Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,083)

Search Parameters:
Keywords = CO2 uptake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 12180 KiB  
Article
CaAl-LDH-Derived High-Temperature CO2 Capture Materials with Stable Cyclic Performance
by Xinghan An, Liang Huang and Li Yang
Molecules 2025, 30(15), 3290; https://doi.org/10.3390/molecules30153290 - 6 Aug 2025
Abstract
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate [...] Read more.
The urgent need to mitigate rising global CO2 emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO2 capture. A novel solvent/nonsolvent synthetic strategy to fabricate CaO/CaAl-layered double oxide (LDO) composites was developed, where CaAl-LDO serves as a nanostructural stabilizer. The CaAl-LDO precursor enables atomic-level dispersion of components, which upon calcination forms a Ca12Al14O33 “rigid scaffold” that spatially confines CaO nanoparticles and effectively mitigates sintering. Thermogravimetric analysis results demonstrate exceptional cyclic stability; the composite achieves an initial CO2 uptake of 14.5 mmol/g (81.5% of theoretical capacity) and retains 87% of its capacity after 30 cycles. This performance significantly outperforms pure CaO and CaO/MgAl-LDO composites. Physicochemical characterization confirms that structural confinement preserves mesoporous channels, ensuring efficient CO2 diffusion. This work establishes a scalable, instrumentally simple route to high-performance sorbents, offering an efficient solution for carbon capture in energy-intensive industries such as power generation and steel manufacturing. Full article
(This article belongs to the Special Issue Progress in CO2 Storage Materials)
Show Figures

Figure 1

18 pages, 1602 KiB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 972 KiB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Viewed by 29
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 - 2 Aug 2025
Viewed by 211
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 172
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 371
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 324
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

33 pages, 4670 KiB  
Article
Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models
by Emrah Kirtil
ChemEngineering 2025, 9(4), 80; https://doi.org/10.3390/chemengineering9040080 - 28 Jul 2025
Viewed by 217
Abstract
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter [...] Read more.
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter fitting. To address this, the present study introduces a universal machine learning (ML) framework using multiple algorithms—Generalized Linear Model (GLM), Feed-forward Multilayer Perceptron (DL), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosted Trees (GBT)—to reliably predict CO2 adsorption capacities across diverse zeolite structures and conditions. By compiling over 5700 experimentally measured adsorption data points from 71 independent studies, this approach systematically incorporates critical factors including pore size, Si/Al ratio, cation type, temperature, and pressure. Rigorous Cross-Validation confirmed superior performance of the GBT model (R2 = 0.936, RMSE = 0.806 mmol/g), outperforming other ML models and providing comparable performance with classical Langmuir model predictions without separate parameter calibration. Feature importance analysis identified pressure, Si/Al ratio, and cation type as dominant influences on adsorption performance. Overall, this ML-driven methodology demonstrates substantial promise for accelerating material discovery, optimization, and practical deployment of zeolite-based CO2 capture technologies. Full article
Show Figures

Figure 1

15 pages, 1252 KiB  
Article
Origanum vulgare L. Essential Oil Mitigates Palmitic Acid-Induced Impairments in Insulin Signaling and Glucose Uptake in Human Adipocytes
by Andrea Müller, Jonathan Martinez-Pinto, Claudia Foerster, Mario Díaz-Dosque, Liliam Monsalve, Pedro Cisternas, Barbara Angel and Paulina Ormazabal
Pharmaceuticals 2025, 18(8), 1128; https://doi.org/10.3390/ph18081128 - 28 Jul 2025
Viewed by 290
Abstract
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is [...] Read more.
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is rich in monoterpenes with protective effects against IR. Objective: The study aimed to assess total phenols content and antioxidant activity of OVEO and its cytotoxicity, as well as its effect on insulin signaling and glucose uptake in PA-treated adipocytes. Methods: The quantification of total phenolic content was determined using the Folin–Ciocalteu method, while the antioxidant capacity of OVEO was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods. The cytotoxicity of OVEO (0.1–10 µg/mL) was assessed using the MTS assay. SW872 adipocytes were incubated with 0.4 mM PA for 24 h, with or without a 2 h preincubation of OVEO, and then stimulated with insulin (100 nM, 10 min) or a vehicle. Phosphorylation of Tyr-IRS-1, Ser-AKT, and Thr-AS160 was analyzed by Western blot, and glucose uptake was measured using 2-NBDG. Results: OVEO contained phenols and exhibits antioxidant capacity. All the concentrations of OVEO assessed were not cytotoxic on SW872 adipocytes. PA decreased basal phospho-AS160 as well as insulin-stimulated phospho-IRS1, phospho-AKT, phospho-AS160 and glucose uptake, while OVEO co-treatment enhanced these markers. Conclusions: These findings suggest a beneficial effect of OVEO on the PA-impaired insulin pathway and glucose uptake, which might be explained by its phenolic content and antioxidant capacity, highlighting its potential as a complementary therapeutic agent for IR and related metabolic disorders. Full article
Show Figures

