Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (429)

Search Parameters:
Keywords = COST action network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 - 1 Aug 2025
Viewed by 168
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 358
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Viewed by 370
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

19 pages, 2016 KiB  
Article
A Robust and Energy-Efficient Control Policy for Autonomous Vehicles with Auxiliary Tasks
by Yabin Xu, Chenglin Yang and Xiaoxi Gong
Electronics 2025, 14(15), 2919; https://doi.org/10.3390/electronics14152919 - 22 Jul 2025
Viewed by 263
Abstract
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network [...] Read more.
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network takes the frame-to-frame visual difference as one of the crucial inputs to produce control commands, including the steering angle and the speed value at each time step. This choice of input allows highlighting the most relevant parts on raw image pairs to decrease the unnecessary visual complexity caused by different road and weather conditions. Additionally, our network achieves the prediction of the vehicle’s upcoming control commands by incorporating a view synthesis component into the model. The view synthesis, as an auxiliary task, aims to infer a novel view for the future from the historical environment transformation cue. By combining both the current and upcoming control commands, our framework achieves driving smoothness, which is highly associated with energy efficiency. We perform experiments on benchmarks to evaluate the reliability under different driving conditions in terms of control accuracy. We deploy a mobile robot outdoors to evaluate the power consumption of different control policies. The quantitative results demonstrate that our method can achieve energy efficiency in the real world. Full article
(This article belongs to the Special Issue Simultaneous Localization and Mapping (SLAM) of Mobile Robots)
Show Figures

Figure 1

25 pages, 11175 KiB  
Article
AI-Enabled Condition Monitoring Framework for Autonomous Pavement-Sweeping Robots
by Sathian Pookkuttath, Aung Kyaw Zin, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2306; https://doi.org/10.3390/math13142306 - 18 Jul 2025
Viewed by 264
Abstract
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, [...] Read more.
The demand for large-scale, heavy-duty autonomous pavement-sweeping robots is rising due to urban growth, hygiene needs, and labor shortages. Ensuring their health and safe operation in dynamic outdoor environments is vital, as terrain unevenness and slope gradients can accelerate wear, increase maintenance costs, and pose safety risks. This study introduces an AI-driven condition monitoring (CM) framework designed to detect terrain unevenness and slope gradients in real time, distinguishing between safe and unsafe conditions. As system vibration levels and energy consumption vary with terrain unevenness and slope gradients, vibration and current data are collected for five CM classes identified: safe, moderately safe terrain, moderately safe slope, unsafe terrain, and unsafe slope. A simple-structured one-dimensional convolutional neural network (1D CNN) model is developed for fast and accurate prediction of the safe to unsafe classes for real-time application. An in-house developed large-scale autonomous pavement-sweeping robot, PANTHERA 2.0, is used for data collection and real-time experiments. The training dataset is generated by extracting representative vibration and heterogeneous slope data using three types of interoceptive sensors mounted in different zones of the robot. These sensors complement each other to enable accurate class prediction. The dataset includes angular velocity data from an IMU, vibration acceleration data from three vibration sensors, and current consumption data from three current sensors attached to the key motors. A CM-map framework is developed for real-time monitoring of the robot by fusing the predicted anomalous classes onto a 3D occupancy map of the workspace. The performance of the trained CM framework is evaluated through offline and real-time field trials using statistical measurement metrics, achieving an average class prediction accuracy of 92% and 90.8%, respectively. This demonstrates that the proposed CM framework enables maintenance teams to take timely and appropriate actions, including the adoption of suitable maintenance strategies. Full article
Show Figures

