167915 | F | 46 | 24.9 | 77,530 | 5.8 | 10,000 | 86 | 86 |
1156718 | M | 55 | 31.25 | 1220 | 6.6 | 24,000 | 3 | 90 |
1167121 | F | 46 | 24.9 | 5090 | 6.8 | 28,000 | 58 | 92 |
1163863 | F | 56 | 24.6 | 14,600 | 3.6 | 18,000 | 91 | 98 |
mean ± sd (min-max) | 33.6 ± 15.4 (17–67) | 27.5 ± 5.1 (18–38.5) | 55,477 ± 90,431 (1040–298,830) | 6.3 ± 2.2 (3.6–12.7) | 44,545 ± 70,014 (1460–309,000) | 55.2 ± 33.5 (0–95) | 86.3 ± 16.5 (30–99) |
Variable | Category | Involvement in CNS (CNS3) | ORna a | 95%CI b | p | |
---|---|---|---|---|---|---|
Positive | Negative | |||||
Age c | ≤28.5 | 3 | 7 | 3.43 | 0.29–40.15 | 0.58 |
>28.5 | 1 | 8 | ||||
Sex | Male | 2 | 7 | 1.14 | 0.12–11.02 | >0.99 |
Female | 2 | 8 | ||||
Leucocytes | Hyperleukocytosis d | 2 | 4 | 2.75 | 0.28–26.98 | 0.56 |
Normal | 2 | 11 | ||||
LDH e | Increased | 2 | 9 | 0.67 | 0.07–6.44 | >0.99 |
Normal | 2 | 6 | ||||
Blast cells | Peripheral blood | 3 | 12 | 0.75 | 0.05–10.70 | >0.99 |
Normal | 1 | 3 | ||||
BMI f | Overweight | 2 | 9 | 0.67 | 0.07–6.44 | >0.99 |
Normal weight | 2 | 6 | ||||
IL7R * | Positive | 4 | 4 | ∞ | — | 0.02 |
Negative | 0 | 11 | ||||
CD79A * | Positive | 4 | 6 | ∞ | — | 0.09 |
Negative | 0 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milán Salvatierra, A.I.; Bravata Alcántara, J.C.; Alvarado Castro, V.M.; Plascencia Nieto, E.S.; Cruz Leyto, F.; Tejeda Romero, M.; Cruz Rico, J.; Pineda Terreros, B.; López Palafox, S.; Jiménez, A.; et al. CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study. Diseases 2025, 13, 206. https://doi.org/10.3390/diseases13070206
Milán Salvatierra AI, Bravata Alcántara JC, Alvarado Castro VM, Plascencia Nieto ES, Cruz Leyto F, Tejeda Romero M, Cruz Rico J, Pineda Terreros B, López Palafox S, Jiménez A, et al. CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study. Diseases. 2025; 13(7):206. https://doi.org/10.3390/diseases13070206
Chicago/Turabian StyleMilán Salvatierra, Andrea Iracema, Juan Carlos Bravata Alcántara, Víctor Manuel Alvarado Castro, Estibeyesbo Said Plascencia Nieto, Faustino Cruz Leyto, Mónica Tejeda Romero, Jorge Cruz Rico, Bogar Pineda Terreros, Sandra López Palafox, Adriana Jiménez, and et al. 2025. "CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study" Diseases 13, no. 7: 206. https://doi.org/10.3390/diseases13070206
APA StyleMilán Salvatierra, A. I., Bravata Alcántara, J. C., Alvarado Castro, V. M., Plascencia Nieto, E. S., Cruz Leyto, F., Tejeda Romero, M., Cruz Rico, J., Pineda Terreros, B., López Palafox, S., Jiménez, A., Padilla Mendoza, J. R., Bonilla Delgado, J., Flores-Maldonado, C., & Cortés Malagón, E. M. (2025). CD79A and IL7R mRNA Levels in the Cerebrospinal Fluid of Adults with Acute B-Cell Lymphoblastic Leukemia: A Pilot Study. Diseases, 13(7), 206. https://doi.org/10.3390/diseases13070206