Graphical abstract

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 345
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

21 pages, 1471 KiB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 453
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

15 pages, 2190 KiB  
Article
Synthesis and Characterization of Covalent Triazine Frameworks Based on 4,4′-(Phenazine-5,10-diyl)dibenzonitrile and Its Application in CO2/CH4 Separation
by Hanibal Othman, Robert Oestreich, Vivian Küll, Marcus N. A. Fetzer and Christoph Janiak
Molecules 2025, 30(15), 3110; https://doi.org/10.3390/molecules30153110 - 24 Jul 2025
Viewed by 260
Abstract
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl [...] Read more.
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl2-to-monomer ratio (10 and 20). N2 adsorption yielded BET surface areas up to 1460 m2g −1. The pBN-CTFs are promising CO2 adsorbents and are comparable to other benchmark CTFs such as CTF-1 with a CO2 uptake of pBN-CTF-10-550 at 293 K of up to 54 cm3 g−1 or 96 mg g−1, with a CO2/CH4 IAST selectivity of 22 for a 50% mixture of CO2/CH4. pBN-CTF-10-400 has a very high heat of adsorption of 79 kJ mol−1 for CO2 near zero coverage in comparison to other CTFs, and it also stays well above the liquefaction heat of CO2 due to its high microporosity of 50% of the total pore volume. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

12 pages, 2083 KiB  
Article
Modification of Silver-Loaded Biodegradable Polymer Nanoparticles with Bacterial Membrane Vesicles for Treating Intracellular Bacterial Infections
by Wei Xu, Sayo Maruyama and Takuro Niidome
Materials 2025, 18(15), 3470; https://doi.org/10.3390/ma18153470 - 24 Jul 2025
Viewed by 182
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen capable of surviving and replicating within macrophages, which causes foodborne diseases such as gastroenteritis. To develop a strategy against intracellular bacteria in macrophages, we designed silver-loaded biodegradable polymer nanoparticles functionalized [...] Read more.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen capable of surviving and replicating within macrophages, which causes foodborne diseases such as gastroenteritis. To develop a strategy against intracellular bacteria in macrophages, we designed silver-loaded biodegradable polymer nanoparticles functionalized with S. Typhimurium membrane vesicles (MVs). Silver nanoparticles (Ag NPs) were initially encapsulated within biodegradable poly(lactic-co-glycolic) nanoparticles (Ag-P NPs), which were then surface-modified with polyethyleneimine to form Ag-PP NPs. These were subsequently fused with S. Typhimurium MVs via a sonication method to generate Ag-PP@MV NPs. The resulting MV-coated nanoparticles displayed a similar protein profile to that of native MVs and exhibited antibacterial activity against intracellular S. Typhimurium. Notably, the enhanced cellular uptake of the MV-modified NPs contributed to their intracellular bactericidal efficacy. This study highlights MV modification as a promising strategy to improve NP delivery to macrophages for treating persistent intracellular infections. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