Figure 1

15 pages, 924 KiB  
Article
Excessive Smoke from a Neighborhood Restaurant Highlights Gaps in Air Pollution Enforcement: Citizen Science Observational Study
by Nicholas C. Newman, Deborah Conradi, Alexander C. Mayer, Cole Simons, Ravi Newman and Erin N. Haynes
Air 2025, 3(3), 20; https://doi.org/10.3390/air3030020 - 18 Jul 2025
Viewed by 388
Abstract
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill [...] Read more.
Regulatory air pollution monitoring is performed using a sparse monitoring network designed to provide background concentrations of pollutants but may miss small area variations due to local emission sources. Low-cost air pollution sensors operated by trained citizen scientists provide an opportunity to fill this gap. We describe the development and implementation of an air pollution monitoring and community engagement plan in response to resident concerns regarding excessive smoke production from a neighborhood restaurant. Particulate matter (PM2.5) was measured using a low-cost, portable sensor. When cooking was taking place, the highest PM2.5 readings were within 50 m of the source (mean PM2.5 36.9 µg/m3) versus greater than 50 m away (mean PM2.5 13.0 µg/m3). Sharing results with local government officials did not result in any action to address the source of the smoke emissions, due to lack of jurisdiction. A review of air pollution regulations across the United States indicated that only seven states regulate food cookers and six states specifically exempted cookers from air pollution regulations. Concerns about the smoke were communicated with the restaurant owner who eventually changed the cooking fuel. Following this change, less smoke was observed from the restaurant and PM2.5 measurements were reduced to background levels. Although current environmental health regulations may not protect residents living near sources of food cooker-based sources of PM2.5, community engagement shows promise in addressing these emissions. Full article
Show Figures

Figure 1

25 pages, 732 KiB  
Article
Accuracy-Aware MLLM Task Offloading and Resource Allocation in UAV-Assisted Satellite Edge Computing
by Huabing Yan, Hualong Huang, Zijia Zhao, Zhi Wang and Zitian Zhao
Drones 2025, 9(7), 500; https://doi.org/10.3390/drones9070500 - 16 Jul 2025
Viewed by 363
Abstract
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in [...] Read more.
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in remote areas. However, cloud computing dependency introduces latency, bandwidth, and privacy challenges, while IoT device limitations require efficient distributed computing solutions. SEC, utilizing low-earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs), extends mobile edge computing to provide ubiquitous computational resources for remote IoTDs. We formulate the joint optimization of MLLM task offloading and resource allocation as a mixed-integer nonlinear programming (MINLP) problem, minimizing latency and energy consumption while optimizing offloading decisions, power allocation, and UAV trajectories. To address the dynamic SEC environment characterized by satellite mobility, we propose an action-decoupled soft actor–critic (AD-SAC) algorithm with discrete–continuous hybrid action spaces. The simulation results demonstrate that our approach significantly outperforms conventional deep reinforcement learning methods in convergence and system cost reduction compared to baseline algorithms. Full article
Show Figures

Figure 1

26 pages, 4255 KiB  
Article
Moving Toward Automated Construction Management: An Automated Construction Worker Efficiency Evaluation System
by Chaojun Zhang, Chao Mao, Huan Liu, Yunlong Liao and Jiayi Zhou
Buildings 2025, 15(14), 2479; https://doi.org/10.3390/buildings15142479 - 15 Jul 2025
Viewed by 320
Abstract
In the Architecture, Engineering, and Construction (AEC) industry, traditional labor efficiency evaluation methods have limitations, while computer vision technology shows great potential. This study aims to develop a potential automated construction efficiency evaluation framework. We propose a method that integrates keypoint processing and [...] Read more.
In the Architecture, Engineering, and Construction (AEC) industry, traditional labor efficiency evaluation methods have limitations, while computer vision technology shows great potential. This study aims to develop a potential automated construction efficiency evaluation framework. We propose a method that integrates keypoint processing and extraction using the BlazePose model from MediaPipe, action classification with a Long Short-Term Memory (LSTM) network, and construction object recognition with the YOLO algorithm. A new model framework for action recognition and work hour statistics is introduced, and a specific construction scene dataset is developed under controlled experimental conditions. The experimental results on this dataset show that the worker action recognition accuracy can reach 82.23%, and the average accuracy of the classification model based on the confusion matrix is 81.67%. This research makes contributions in terms of innovative methodology, a new model framework, and a comprehensive dataset, which may have potential implications for enhancing construction efficiency, supporting cost-saving strategies, and providing decision support in the future. However, this study represents an initial validation under limited conditions, and it also has limitations such as its dependence on well-lit environments and high computational requirements. Future research should focus on addressing these limitations and further validating the approach in diverse and practical construction scenarios. Full article
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Deep Reinforcement Learning for Real-Time Airport Emergency Evacuation Using Asynchronous Advantage Actor–Critic (A3C) Algorithm
by Yujing Zhou, Yupeng Yang, Bill Deng Pan, Yongxin Liu, Sirish Namilae, Houbing Herbert Song and Dahai Liu
Mathematics 2025, 13(14), 2269; https://doi.org/10.3390/math13142269 - 15 Jul 2025
Viewed by 402
Abstract
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) [...] Read more.
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) algorithm, an advanced deep reinforcement learning method, was developed to generate faster and more efficient evacuation routes compared to traditional models. The A3C model was tested in various scenarios, including different environmental conditions and numbers of agents, and its performance was compared with the Deep Q-Network (DQN) algorithm. The results showed that A3C achieved evacuations 43.86% faster on average and converged in fewer episodes (100 vs. 250 for DQN). In dynamic environments with moving threats, A3C also outperformed DQN in maintaining agent safety and adapting routes in real time. As the number of agents increased, A3C maintained high levels of efficiency and robustness. These findings demonstrate A3C’s strong potential to enhance evacuation planning through improved speed, adaptability, and scalability. The study concludes by highlighting the practical benefits of applying such models in real-world emergency response systems, including significantly faster evacuation times, real-time adaptability to evolving threats, and enhanced scalability for managing large crowds in high-density environments including airport terminals. The A3C-based model offers a cost-effective alternative to full-scale evacuation drills by enabling virtual scenario testing, supports proactive safety planning through predictive modeling, and contributes to the development of intelligent decision-support tools that improve coordination and reduce response time during emergencies. Full article
Show Figures