24 pages, 1055 KiB  
Review
Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
by Przemysław Niziński, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył and Anna Oniszczuk
Molecules 2025, 30(15), 3096; https://doi.org/10.3390/molecules30153096 - 24 Jul 2025
Viewed by 499
Abstract
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of [...] Read more.
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of diabetes mellitus. QE improves glycemic control by enhancing insulin sensitivity, stimulating glucose uptake, and preserving pancreatic beta cell function. These effects are mediated by the modulation of key molecular pathways, including AMPK, PI3K/Akt, and Nrf2/ARE, as well as by the suppression of oxidative stress and pro-inflammatory cytokines, such as TNF-α and IL-6. Furthermore, QE mitigates the progression of diabetic complications such as nephropathy, retinopathy, and vascular dysfunction, reducing lipid peroxidation and protecting endothelial function. However, the clinical application of quercetin is limited by its low water solubility, poor bioavailability, and extensive phase II metabolism. Advances in formulation strategies, including the use of nanocarriers, co-crystals, and phospholipid complexes, have shown promise in improving its pharmacokinetics. This review elucidates the mechanistic basis of QE quercetin antidiabetic action and discusses strategies to enhance its therapeutic potential in clinical settings. Full article
Show Figures

Figure 1

21 pages, 2576 KiB  
Systematic Review
Assessing the Effects of Moderate to High Dosage of Astaxanthin Supplementation on Lipid Profile Parameters—A Systematic Review and Meta-Analysis of Randomized Controlled Studies
by Lucas Fornari Laurindo, Victória Dogani Rodrigues, Dennis Penna Carneiro, Luiz Sérgio Marangão Filho, Eliana de Souza Bastos Mazuqueli Pereira, Ricardo José Tofano, Eduardo Federighi Baisi Chagas, Jesselina Francisco dos Santos Haber, Flávia Cristina Castilho Caracio, Letícia Zanoni Moreira, Vitor Engrácia Valenti and Sandra Maria Barbalho
Pharmaceuticals 2025, 18(8), 1097; https://doi.org/10.3390/ph18081097 - 24 Jul 2025
Viewed by 591
Abstract
Background/Objectives: Astaxanthin, a xanthophyll carotenoid, has garnered significant interest due to its benefits with regard to dyslipidemia. This multifaceted functional food ingredient modulates several key enzymes associated with lipid regulation, including HMG-CoA reductase, CPT1, ACCβ, and acyl-CoA oxidase. It influences key antioxidant molecular [...] Read more.
Background/Objectives: Astaxanthin, a xanthophyll carotenoid, has garnered significant interest due to its benefits with regard to dyslipidemia. This multifaceted functional food ingredient modulates several key enzymes associated with lipid regulation, including HMG-CoA reductase, CPT1, ACCβ, and acyl-CoA oxidase. It influences key antioxidant molecular pathways like the Nrf2, limiting dyslipidemia occurrence and regulating liver cholesterol uptake through the modulation of liver lipid receptors. Due to the current lack of systematic reviews and meta-analyses assessing moderate to high dosages (6–24 mg/d) of astaxanthin supplementation on lipid dysregulation, the present manuscript aims to fill this gap in the literature. Methods: Following the PRISMA guidelines, we included eight studies comprising eleven results from the PubMed, Springer Link, Science Direct, Cochrane, and Google Scholar databases. The Jamovi (Version 2.6.26, Solid) software was utilized for statistics. Our primary objective was to assess in detail the effects of astaxanthin on LDL-C, HDL-C, triglyceride, and total cholesterol levels. Results: The meta-analysis concludes positive effects of astaxanthin (6–20 mg/d) on HDL-C (0.4200; 95% CI: 0.1081 to 0.7319) and triglyceride (−0.3058; 95% CI: −0.5138 to −0.0978) levels. Unfortunately, astaxanthin (6–20 mg/d) does not appear to significantly influence LDL-C (−0.0725; 95% CI: −0.3070 to 0.1620) and total cholesterol (−0.0448; 95% CI: −0.3369 to 0.2473) levels. Regarding HDL-C, improvements were observed from 55 ± 8 mg/dL (pre-intervention) to 63 ± 8 mg/dL (post-intervention) (p < 0.01) in the 12 mg/d of astaxanthin groups. In the assessment of triglyceride levels, results show a decrease from 151 ± 26 mg/dL (pre-intervention) to 112 ± 40 mg/dL (post-intervention) (p < 0.01) for 18 mg/d astaxanthin supplementation. Conclusions: Further research is necessary to fully harness the potential of astaxanthin, which includes assessing astaxanthin in different subsets of patients, using a GWAS, and in combination with other nutraceuticals to understand the compound’s effectiveness with regard to varying health conditions, genetic and epigenetic factors, and synergistic effects with other compounds. Full article
Show Figures

Figure 1

Back to TopTop