Figure 1

18 pages, 10352 KiB  
Article
Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach
by Koji Aoshima, Eddie Wadbro and Martin Servin
Automation 2025, 6(3), 31; https://doi.org/10.3390/automation6030031 - 12 Jul 2025
Viewed by 334
Abstract
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. Automating this task presents a challenging planning problem since each loading’s performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization [...] Read more.
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. Automating this task presents a challenging planning problem since each loading’s performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and transportation costs between the pile and load receivers. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

28 pages, 1706 KiB  
Article
Adaptive Grazing and Land Use Coupling in Arid Pastoral China: Insights from Sunan County
by Bo Lan, Yue Zhang, Zhaofan Wu and Haifei Wang
Land 2025, 14(7), 1451; https://doi.org/10.3390/land14071451 - 11 Jul 2025
Viewed by 401
Abstract
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to [...] Read more.
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to alleviate local grassland pressure and adapt their livelihoods. However, the interplay between the evolving land use system (L) and this emergent borrowed pasture system (B) remains under-explored. This study introduces a coupled analytical framework linking L and B. We employ multi-temporal remote sensing imagery (2018–2023) and official statistical data to derive land use dynamic degree (LUDD) metrics and 14 indicators for the borrowed pasture system. Through entropy weighting and a coupling coordination degree model (CCDM), we quantify subsystem performance, interaction intensity, and coordination over time. The results show that 2017 was a turning point in grassland–bare land dynamics: grassland trends shifted from positive to negative, whereas bare land trends turned from negative to positive; strong coupling but low early coordination (C > 0.95; D < 0.54) were present due to institutional lags, infrastructural gaps, and rising rental costs; resilient grassroots networks bolstered coordination during COVID-19 (D ≈ 0.78 in 2023); and institutional voids limited scalability, highlighting the need for integrated subsidy, insurance, and management frameworks. In addition, among those interviewed, 75% (15/20) observed significant grassland degradation before adopting off-site grazing, and 40% (8/20) perceived improvements afterward, indicating its potential role in ecological regulation under climate stress. By fusing remote sensing quantification with local stakeholder insights, this study advances social–ecological coupling theory and offers actionable guidance for optimizing cross-regional forage allocation and adaptive governance in arid pastoral zones. Full article
Show Figures

Figure 1

28 pages, 3074 KiB  
Article
Risk Management of Green Building Development: An Application of a Hybrid Machine Learning Approach Towards Sustainability
by Yanqiu Zhu, Hongan Chen, Jun Ma and Fei Pan
Sustainability 2025, 17(14), 6373; https://doi.org/10.3390/su17146373 - 11 Jul 2025
Viewed by 413
Abstract
Despite the rapid adoption of green buildings as a sustainable development strategy, robust, data-driven approaches for assessing and predicting project risks remain limited. This study proposes an innovative hybrid framework combining the fuzzy analytic hierarchy process (FAHP), multilayer perceptron neural networks (MLPNNs), and [...] Read more.
Despite the rapid adoption of green buildings as a sustainable development strategy, robust, data-driven approaches for assessing and predicting project risks remain limited. This study proposes an innovative hybrid framework combining the fuzzy analytic hierarchy process (FAHP), multilayer perceptron neural networks (MLPNNs), and particle swarm optimization (PSO) to quantify and forecast the impact of critical risks on green buildings’ performance. Drawing on structured input from 30 domain experts in Shenzhen, China, ten risk categories were identified and prioritized, with economic, market, and functional risks emerging as the most influential. Using these expert-derived weights, an MLP was trained to predict the effects of the top five risks on four core performance metrics—cost, time, quality, and scope. PSO was applied to optimize the model’s architecture and hyperparameters, improving its predictive accuracy. The optimized framework achieved RMSE values ranging from 0.06 to 0.09 and R2 values of up to 0.95 across all outputs, demonstrating strong predictive capability. These results substantiate the framework’s effectiveness in generating actionable, quantitative risk predictions under uncertainty. Full article
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Evaluating the Energy Costs of SHA-256 and SHA-3 (KangarooTwelve) in Resource-Constrained IoT Devices
by Iain Baird, Isam Wadhaj, Baraq Ghaleb, Craig Thomson and Gordon Russell
IoT 2025, 6(3), 40; https://doi.org/10.3390/iot6030040 - 11 Jul 2025
Viewed by 392
Abstract
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility [...] Read more.
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility and post-quantum resilience for lightweight resource-constrained devices. This paper presents a comparative evaluation of the energy costs associated with SHA-256 and SHA-3 hashing in Contiki 3.0, using three generationally distinct IoT platforms: Sky Mote, Z1 Mote, and Wismote. Unlike previous studies that rely on hardware acceleration or limited scope, our work conducts a uniform, software-only analysis across all motes, employing consistent radio duty cycling, ContikiMAC (a low-power Medium Access Control protocol) and isolating the cryptographic workload from network overhead. The empirical results from the Cooja simulator reveal that while SHA-3 provides advanced security features, it incurs significantly higher CPU and, in some cases, radio energy costs particularly on legacy hardware. However, modern platforms like Wismote demonstrate a more balanced trade-off, making SHA-3 viable in higher-capability deployments. These findings offer actionable guidance for designers of secure IoT systems, highlighting the practical implications of cryptographic selection in energy-sensitive environments. Full article
Show Figures

Figure 1

29 pages, 870 KiB  
Article
Deep Reinforcement Learning for Optimal Replenishment in Stochastic Assembly Systems
by Lativa Sid Ahmed Abdellahi, Zeinebou Zoubeir, Yahya Mohamed, Ahmedou Haouba and Sidi Hmetty
Mathematics 2025, 13(14), 2229; https://doi.org/10.3390/math13142229 - 9 Jul 2025
Viewed by 498
Abstract
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times [...] Read more.
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times and finished product demand are subject to randomness. The problem is formulated as a Markov decision process (MDP), in which an agent determines optimal order quantities for each component by accounting for stochastic lead times and demand variability. The Deep Q-Network (DQN) algorithm is adapted and employed to learn optimal replenishment policies over a fixed planning horizon. To enhance learning performance, we develop a tailored simulation environment that captures multi-component interactions, random lead times, and variable demand, along with a modular and realistic cost structure. The environment enables dynamic state transitions, lead time sampling, and flexible order reception modeling, providing a high-fidelity training ground for the agent. To further improve convergence and policy quality, we incorporate local search mechanisms and multiple action space discretizations per component. Simulation results show that the proposed method converges to stable ordering policies after approximately 100 episodes. The agent achieves an average service level of 96.93%, and stockout events are reduced by over 100% relative to early training phases. The system maintains component inventories within operationally feasible ranges, and cost components—holding, shortage, and ordering—are consistently minimized across 500 training episodes. These findings highlight the potential of deep reinforcement learning as a data-driven and adaptive approach to inventory management in complex and uncertain supply chains. Full article
Show Figures

Figure 1

Back to TopTop